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EXOTIC SUBGROUPS OF HYPERBOLIC GROUPS
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1. Introduction

Since their introduction by Gromov (1987), word hyperbolic groups have been the
focus of a lot of activity and have proved central in attacking a number of problems.
It was soon noticed that their cohomological properties are very strong. As a matter
of fact, a torsion-free word hyperbolic group Γ is of type F , meaning that Γ is the
fundamental group of a finite aspherical cell complex (Gromov (1987) attributes this
to Eliyahu Rips). Such a property for a group Γ is called a finiteness property. For
every positive integer n, there is a coarser finiteness property denoted Fn that requires
a group Γ to be the fundamental group of an aspherical cell complex, possibly infinite,
but which has only finitely many cells up to dimension n. A group of type Fn and not
of type Fn+1 is sometimes said to have exotic finiteness properties(1). The aim of this
report is to illustrate that word hyperbolic groups can have exotic subgroups: subgroups
with exotic finiteness properties or subgroups of type F but not word hyperbolic.

Theorem 1.1 (Llosa Isenrich and Py, 2024, corollary 3). — Let n be a positive integer.
There exists a word hyperbolic group Γ containing a subgroup that is of type Fn but not
of type Fn+1.

Theorem 1.2 (Italiano, Martelli, and Migliorini, 2023, corollary 2)
There exists a word hyperbolic group Γ containing a subgroup of type F that is not

word hyperbolic.

In both statements the subgroups are kernels of homomorphisms from Γ to Z (and in
particular are normal subgroups). The geometric counterparts of these homomorphisms
are maps from M to the circle, where M is a manifold or a pseudo-manifold whose

(1)This terminology was coined down by Dimca, Papadima, and Suciu (2009, section 5), later used in a
book review by Meier (2013), and popularized by Llosa Isenrich (2019); see also the title of section 7
in Jankiewicz, Norin, and Wise (2021). A formal definition appeared first in Llosa Isenrich and Py
(2023).
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fundamental group is Γ. This makes the analysis of the subgroups amenable to Morse-
theoretical techniques. More precisely, on one hand Lefschetz theory is used by Llosa
Isenrich and Py (2024) to study word hyperbolic groups which are arithmetic subgroups
of U(n, 1) (and M is the quotient of the unit ball in Cn by the action of these arithmetic
subgroups); on the other hand the Morse theory of affine cell complexes developed by
Bestvina and Brady (1997) is used by Italiano, Martelli, and Migliorini (2023) for their
word hyperbolic groups which are given by combinatorio-geometrical data.

As emphasized by the authors themselves (and apparent in that the above citations
point to corollaries), the interesting statements may not be the above results, that give
positive solutions to questions raised after the introduction of word hyperbolic groups,
but the geometric constructions of which they are the shadows. The present report will
indeed sketch these constructions and try to refer to the original articles for complete
proofs.
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2. A brief overview of the historical development and further statements

Finiteness properties have various declinations: the properties FHn(R) (R is a ring)
request that the group Γ is the fundamental group of a compact cell complex whose
universal cover has trivial reduced homology with coefficients in R in degrees < n

(Bestvina and Brady, 1997, pp. 445–446), and the properties FPn(R) request that the
trivial R[Γ]-module has a projective resolution whose homogeneous factors of degree
≤ n are finitely generated. The property F1 is equivalent to the group Γ being finitely
generated. The property F2 is equivalent to the group Γ being finitely presented. For
all n, the property Fn implies the property FHn(Z), FHn(Z) implies FHn(R), and
FHn(R) implies FPn(R) (and FPn(Z) implies FPn(R)).

