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ORIENTABILITY OF THE MODULI SPACE OF REAL MAPS
AND REAL GROMOV–WITTEN THEORY
[after Penka Georgieva and Aleksey Zinger]

by Michele Ancona

I knew exactly what to do,
but in a much more real sense

I had no idea of what to do.
— Michael Scott

Introduction

Gromov–Witten theory studies symplectic manifolds via maps from Riemann surfaces
into them. Counting such maps in a proper way produces rational numbers, called
Gromov–Witten (GW-) invariants, that are invariant by deformation of a symplectic
manifold. Let us give an informal definition of GW-invariants of a symplectic manifold
(X,ω). One first fixes a generic almost-complex structure J on (X,ω) such that ω(·, J ·)
defines a Riemannian metric. Such an almost-complex structure is called calibrated.
Gromov (1985) proved that the space of calibrated almost-complex structures is non-
empty and contractible. Then, for any non-negative integers g and k and any homology
class A ∈ H2(X,Z), one considers the moduli space Mg,k(X,A) consisting of elements
[u, (Σ, j), x1, . . . , xk] where:

– Σ is a genus g compact surface with at worst nodal singularities and j is a complex
structure on Σ (the pair (Σ, j) is called a Riemann surface);

– x1, . . . , xk are marked points on Σ;
– u : (Σ, j) → (X, J) is a map verifying J ◦ du = du ◦ j (such a map is called
J-holomorphic or pseudo-holomorphic) and such that the push-forward u∗[Σ] of
the fundamental class of Σ is A (one says that u realizes A);

– the group of automorphisms of (u, (Σ, j), x1, . . . , xk) (that is, the biholomorphisms
φ of (Σ, j) such that φ(xi) = xi and u ◦ φ = u) is finite.

One then fixes cohomology classes α1, . . . , αk of X such that
k∑

i=1
deg(αi) = dim Mg,k(X,A) = (1 − g)(6 − dimX) + 2⟨c1(TX), A⟩ + 2k
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and counts the number of maps [u, (Σ, j), x1, . . . , xk] ∈ Mg,k(X,A) such that u(xi) ∈ Yi,
where Yi ⊂ X is a generic representative of the Poincaré dual of αi. The number of such
maps is then independent of the choice of J and of the representatives of the Poincaré
duals of the classes αi and is called the GW-invariant GWg,A(α1, . . . , αk). For example,
the number Nd of degree d rational curves in P2 passing through a collection of 3d− 1
generic points is a GW-invariant of P2, namely Nd = GW0,d(pt, . . . , pt). The equalities
N1 = 1 and N2 = 1 are evident and N3 = 12 can be proved by counting the number
of singular fibers of the pencil of cubics passing through 8 generic points of P2. The
number N4 = 620 was obtained by Zeuthen (1873). We had to wait until the mid ’90s
to obtain the value of Nd for any d. This was a consequence of the work of Kontsevich
who found the beautiful recursive formula

Nd =
∑

dA+dB=d
dA,dB≥1

NdA
NdB

(
d2

Ad
2
B

(
3d− 4

3dA − 2

)
− d3

AdB

(
3d− 4

3dA − 1

))

which allows us to compute Nd for any d from the value N1 = 1 (see Kontsevich and
Manin, 1994). Such a formula was indeed found thanks to the interpretation of the
numbers Nd as Gromov–Witten invariants and it actually expresses the associativity of
the product in the quantum cohomology ring of P2.

Remark. — Witten (1991) discovered that the coefficients of the quantum multiplication
in quantum cohomology could be defined mathematically using symplectic geometry, in
particular using intersection theory on the space of holomorphic curves in an algebraic
or symplectic manifold. It was Gromov (1985), some years before, who introduced
the notion of pseudo-holomorphic curves in symplectic geometry. For these reasons
the invariants we are talking about are called Gromov–Witten invariants. The first
mathematical foundations of Gromov–Witten theory are the works of Kontsevich and
Manin (1994) in the algebraic setting and of Ruan and Tian (1995) in the symplectic
one.

A real symplectic manifold is a triple (X,ω, σX) where (X,ω) is a symplectic manifold
and σX : X → X is an involution verifying σ∗

Xω = −ω, called the real structure. We
will always assume that X is compact. The main example is the complex projective
space Pn equipped with the Fubini–Study form ωFS and with the standard conjugation
conj : Pn → Pn sending [z0 : · · · : zn] to [z̄0 : · · · : z̄n]. More generally, if a projective
manifolds X ⊂ Pn is defined by real polynomial equations, then (X,ωFS|X , conj|X) is a
real symplectic manifold. The real locus of a real symplectic manifold is by definition
the fixed locus of σX and is denoted by RX. It is either empty or a finite union of
Lagrangian submanifolds of (X,ω). A real Riemann surface (Σ, σ, j) is a Riemann
surface (Σ, j) equipped with an anti-holomorphic involution σ. Given a calibrated
almost-complex structure J on (X,ω) verifying σ∗

XJ = −J , a real curve in (X,ω, σX)
is a (σ, σX)-equivariant J-holomorphic map from a real Riemann surface (Σ, σ, j) into
(X, σX , J). As for the complex case, one would like to extract invariants of (X,ω, σX)
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from counting real curves inside it. However, the number of real curves realizing a
given class and passing through an appropriate number of cycles Yi ⊂ X depends on
the particular choice of the cycles, and not just on their (co)-homology classes. For
example, the number of degree d real rational curves u : (P1, conj) → (P2, conj) passing
through 3d − 1 generic points of RP2 depends on the choice of such points. The first
breakthrough was made by Welschinger (2005a,b, 2007a) when he defined invariants
of real symplectic fourfolds and strongly semipositive sixfolds, now called Welschinger
invariants. The approach of Welschinger was to assign a sign ±1 to each individual real
rational curve passing through a fixed real configuration of points (i.e. a collection of
r real points on a connected component RX0 of RX and l pairs of complex-conjugate
points in X) and by proving that the resulting signed count of such curves is invariant,
that is, it does not depend on the position of the points but only on the chosen connected
component RX0 of RX, on r and on l. By their own definition, Welschinger invariants
give lower bounds for the number of real rational curves passing through a generic real
configuration of points. We will not define Welschinger invariants here, but refer the
reader to the Bourbaki seminar of Oancea (2012) for a gentle introduction to them.
Since the discovery of Welschinger invariants, many advances have been made on real
Gromov–Witten theory in genus 0, but essentially none in higher genus.

Remark. — The Welschinger sign of a real curve inside a real symplectic manifold makes
sense for real curves of any genus; however the resulting signed count is not invariant
in higher genus (see for example Welschinger (2005a) and Itenberg, Kharlamov, and
Shustin (2003, Theorem 3.1)).

Let us explain one of the main difficulties that occurs in trying to define real Gromov–
Witten invariants in general. For this, let us notice that the (complex) GW-invariant
GWg,A(α1, . . . , αk) described above coincides with the integral∫

Mg,k(X,A)
ev∗

1α1 ∧ · · · ∧ ev∗
kαk

where evi : [u, (Σ, j), x1, . . . , xk] ∈ Mg,k(X,A) 7→ u(xi) ∈ X. For the integral to be
well-defined, one needs the space Mg,k(X,A) to be oriented. Here is one of the main
problems in real Gromov–Witten theory: the moduli spaces of real J-holomorphic
curves in (X,ω, σX) are in general not orientable, and when they are, there is not
a preferred orientation. The orientability problem is then a central question in real
Gromov–Witten theory. Welschinger invariants have been interpreted and studied in
term of orientability of moduli spaces of pseudo-holomorphic disks by Cho (2008) and
Solomon (2006) using the work of Fukaya, Oh, Ohta, and Ono (2009), in particular the
notion of relative spin structure (we will recall this notion later in the introduction).
Solomon extended the definition of these invariants to real symplectic sixfolds and
for real curves of higher genus but with fixed conformal structure. Later, Georgieva
(2016) defined a signed count of real genus 0 curves with conjugate pairs of arbitrary
constraints in arbitrary dimensions for strongly semipositive manifolds (X,ω) verifying
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some additional topological properties which, in particular, implies the existence of a
relative spin structure on RX. Such invariants were further generalized by Farajzadeh
Tehrani (2016) who included also genus 0 real curves with empty real locus in the signed
count.