Rips (1982, corollary (b)) constructed the first example of a finitely generated,
hence F1, but not finitely presented, hence not F2, subgroup in a small cancellation
group (in particular in a word hyperbolic group). In his essay, Gromov (1987, section
4.4.A) suggested a strategy for finding subgroups with exotic finiteness properties in
a word hyperbolic group, by taking covers of a flat torus, ramified over a union of
codimension 2 tori meeting orthogonally, and that fiber over the circle (later Mladen
Bestvina showed that Gromov’s construction does not lead to a word hyperbolic group;
his argument is reproduced in Brady, Riley, and Short (2007, pp. 70–71)).
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The question of the existence, in word hyperbolic groups, of subgroups of type Fn

and not Fn+1 was explicitely raised by Gersten (1995, p. 130) (who uses the notation
FPn instead of the now established notation Fn). It was also stated by Brady (1999,
question 7.1) who constructed finitely presented subgroups (hence of type F2) not of
type F3

(2). More examples of finitely presented and not F3 subgroups, elaborating
on Brady’s construction and building on the Bestvina–Brady Morse theory (see below
section 4.4), were subsequently obtained by Lohda (2018), Kropholler (2021), and
Kropholler and Llosa Isenrich (2023). Llosa Isenrich, Martelli, and Py (2021) built
the first example of a subgroup of type F3 and not F4 elaborating on a fibration of a
complete, finite volume, hyperbolic 8-manifold constructed in Italiano, Martelli, and
Migliorini (2022) and gave examples of subgroups of type FPn(Q) and not FPn+1(Q)
in cubulable arithmetic lattices of the Lie group O(2n, 1).

Kernels of homomorphisms onto Z give examples of groups with intermediate finite-
ness properties. For example the kernel of the morphism from the free group F2 onto Z
mapping all the generators to 1 is not finitely generated; the kernel of the morphism
F2 ×F2 → Z sending every generator to 1 is finitely generated but not finitely presented.
Stallings (1963) gave the first example of a group of type F2 (thus finitely presented)
that is not of type F3; it was later observed (Gersten, 1995) that this example is iso-
morphic to the kernel of the morphism from (F2)3 to Z sending every generator to 1.
For every positive integer n, the kernel of the similar homomorphism from (F2)n to Z
is of type Fn−1 and not of type Fn (Bieri, 1976).

On the other hand, the question (answered thus negatively by theorem 1.2) whether
a subgroup of type F in a word hyperbolic group is itself hyperbolic can be traced back
to Bestvina’s problem list(3) and is also stated by Brady (1999, question 7.2). More
recently the question appears in Jankiewicz, Norin, and Wise (2021, section 7). The
techniques developed in this previous reference have been used by Italiano, Martelli,
and Migliorini (2022; 2023) to construct fibrations of hyperbolic manifolds over the
circle and the fibration of a pseudo-manifold explained below in section 4 that leads
to theorem 1.2. Constructions of hyperbolic manifolds along the same line were also
proposed in Kolpakov and Slavich (2016) and Kolpakov and Martelli (2013).

The related question whether a finitely presented subgroup of a word hyperbolic group
of cohomological dimension 2 is itself hyperbolic has a positive answer (Gersten, 1996).
The similar question in dimension 3 or 4 (is it true that an F3, resp. F4, subgroup of a
hyperbolic group of cohomological dimension 3, resp. 4, is hyperbolic) is still open. In
dimension 5, theorem 1.2 provides a counter-example.

(2)Brady asks the existence of a finitely presented subgroup of type FPn(Z) and not FPn+1(Z). However
for a finitely presented group, the implication FPn(Z) ⇒ Fn holds (a proof can be found in the proof of
theorem 7.1 in Brown (1982, chapter VIII), it relies on the Hurewicz theorem), thus Brady’s question
is indeed Gersten’s question.
(3)Written in August 2000 and available at https://www.math.utah.edu/~bestvina/, retrieved on
January 12th 2024.

https://www.math.utah.edu/~bestvina/
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The discussion so far emphasizes morphisms onto Z. Central objects which we will
not discuss, but enable a finer understanding of the finiteness properties of the kernels
of these morphisms, are the Bieri–Neumann–Strebel invariant (Bieri, Neumann, and
Strebel, 1987) and its higher degree relatives introduced by Renz (Bieri and Renz, 1988;
Renz, 1988, 1989) (the BNSR invariants). Llosa Isenrich and Py (2023) give other
constructions of subgroups of Kähler groups with exotic finiteness properties. Certain
constructions use morphisms to higher-rank Abelian groups and are not amenable to
the strategy we describe below, but rely on the BNSR invariants. Theorem 1.4 in the
previous reference constructs subgroups of (not word hyperbolic) Kähler groups with
intermediate finiteness properties that are not normal and are themselves Kähler (the
construction there involves fiber products rather than morphisms). Dimca, Papadima,
and Suciu (2009) constructed the first examples of Kähler groups with intermediate
finiteness properties and their techniques (maps to elliptic curves) were pushed further
by others; we refer to Llosa Isenrich and Py (2023, section 3.1) for a discussion as well
as other references.

The ℓ2-homology also gives control on the BNSR invariants and on finiteness properties
of kernels. A consequence of a theorem of Lück (1998) implies that the kernel of a
surjective morphism G → Z has not type FPn(Q) as soon as the n-th ℓ2-Betti number
of G is nonzero. For the class of residually finite rationally solvable groups (cf. Agol,
2008, for a definition), Kielak (2020, for the case n = 1) and Fisher (2022, for the
general case) proved that the ℓ2-Betti numbers of G vanish up to degree n if and only if
there is a surjective morphism G1 → Z with kernel of type FPn(Q) where G1 is a finite
index subgroup of G. This was involved in the result of Llosa Isenrich, Martelli, and Py
(2021) mentioned above.

3. A construction from complex geometry

Hereafter the article Llosa Isenrich and Py (2024) will be mentioned as LlP1 and the
article Llosa Isenrich and Py (2023) will be mentioned as LlP2.

In this section we address theorem 1.1. The construction here has three steps. First
the kernels of rational cohomology classes of degree 1 coming from complex geometry
(precisely admitting a Morse representative that is the real part of a complex differential
form with isolated zeros on a Kähler manifold) are shown to produce the wanted example.
Second finite-to-one maps to complex tori provide such cohomology classes. Finally
some arithmetic quotients of the unit ball in Cn immerse into their Albanese varieties
and thus admit finite-to-one maps to a complex torus. This is the strategy developed in
LlP1 with a simplification suggested in LlP2 (section 8) avoiding the use of the BNSR
invariants.
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3.1. Forms with isolated zeroes

Let X be a compact connected complex manifold. A closed holomorphic 1-form α

on X leads to a real differential form a = ℜα that represents an element in the first
cohomology group H1(X; R). When this form is rational, i.e. when the class of a belongs
to H1(X; Q) = Hom(π1(X),Q), it gives rise to a homomorphism from π1(X) onto a
finitely generated subgroup of Q; hence, up to scaling, it is a surjective homomorphism
from π1(X) onto Z. When X is aspherical and α has finitely many zeroes, the kernel
of this homomorphism has the desired exotic finiteness properties.

Proposition 3.1 (LlP1, theorem 6.(1)). — Let X be a closed aspherical Kähler man-
ifold of complex dimension n ≥ 2. Let α be a holomorphic 1-form on X with isolated
zeroes and let a = ℜα. Then there is a neighborhood U of the class of a in H1(X; R)
such that for every b in U ∩H1(X; Q), the kernel of b is of type Fn−1. If furthermore
X has nonzero Euler characteristic, then the kernel of b is not of type FPn(Q).

Remark 3.2. — Since X is Kähler and closed, holomorphic 1-forms are automatically
harmonic and consequently closed. Furthermore, from the Hodge decomposition, the
dimension of the space of holomorphic 1-forms is half the first Betti number. Hence the
assumption on X is of topological flavor.