The main theorem we present in this note is a theorem by Georgieva and Zinger
(2018), which gives sufficient conditions on a real symplectic manifold (X,ω, σX) for the
moduli spaces RMg,l(X,A) of real maps from genus g real curves together with l pairs
of complex-conjugate marked points to be oriented for any g, l and class A ∈ H2(X,Z).
The sufficient condition is given by the notion of real-orientation on (X,ω, σX) defined
below in the introduction. The main theorem (Theorem 3.4) then asserts that a real-
orientation on a real-orientable symplectic manifold (X,ω, σX) of dimension 2n, with
n /∈ 2N, orients RMg,l(X,A). An orientation of RMg,l(X,A) can then be used to define
genus g real Gromov–Witten invariants of (X,ω, σX) with conjugate pairs of contraints.

In order to introduce the notion of real orientability, we first need the following
definition.

Definition. — A real bundle pair (E, σE) over (X, σX) is a complex vector bundle
π : E → X equipped with an involution σE which is complex anti-linear in the fibers and
such that π ◦ σE = σX ◦ π. Such involution is called a real structure of E.

An isomorphism of real bundle pairs is an isomorphism between the underlying complex
vector bundles which commutes with the real structures.

The fixed locus RE of (E, σE) is then a real vector bundle over RX whose real rank
equals the complex rank of E. For example, the tangent bundle (TX, dσX) of (X, σX)
is a real bundle pair over (X, σX). Tensor products, direct sums, duals and exterior
powers of real bundle pairs are again real bundle pairs.

Definition (Real orientability). — A real symplectic manifold is real-orientable if
there exists a rank 1 real bundle pair (L, σL) over (X, σX) such that

(1) w2(TRX) = w1(RL)2, where wi(·) ∈ H i(RX,Z/2) denotes the i-th Stiefel–
Whitney class of a real vector bundle;

(2) Λtop
C (TX, dσX) is isomorphic (as a real bundle pair) to (L, σL)⊗2.

Here are some examples of real-orientable symplectic manifolds:
– The odd-dimensional projective space (P2n−1, ωFS, conj). In this case, one has

Λtop
C (TP2n−1, conj) = (OP2n−1(2n), σ2n) and (L, σL) = (OP2n−1(n), σn), where σk is

the natural real structure of OP2n−1(k) over (P2n−1, conj).
– The projective space (P4n−1, ωFS, τ) with empty real locus. Here, τ maps a point

[x0 : x1 : · · · : x4n−2 : x4n−1] to [x̄1 : −x̄0 · · · : x̄4n−1 : −x̄4n−2]. In this case, we
have Λtop

C (TP4n−1, dτ) = (OP4n−1(4n), τ4n) and (L, σL) = (OP4n−1(2n), τ2n), where
τ2k is the natural real structure of OP4n−1(2k) over (P4n−1, τ). Remark that the
line bundle OP4n−1(2k + 1) over (P4n−1, τ) does not admit any real structure.
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– Complete intersections X ⊂ Pn defined by n − 3 real polynomials of degrees
d1, . . . , dn−3 with d1 + · · · + dn−3 ≡ n + 1 (mod 4). Indeed, the adjunc-
tion formula says that Λtop

C (TX, dσX) is isomorphic to (OX(nd), σnd
), with

nd := n+ 1 − d1 − · · · − dn−3 and, under the previous assumption, the real bun-
dle pair (L, σL) = (OX(nd/2), σnd/2) verifies the two real orientability conditions.
An example of such real symplectic manifold is a real quintic threefold in P4.

– Real compact Kähler Calabi–Yau threefolds and, more generally, real compact
Kähler Calabi–Yau manifolds with spin real locus. In this case, Λtop

C (TX, dσX) is
trivial so that the real bundle pair (L, σL) = Λtop

C (TX, dσX) itself verifies the two
real orientability conditions.

Remark. — Recently, Georgieva and Ionel (2021) have defined the notion of twisted real-
orientation, which is a slight generalization of the notion of real-orientation, and checked
that the proofs of the main theorems of Georgieva and Zinger (2018, 2019a,b) can be
adapted for twisted real-orientable symplectic manifolds of odd “complex” dimension.
For example, all odd-dimensional projective spaces (P2n−1, ωFS, τ) with empty real locus
are twisted real-orientable, but they are not real-orientable. Very recently, Georgieva
and Zinger (2023) gave more details about this and also corrected some minor errors in
their previous articles.