A deformation argument (LlP2, section 6.2) shows that the class of a can be repre-
sented by a Morse 1-form (i.e. locally the differential of a Morse function) all of whose
critical points have index equal to n. This property will hold in a neighborhood U of
the class of a in H1(X; R) (LlP2, proposition 8.1). Let b be a rational form in the open
set U and choose β a differential form representing b.

The universal cover X̃ of X is a contractible manifold and the lift of β is the differential
of a function X̃ → R. This function descends to a function f : X0 → R, where X0 =
X̃/ ker b is the cover associated with b. The space X0 is aspherical with fundamental
group equal to ker b, thus the finiteness properties of ker b can be determined from X0 or
from spaces homotopically equivalent to X0. The function f is proper and has isolated
singularities all of index n. Therefore Morse–Lefschetz theory implies that X0 has the
homotopy type of a compact manifold (a regular fiber of f) with infinitely many n-cells
attached (as soon as the form α has at least one zero, which is ensured by the assumption
on the Euler characteristic). This model for the classifying space of the group ker b
implies that ker b is indeed of type Fn−1. Using a long exact sequence due to Milnor
(1968) associated with the cyclic covering X0 → X, Llosa Isenrich, Martelli, and Py
(2021, section 3.2) show that ker b is not of type FPn(Q).

3.2. Maps to tori

Holomorphic forms on tori are easily understood and never vanish (unless zero). A
way of obtaining holomorphic 1-forms with isolated zeroes will be by pulling back forms
on tori.
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Proposition 3.3 (Simpson, 1993, cf. LlP1, propositions 14 and 18)
Let X be a compact complex manifold and A be a complex torus. Let ψ : X → A

be a holomorphic and finite-to-one map. There is then a meager set F in H0(A; Ω1
A)

(i.e. F is a countable union of closed nowhere dense subsets) such that, for every β in
H0(A,Ω1

A) ∖ F , the holomorphic 1-form ψ∗β has isolated zeroes.

The argument goes as follows. Let Z be a connected component of the zeroes of α
then β must be zero on the subtorus generated by the image of Z by ψ. Since there
are countably many nontrivial subtori, adjusting F appropriately, we can conclude that
ψ(Z) is a point and thus Z is as well a point since ψ is finite-to-one.

3.3. The Albanese map
Let X be a connected Kähler manifold. Every complex differential 1-form α (and

in particular every holomorphic differential 1-form) can be integrated along a path γ

in X and the resulting complex number
∫

γ α depends only on the homotopy class of γ
(relative to the endpoints if any). There is thus a well defined map from H1(X; Z) to
the dual space H0(X; Ω0

X)∗ whose image is a lattice Λ in H0(X; Ω0
X)∗. The quotient of

H0(X; Ω0
X)∗ by Λ is called the Albanese variety of X and denoted by A(X).

Fixing a base point x0 in X, we get a holomorphic map aX : X → A(X) called the
Albanese map as follows. For x in X choose a path γx starting from x0 and ending at x
and set aX(x) to be the class in A(X) of the linear form H0(X,Ω1

X) → C | α 7→
∫

γx
α;

aX(x) does not depend on the choice of γx precisely because of the quotient by the
lattice Λ.

The differential of the Albanese map is well understood (cf. lemma 23 in LlP1) and
this is one input for the following statement.

Theorem 3.4 (Eyssidieux, 2018, corollary 4.7). — Let Γ be an arithmetic lattice in
PU(n, 1) with positive first Betti number. There is then a finite index subgroup Γ0 of Γ
such that the Albanese map for X = B/Γ0 (B being the unit ball in Cn) is an immersion
and is thus finite-to-one.

We refer to LlP1 (theorem 24) for a proof.

3.4. Lattices of the simplest type
We now explain that there are indeed lattices in PU(n, 1) satisfying the hypothesis

of theorem 3.4. This discussion is borrowed from LlP1 (section 3.2).
Let F ⊂ R be a totally real number field (for example F = Q[

√
2]) and let E ⊂ C be

a purely imaginary quadratic extension of F (for example E = Q[
√

2, i]). On V = En+1

choose an Hermitian form of signature (n, 1) all of whose other Galois transforms have
definite signature (for example (z1, . . . , zn+1) 7→ z1z̄1 + · · · + znz̄n −

√
2zn+1z̄n+1). The

group U(H,OE) of H-Hermitian matrices with coefficients in the ring OE of integers
of E (in the example OE is Z[

√
2, i]) is naturally a lattice in PU(n, 1). It is cocompact

when F is different from Q and theorem 1 of Kazhdan (1977) states that U(H,OE)
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admits a finite index subgroup with positive first Betti number. Since the quotient of
the unit ball in Cn by a discrete cocompact subgroup has nonzero Euler characteristic,
the proposition 3.1 can be applied.

Remark 3.5. — Llosa Isenrich and Py showed in fact the existence of infinitely many,
pairwise not commensurable, word hyperbolic groups admitting subgroups of type Fn

and not of type Fn+1.

4. Construction from right-angled polytopes

Hereafter the article Italiano, Martelli, and Migliorini (2023) will be mentioned
as IMM5 and the article Italiano, Martelli, and Migliorini (2022) will be mentioned
as IMM8.

The approach developed by IMM5 for the proof of theorem 1.2 is more combinatorial
in nature. It starts by constructing a finite volume hyperbolic 5-manifold from a right-
angled polytope in the hyperbolic space H5, then a fibration f : M → S1 is constructed
using a natural cubulation of the manifold M . In order to produce a compact object
(and hence a word hyperbolic group) one needs to cap the boundary components of M
to obtained a metric space M∨; this can be done maintaining the negatively curved
metric on M∨ and an extension of the fibration exists.

4.1. The polytope and the manifold
The chosen model for hyperbolic space H5 is the Klein model: the unit ball in R5

with geodesic given by Euclidean segments.
The polytope P5 in H5 is described as the intersections of the half-spaces

ε · x =
5∑

i=1
εixi ≤ 1, x ∈ H5

where ε varies in the subgroup of {±1}5 defined by ∏
εi = 1, i.e. an even number of

the εi are equal to −1. We refer to IMM5 (section 1.1) for a complete description,
and to IMM8 for further details on that polytope as well as a related series of right-
angled polytopes in dimensions 3, . . . , 8. These polytopes were previously studied by
Potyagailo and Vinberg (2005) who explained them starting from certain hyperbolic
simplices. They are related (by duality) to a series of semiregular polytopes discovered
by Gosset (1899).

The polytope P5 has finite volume, is right-angled, and has 16 facets given by the
hyperplanes where equality is achieved in the equation above. It has a big group of
symmetries: the permutation of coordinates as well as the coordinate-wise pluttifkation
by ε (cf. Lindgren, 1945, for this classical operation); this produces a group of symme-
tries of type D4 and of order 24 × 5! = 1920. The hyperbolic reflections through the
16 hyperplanes bounding P5 generate a discrete subgroup Γ of Isom(H5) that is known
to be isomorphic to the congruence two subgroup of the group of integral matrices in
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the Lie group O(5, 1) (see Ratcliffe and Tschantz (2004) who also give a description
of P5 in the hyperboloid model of hyperbolic space).

The group Γ is in fact a right-angled Coxeter group whose generating system is given
by the family {rF }F of reflections through the facets F of P5; the relations, besides
r2

F = e, being rF rG = rGrF each time that two facets F and G intersect.
Each facet of P5 is adjacent to 10 other facets and this gives an adjacency graph with

80 edges (and 16 vertices corresponding to the facets) that controls the presentation
of Γ and that can be nicely represented in the plane (cf. figure 1 in IMM5).

By general properties of Coxeter groups, the torsion elements of Γ are those conjugate
to rF1rF2 · · · rFn where F1, . . . , Fn are facets of P5 that pairwise intersect. This happens
only when n ≤ 5 and the n-tuples of facets satisfying this condition are completely
determined by the adjacency graph.