Let us collect some remarks on the notion of real orientability. Let us start with the
second point of the definition. An isomorphism between Λtop

C (TX, dσX) and (L, σL)⊗2

induces, by restriction to the real locus, an isomorphism of real line bundles over
RX between Λtop

R (TRX) and (RL)⊗2. Now, the line bundle (RL)⊗2 is orientable, so
a necessary condition for a real symplectic manifold to be real-orientable is that its
real locus is orientable. Let us now comment on the first point in the definition of
real orientability. Recall that a real vector bundle V over a topological space M is
orientable if and only if its first Stiefel–Whitney class w1(V ) ∈ H1(M,Z/2) vanishes
and that an orientable vector bundle V admits a spin structure if and only if its second
Stiefel–Whitney class w2(V ) ∈ H2(M,Z/2) vanishes, as discovered by Haefliger (1956).
If (X,ω, σX) is real-orientable, then the bundle TRX ⊕ 2(RL∗) is orientable because
both TRX and 2(RL∗) := RL∗ ⊕ RL∗ are so. The first condition in the definition of
real orientability then implies that TRX ⊕ 2(RL∗) admits a spin structure. Recall that
a spin structure on an oriented real vector bundle V of rank n ≥ 3 over a topological
space M is an equivariant lift of the orthonormal frame bundle PSO(V ) with respect to
the double covering Spin(n) → SO(n). If V admits a spin structure, then the number
of spin structures is in bijection with H1(M,Z/2). If M admits a cell decomposition
or a triangulation, a spin structure on V can be thought of as a homotopy class of
trivializations of V over the 1-skeleton that extends over the 2-skeleton. For example, a
spin structure of an oriented real vector bundle V over S1 is equivalent to a homotopy
class of trivializations of V .
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Definition (Real orientation). — A real orientation on a real-orientable symplectic
manifold (X,ω, σX) is a triple ((L, σL), [ψ], s) satisfying the following three conditions:

(RO1): (L, σL) is a rank 1 real bundle pair over (X, σX) with w2(TRX) = w1(RL)2

and such that Λtop
C (TX, dσX) is isomorphic to (L, σL)⊗2;

(RO2): [ψ] is a homotopy class of isomorphisms of real bundle pairs between
Λtop

C (TX, dσX) and (L, σL)⊗2;
(RO3): s is spin structure on the real vector bundle TRX ⊕ 2(RL∗) over RX
compatible with the orientation induced by (RO2).

Remark that the real line bundle (RL)⊗2 is canonically oriented, so the choice of
a homotopy class of isomorphisms between Λtop

C (TX, dσX) and (L, σL)⊗2 induces an
orientation of the real locus RX of X.

The notion of real orientation is a strengthening of the notion of relative spin structure
introduced by Fukaya, Oh, Ohta, and Ono (2009). Recall that a relative spin structure
on RX consists of an oriented real vector bundle F → X and a spin structure on
TRX ⊕ F|RX . A real orientation ((L, σL), [ψ], s) on (X,ω, σX) induces a relative spin
structure on RX: the real oriented vector bundle F is given by the complex vector
bundle L∗, and the spin structure on TRX ⊕ L∗

|RX is the composition of the spin
structure s on TRX ⊕ 2(RL∗) and the isomorphism (v, w) ∈ 2(RL∗) 7→ v + iw ∈ L∗

|RX .
Fukaya, Oh, Ohta, and Ono (2009) proved that a relative spin structure on RX orients
the moduli space of pseudo-holomorphic disks with boundary in RX.

In general, Gromov–Witten invariants are not enumerative, meaning that the number
GWg,A(α1, . . . , αk) is not equal to the number of genus g smooth J-holomorphic curves
passing through Poincaré duals of α1, . . . , αk and realizing the class A. Indeed, they
are generally rational numbers which also involve contributions from lower genus curves.
However, in some (rare) cases, Gromov–Witten invariants are enumerative. This is
the case for genus 0 Gromov–Witten invariants of semipositive symplectic manifolds
(for example for Fano projective manifolds). For convex projective manifolds, such as
homogeneous projective manifolds (Pn, for example), the integrable complex structure
is generic enough so that Gromov–Witten invariants actually count genus 0 holomorphic
curves. This implies for example that the Kontsevich (1995) enumerations of rational
curves in Pn coincide with the respective Gromov–Witten invariants.