There is a natural homomorphism Γ → (Z/2Z)16 whose kernel is torsion free and
hence produces a hyperbolic, complete, finite-volume manifold. To produce “smaller”
manifolds, Italiano, Martelli, and Migliorini (IMM5, IMM8) use other homomorphisms
from Γ to (Z/2Z)c (where c is an integer) that are in fact given combinatorially by
a map from the facets of P5 to {1, . . . , c}; the homomorphism Γ → (Z/2Z)c is then
uniquely determined by assigning to rF the i-th basis element ei of (Z/2Z)c if i is the
integer corresponding to F . A necessary and sufficient condition for the kernel to be
torsion-free is then that adjacent facets are sent to different integers under the mapping
F 7→ i. In the terminology of IMM5, IMM8 and others, the mappings from the facets
to {1, . . . , c} are called colorings; they also construct a coloring satisfying the above
condition with c = 8 (cf. figure 3 in IMM5).

The produced manifold M is hence made of 28 copies of P5 which we label Pλ (λ ∈
(Z/2Z)8); along a facet F of Pλ is glued Pλ+ei

where again i is the “color” corresponding
to the facet F .

4.2. The cusps of M

The polytope P5 (that may be considered also as a hyperbolic orbifold) has 10 cusps
corresponding to the points in ∂∞H5 ⊂ R5 all of whose coordinates but one are equal
to 0, i.e. the points (±1, 0, 0, 0, 0), . . . , (0, 0, 0, 0,±1). They lift to cusps in M and those
lifts are analyzed in IMM5 (section 1.4). The coloring is not symmetric and the different
lifts are not pairwise isomorphic. The preimage of the cusp in P5 corresponding to one
of the points (±1, 0, 0, 0, 0), . . . , (0, 0, 0,±1, 0) is 1 cusp in M and is named a large cusp
in IMM5. The preimage of a cusp in P5 corresponding to one of the points (0, 0, 0, 0,±1)
consists of 24 = 16 cusps in M and those cusps are called small in IMM5. There are
thus 8 + 32 = 40 cusps in M .

The cusps in M naturally inherit a tessellation from the tessellation of M ; the tiles
of the cusps are [0, 1]4 × R≥0, the product of the 4-cube and the half line. The large
cusps are divided in 28 = 44 tiles and are naturally isomorphic to (R/4Z)4 × R≥0 with
its “natural” tessellation coming from the tessellation of R4 × R≥0 by translates of
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[0, 1]4 × R≥0. The small cusps are divided in 24 tiles and are naturally isomorphic to
(R/2Z)4 × R≥0.

4.3. The cubulation of M
The tessellation of M dual to the previous tessellation induces in fact a tessellation of

the compact manifold M∨ obtained from M by removing the cusps (therefore M∨ has
40 toroidal boundary components). The precise description starts in fact from the
tessellation of M∨ by copies of P∨, the polytope obtained from P5 by removing its
cusps. Taking the barycentric subdivision of P∨ produces then another tessellation
of M∨. The final tessellation is the one whose maximal polytopes are the stars, in this
intermediate subdivided tessellation, of the vertices belonging to the tessellation of M∨

by copies of P∨ (we refer to IMM5, section 1.5, for the precise construction). Since P5 is
a right-angled polytope, this new tessellation is composed of cubes, the vertices of this
cubulation are in one-to-one correspondence with the copies of P5 composing M (hence
with (Z/2Z)8). The edges of this cubulation are in one-to-one correspondence with the
facets of the original tessellation of M by copies of P5.

4.4. The Bestvina–Brady Morse theory
We give here a very quick sketch of this variant of Morse theory in the piecewise

linear setting. Let X be a topological space composed of copies of convex polyhedra (in
some finite dimensional real vector space) glued together via affine maps; X is called
an affine cell complex. A function f : X → R will be said piecewise linear Morse if
(1) it is affine in restriction to every cell (2) it is constant only on restriction to the
0-dimensional cells, and (3) the image of the 0-skeleton is discrete (Bestvina and Brady,
1997, definition 2.2).

The link at a vertex x of C is defined to be the space made of the cells containing x
glued together along subcells containing x. When a piecewise linear Morse function f is
given, the ascending link lk↑(x, f) is the subspace of the link of X at x made of the cells
where f attains its minimum at x. Similarly the descending link lk↓(x, f) is defined.

The topological changes of the sublevel sets f−1((−∞, t]) happen only at vertices and
are controlled by the ascending and descending links. The statement that will be used
below is that X is homotopically equivalent to a fiber of f when all the ascending and
descending links are contractible.

4.5. Affine maps from M to the circle
In order to apply the above Morse theory, we need to construct a piecewise linear

map from M , or rather from M∨ with its affine cell complex structure inherited from
its cubulation, to the circle S1 = R/Z with its natural affine structure. The lift of this
map is a map from the universal cover of M∨ to R and the ascending and descending
links of the lift are exactly those of the initial map M∨ → S1.

The map f from M∨ to S1 will send all the vertices of the cubulation to 0. There
are then two possibilities for its restriction to a given edge (a little abusively, once an
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identification of the edge with the interval [0, 1] is given, the two possibilities are the
maps x 7→ x and x 7→ −x). Once such choices on the edges are given, this produces an
piecewise linear map from the 1-skeleton of M∨ to S1. It is possible to extend it to M∨

if and only if, for every square C ⊂ M∨, the map ∂C → S1, deduced from the inclusion
of ∂C in the 1-skeleton of M∨, admits an affine extension to C, i.e. if this map is given
by (x, y) 7→ x+ y after appropriately identifying C with [0, 1]2.

In the present situation, as edges of the cubulation of M∨ are in one-to-one corre-
spondence with the facets of the tessellation of M , we need to co-orient the facets in M .
In fact, all the facets of all the copies Pλ of the polytope P5 will be co-oriented. For a
facet F of Pλ we have thus two possible co-orientations, either inward or outward. The
facet F also belong to Pλ′ with λ′ − λ = ei (i being the color of F ) and, at the very
least, the co-orientations of F in Pλ and Pλ′ must be opposite.

The co-orientations of the facets are here determined algorithmically by deciding the
co-orientations of the facets of Pλ+ei

from the knowledge of the co-orientations of the
facets of Pλ. At least, all the facets whose color is i must have their co-orientations
reverted. It was observed in IMM8 (proposition 12.(1)) that it is necessary (and suf-
ficient) to have two facets of Pλ with the same color and opposite co-orientations in
order to produce a nonzero homomorphism from π1(M) to Z. Furthermore, reverting
the co-orientation only for facets of the same color cannot lead to maps satisfying all
the desired properties (cf. IMM5, end of section 1.8; the last condition needed on the
co-orientations will be mentioned in section 4.6 below). One must then revert more
co-orientations and this is done via the following procedure: an equivalence relation R
on the colors {1, . . . , c} (here c = 8) is chosen and, when going from Pλ to Pλ+ei

(for
all λ and for all i), one reverts the co-orientation of all the facets whose color j is
equivalent to i. This is expressed in terms of partitions of {1, . . . , c} in IMM5, IMM8
and other references. This procedure was developed by Jankiewicz, Norin, and Wise
(2021) who introduced a specific vocabulary for it (status, state, moves, game) that we
did not reproduce here.

The chosen equivalence relation in IMM5 is the following: iRj if and only if i = j

mod 4. It is not difficult to determine directly the co-orientation on the facets of Pλ in
terms of a fixed co-orientation on the facets of P5 and an homomorphism (Z/2Z)8 →
(Z/2Z)4 (IMM5, section 1.6). This gives rise to a piecewise linear Morse map from M∨

to S1.