For real Gromov–Witten invariants one observes the same kind of phenomenon:
they are usually not enumerative. However, in some favorable cases, like for real
Fano threefolds, it is possible to define enumerative invariants W σX

g,A counting with a
sign smooth genus g real J-holomorphic curves passing through complex-conjugate
constraints (see Theorem 3.8). This was shown by Georgieva and Zinger (2019a) for
genus 1 real curves and Niu and Zinger (2018) for any genus. For genus 1 real curves
one can also impose the curves to pass through real points as well (see Theorem 3.7).
Such invariants thus give lower bounds in real enumerative geometry and then they
provide a higher genus analogues of Welschinger invariants. When defined, there is an
explicit relation between these higher genus Welschinger invariants W σX

g,A and the real
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Gromov–Witten invariants GW σX
g,A (see Theorem 3.9). Such relation implies for example

that genus 1 Welschinger invariants are equal to genus 1 real Gromov–Witten invariants
and that genus 2 Gromov–Witten invariants are equal to GW σX

2,A = W σX
2,A + c1(A)−2

48 W σX
0,A .

Organization of the text. — The aim of the text is to present the main ideas contained
in the article by Georgieva and Zinger (2018). In Section 1, we define some standard
objects in real Gromov–Witten theory, namely the moduli spaces of real curves and of
real stable maps, and the determinant line of real Cauchy–Riemann operators. This
section serves in particular to fix the notation. In Section 2, we study the notion of real
orientability and the consequences this has on the orientation of the determinant line
of real Cauchy–Riemann operators and of the moduli space of real curves. This is the
core of this survey. In this section, we try to sketch the proof of all the technical results,
following the original proofs of Georgieva and Zinger (2018). Finally, in Section 3, we
present some consequence of the orientability of the moduli space of real maps in real
Gromov–Witten theory and in real enumerative geometry.

Acknowledgments. — I would like to thank Vladimiro Benedetti, Erwan Brugallé, Penka
Georgieva, Ilia Itenberg, Jean-Yves Welschinger and Aleksey Zinger for useful discussions.
I would also like to thank Damien Gayet and Thomas Letendre for their patience and
generosity during our collaborations over the past year.

1. Main objects: real curves, stable maps and determinants lines of
Fredholm operators

In this section, we define the objects needed for the statements and proofs of the main
results. We define real curves and their moduli spaces in Section 1.1. Two references
for this topic are the articles of Seppälä (1991) and Natanzon (1999). In Section 1.2
we introduce the moduli space of real stable maps inside a real symplectic manifold. A
detailed description of these moduli spaces is given in the article of Liu (2020). Finally,
in Section 1.3 we introduce the determinant line associated with a real Cauchy–Riemann
operator. A standard introduction to these objects is the Appendix A of the book of
McDuff and Salamon (2012). A detailed description of the topology of the determinant
line bundles can also be found in the article of Zinger (2016).

1.1. The moduli space of real curves

A symmetric surface (Σ, σ) is a surface Σ (that is, a closed oriented manifold of real
dimension 2) equipped with an orientation-reversing involution σ. The fixed locus of σ
is denoted by RσΣ (or simply by RΣ if there is no ambiguity) and is called the real
locus of Σ. It is a disjoint union of circles.

The set Σ \ RΣ has either one or two connected components. In the first case, we
say that (Σ, σ) is non-separating (in the literature, it is also called of type II); in the
second case, we say that (Σ, σ) is separating (or of type I). From a topological point of
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view, the symmetric surfaces are completely classified: two genus g symmetric surfaces
(Σ, σ) and (Σ′, σ′) are equivariantly diffeomorphic if and only if b0(RΣ) = b0(RΣ′) and
b0(Σ \ RΣ) = b0(Σ′ \ RΣ′), where b0(·) denotes the number of connected components
of a topological space. Moreover, given g ∈ Z≥0, the realizable values of b0(RΣ) and
b0(Σ \RΣ) for a genus g symmetric surface (Σ, σ) are 0 ≤ b0(RΣ) ≤ g if b0(Σ \RΣ) = 1
and 1 ≤ b0(RΣ) ≤ g + 1 with b0(RΣ) ≡ g + 1 (mod 2) if b0(Σ \ RΣ) = 2. There are
therefore a total of ⌊3g+4

2 ⌋ topological types of genus g symmetric surfaces.
Given a genus g symmetric surface (Σ, σ), we denote by RσJ (Σ) the space of complex

structures j on Σ such that σ∗j = −j. These are the complex structures on Σ for which
σ is anti-holomorphic. A triple (Σ, σ, j) is called a real Riemann surface or also a real
curve. The last terminology comes from the fact that the typical example of such a
triple is given by projective curves defined by real polynomial equations.

The group RσDiff(Σ) of orientation-preserving diffeomorphisms of Σ commuting with
the involution σ acts on RσJ (Σ), and the quotient RσJ (Σ)/RσDiff(Σ) is the moduli
space RσMg of real curves of topological type (Σ, σ).

It is often very useful (and it is crucial for Gromov–Witten theory) to add marked
points to a real curve. The marked points on (Σ, σ) can be of two types: real
points, i.e. lying on RΣ, or pairs of complex-conjugate points, i.e. pairs of points
exchanged by the real structure σ. We denote by RσMg,l the moduli space of real
curves (Σ, σ, j, z) of topological type (Σ, σ) together with l pairs of complex-conjugate
points z = (z+

1 , z
−
1 , . . . , z

+
l , z

−
l ). Here z−

1 = σ(z+
1 ). We restrict ourselves to the case of

complex-conjugate marked points because they are those for which we will be able to
study the orientation of the moduli spaces of real marked curves in a real-orientable
symplectic manifold.

The union ⋃
σ RσMg,l of the moduli spaces RσMg,l among all possible topological

type of orientation-reversing involutions σ on a genus g surface is the moduli space
RMg,l of genus g real curves with l pairs of complex-conjugate marked points.

Example 1.1. — Let us consider the moduli space RconjM0,2 of genus 0 real curves
(P1, conj) with non-empty real locus RP1 and with 2 pairs of complex-conjugate points
(z+

1 , z
−
1 , z

+
2 , z

−
2 ). There are two possibilities: either the points z+

1 and z+
2 lie in the same

connected component of P1 \ RP1, or they do not. Up to a unique automorphism of
(P1, conj), we can assume that z+

1 = i and z+
2 = ti with t ∈ (0, 1) in the first situation

and t ∈ (−1, 0) in the second one. We see then that RconjM0,2 is isomorphic to the
union of two open intervals (−1, 0) ∪ (0, 1).

The complex projective line P1 has another topological type of involution, which is
defined by τ([x0 : x1]) = [−x̄1 : x̄0]. It has empty real locus. The moduli space Rτ M0,2 of
real curves (P1, τ) of genus 0 with empty real locus and with 2 pairs of complex-conjugate
points (z+

1 , z
−
1 , z

+
2 , z

−
2 ) is diffeomorphic to an open interval, say (−1, 1). Indeed, up to

a unique automorphism of (P1, τ), we can assume that z+
1 = i and that z+

2 = ti with
t ∈ (−1, 1).
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Similar to the more classical case of complex curves, one can consider the Deligne and
Mumford (1969) compactification RσMg,l of RσMg,l. This compactification is obtained
by considering the real stable genus g curves with l pairs of complex-conjugate marked
points. We recall that stable curve means a curve with at worst nodal singularities (a
node is a singularity which is locally isomorphic to {(z, w) ∈ C2, zw = 0}) and with
finite group of automorphisms. The nodes are not allowed to be marked points.

The main stratum of RσMg,l \ RσMg,l is given by nodal real curves with one node,
denoted by x12. As described by Liu (2020), the node x12 can be of four different
natures:

(E) x12 is an isolated point of the fixed locus RΣ, that is, it is the intersection
point of two complex-conjugate branches.
(H) x12 is a non-isolated real node and, denoting by π : Σ̃ → Σ the normalization
of Σ and by RΣ12 the component of RΣ containing x12, one has:

(H1) π−1(RΣ12) is connected.
(H2) π−1(RΣ12) is not connected, but Σ̃ is connected.
(H3) Σ̃ is not connected.