4.6. The restriction to the cusps

We discuss here the restrictions of the piecewise linear map to the boundary com-
ponents of M∨. This gives maps from the cubulated tori (R/2Z)4 or (R/4Z)4 to the
circle. In order to produce later relevant compact objects, we will need to cap off these
boundary tori and to extend non-trivially the map to the circle. This will be possible
when the restrictions of the piecewise linear map to the tori are homotopically nonzero.



1216–11

For the coloring given in the previous subsection, the homotopy classes of the restric-
tions to boundary tori are calculated in IMM5 (proposition 14); the restriction to a large
cusp is homotopic to the projection (S1)4 → S1 on a factor; the restriction to a small cusp
is homotopic to the summation map (R/Z)4 → R/Z | (x1, x2, x3, x4) 7→ x1 +x2 +x3 +x4.

4.7. A complication

As explained in section 4.5, the above equivalence relation give rise to a piecewise
linear map from the 1-skeleton of M∨ to the circle. However this map cannot extend
to a piecewise linear map on M∨ since some squares in M∨ do not satisfy the condition
stated in section 4.5. Even worse: no equivalence relation on {1, . . . , 8} satisfies all
the wanted properties, i.e. the conditions on squares and the conditions on boundary
components (see IMM5, section 1.8).

This issue can be circumvented as follows. IMM5 analyzes the “bad” squares C and
proves that they always appear in 5-cubes C ×D (D is hence a 3-cube) such that every
parallel copy C × {x} (x vertex of D) is bad (IMM5, proposition 12). This enables to
further subdivide these 5-cubes, and their subcubes, into prisms T ×D (T being one of
the 4 triangles obtained by cutting C along its diagonals) and leaving the other 5-cubes
unaffected. On this new tessellation of M∨ everything goes well: the map extends, the
links are contractible (IMM5, theorem 13) and the restrictions to boundary components
have the form mentioned previously (in fact proposition 14 of IMM5 mentioned above
calculates with this new tessellation).

4.8. Capping off the boundary components

This process is nicely explained in different places, for example in Llosa Isenrich,
Martelli, and Py (2021, section 2.1). For each boundary component T of M∨, one glues
to M∨ along T the space (T × [0, 1])/∼ where ∼ is the equivalence relation whose classes
are {t, s} (t ∈ T , s < 1) and S × {1} ⊂ T × [0, 1] (S ⊂ T is a fiber of the map T → S1

obtained by restricting the map M∨ → S1). The map M∨ → S1 obviously extends to
the reunion.

The hyperbolic metric on M induces a flat metric on T . Fujiwara and Manning
(2010, theorem 2.7) ensure that, when T is “big enough” (the shortest loop has length
at least 2π), then the obtained space carries a metric that is locally CAT(−1). The
2π-condition for all the boundary tori can be achieved up to taking a finite cover N
of M . Capping off all the boundary tori gives a compact pseudo-manifold N † with
a locally CAT(−1) metric and a map N † → S1 which is a fibration. The fiber F † of
this map is also a pseudo-manifold which can be assumed to be connected (cf. IMM5,
remark 16).

4.9. Asphericity and non-hyperbolicity

The fundamental group π1(N †) is then word hyperbolic and contains the fundamental
group π1(F †) as a normal subgroup. Application of the Bestvina–Brady Morse theory
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implies that the universal cover of F † is homotopically equivalent to the universal cover
of N † and is hence contractible: the group π1(F †) has type F .

The fact that π1(F †) is not word hyperbolic is shown as follows (IMM5 section 3). Its
outer automorphism group is infinite (IMM5, proposition 23), if it were word hyperbolic,
it would split over a cyclic group (Bestvina and Feighn, 1995, corollary 1.3), but a Mayer–
Vietoris argument shows that this is not possible (IMM5, proposition 24).

Remark 4.1. — Using the same arguments, every fibration M → S1 of a closed hyper-
bolic manifold of odd dimension ≥ 5 will give nonhyperbolic subgroups of type F (the
fundamental group of a fiber) in the fundamental group of M .
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