Each codimension 1 boundary stratum of RσMg,l is either a hypersurface in RσMg,l

or is a boundary of the spaces RσMg,l for precisely two topological types of orientation-
reversing involutions σ on Σ. One can then glue together these common boundaries to
obtain the moduli space RMg,l. Seppälä (1991) proved that the moduli space RMg,l is
a compact and connected orbifold. It is orientable if and only if g = 0.

Crossing a codimension 1 stratum of RMg,l \ RMg,l of type (E) or (H1) changes the
number of connected components of RΣ by exactly one, while crossing a codimension 1
stratum of type (H2) or (H3) does not change the number of connected components
of RΣ.

Example 1.2. — In the previous Example 1.1, we identified the moduli space RconjM0,2
with the union of the open intervals (−1, 0) and (0, 1), and the moduli space Rτ M0,2
with the open interval (−1, 1).

The compactification RconjM0,2 is diffeomorphic to a closed interval [−1, 1]. The
point 0 corresponds geometrically to the points z+

2 and z−
2 collapsing into each other,

and thus the corresponding curves is isomorphic to a reducible genus 0 real curve
obtained by two (P1, conj) attached at a real point. Such node is then of type (H3).
Each irreducible component has two complex-conjugate marked points. The point −1
corresponds to z−

2 collapsing into z+
1 , while the point 1 corresponds to z+

2 collapsing
into z+

1 . The corresponding stable curve for the point ±1 is isomorphic to two P1

attached at a point, one P1 contains the marked points z±
2 and z+

1 and the other the
marked points z∓

2 and z−
1 . The two P1 are exchanged by the complex-conjugation and

the node is the only real point. Such node is then of type (E).
The compactification Rτ M0,2 is also isomorphic to a closed interval [−1, 1]. The

point −1 corresponds to z+
2 collapsing into z−

1 while the point 1 corresponds to z+
2

collapsing into z+
1 . The corresponding curves are isomorphic to two P1 attached at a
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point. For the point −1, one P1 contains the marked points z+
2 and z−

1 , and the other
one the marked points z+

2 and z−
1 ; for the point 1, one P1 contains the marked points z+

2
and z+

1 , and the other the marked points z−
2 and z−

1 .
The two extrema of the two closed intervals diffeomorphic to RconjM0,2 and Rτ M0,2

parametrize isomorphic curves so that can be identified to each other. Thus we obtain
that RM0,2 ∼= S1.

1.2. The moduli space of real stable maps
A real symplectic manifold (X,ω, σX) is a symplectic manifold (X,ω) together with

an anti-symplectic involution σX : X → X, meaning that σ∗
Xω = −ω, called the real

structure. The real locus of (X,ω, σX) is the fixed locus of σX and is denoted by RX.
It is either empty or a finite union of Lagrangian submanifolds of (X,ω).

Throughout the text, we will assume that X is compact.

Example 1.3. — The complex projective space Pn equipped with the Fubini–Study sym-
plectic form and the standard real structure conj : Pn → Pn, [z0, . . . , zn] 7→ [z̄0, . . . , z̄n],
is a real symplectic manifold whose real locus is RPn. If n = 2m + 1 is odd, then the
map τ : Pn → Pn, [z0, z1, . . . , zn−1, zn] 7→ [−z̄1, z̄0, . . . ,−z̄n, z̄n−1] defines another real
structure on Pn whose real locus is empty. Another important source of examples is
given by real projective manifolds: if a projective manifold X ⊂ Pn is defined by real
polynomials then X is preserved by conj and so the restriction to X of the Fubini–Study
form and of conj defines a structure of real symplectic manifold on X.

Given a symmetric surface (Σ, σ), we denote by RσC∞(Σ, X) the space of equivariant
smooth maps (also called real maps) between (Σ, σ) and (X, σX), that are C∞-maps
u from Σ to X verifying u ◦ σ = σX ◦ u. We denote by RσBg,l(X,A) the subspace of
RσC∞(Σ, X)×Σ2l of elements (u, z) consisting of an equivariant smooth map u realizing
the class A ∈ H2(X,Z) (that is, u∗[Σ] = A) and of l pairs of complex-conjugate marked
points z = (z+

1 , z
−
1 , . . . , z

+
l , z

−
l ).

The group RσDiff(Σ) acts on the product RσBg,l(X,A) × RσJ (Σ) and the quotient
is denoted by RσHg,l(X,A).

We denote by RJ (X,ω) the space of calibrated almost-complex structure of X
that are compatible with σX , that is, such that σ∗

XJ = −J . Welschinger (2005a)
showed that this space is always non-empty and contractible. Given J in RJ (X,ω),
an equivariant map u : (Σ, σ, j) → (X, σX , J) verifying ∂̄Ju := 1

2(du+ J ◦ du ◦ j) = 0 is
called a real J-holomorphic map or also real J-holomorphic curve. The moduli space
of maps [u, j, z] ∈ RσHg,l(X,A) satisfying ∂̄Ju = 0 is called the moduli space of real
J-holomorphic maps (from smooth domains of type (Σ, σ), realizing the class A and
with l pairs of complex-conjugate real points). We will also be interested in real curves
verifying a perturbed equation ∂̄Ju = ν, for a small term ν. Such equation is central
in Gromov–Witten theory as shown by Ruan and Tian (1997). For this reason such
inhomogeneous perturbation is often called a Ruan–Tian perturbation. Given J in
RJ (X,ω), a real Ruan–Tian perturbation ν is intuitively a family over RσMg,l of real
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(0, 1)-forms with values in TX, that is, for any [(Σ, σ, j, z)] ∈ RσMg,l one has an element
of RσΓ(Σ, (T ∗Σ, j)(0,1) ⊗ (TX, J)). Actually, Ruan–Tian perturbations are defined on a
finite cover of RσMg,l over which there is a universal family of real curves. We will not
enter in the precise definition of them, but we refer the reader to the article of Ruan
and Tian (1997) and of Zinger (2017) for further details.

Given a real Ruan–Tian perturbation ν, a real (J, ν)-holomorphic map (or curve) is
an equivariant map u : (Σ, σ, j) → (X, σX , J) verifying ∂̄Ju = ν. The moduli space of
real (J, ν)-holomorphic curves in X with topogical type of involution σ and with l pairs
of complex-conjugate points is denoted by RσMJ,ν

g,l (X,A) or simply by RσMg,l(X,A).
The union of RσMg,l(X,A) among all possible topological types of involution on Σ is
denoted by RMg,l(X,A).

The moduli space RσMg,l(X,A) can be compactified by considering stable maps from
nodal real Riemann surfaces. These are equivariant maps u from genus g nodal real
Riemann surfaces, together with l pairs of complex-conjugate marked points (the nodes
are not allowed to be marked points), verifying ∂̄Ju = ν (where ν is a real Ruan–Tian
perturbation over RσMg,l) and having a finite group of automorphisms. One then
obtains the compact moduli space RσMg,l(X,A). The moduli space RσMg,l(X,A) has
a boundary whose main stratum is given by stable maps from one-nodal real Riemann
surfaces (i.e. real Riemann surfaces with exactly one node).

As for the moduli space of real curves, each codimension 1 boundary stratum
RσMg,l(X,A) is either a hypersurface, or is a boundary of the spaces RσMg,l(X,A) for
exactly two topological types of involution of Σ, and then they can be glued together two
by two to obtain a compact moduli space without boundary, denoted by RMg,l(X,A).
We refer the reader to the paper of Liu (2020) for the details of such gluing.

1.3. Cauchy–Riemann operators and determinant lines

Let (E, σE) be a real bundle pair over a symmetric surface (Σ, σ). We denote by
RΓ(Σ, E) the space of real sections of E, that is, the global sections s : Σ → E such
that σE ◦ s = s ◦ σ.

Given j ∈ RσJ (Σ), a real Cauchy–Riemann (CR) operator on (E, σE) is a linear
map D : RΓ(Σ, E) → RΓ(Σ, E ⊗C (TΣ)0,1) of the form D = ∂̄ + R where ∂̄ is the
∂̄-operator for some σE-compatible holomorphic structure on E (i.e. for which σE is
anti-holomorphic) and R ∈ RΓ (Σ,HomR(E, (TΣ)0,1 ⊗C E)) is a 0-th order perturba-
tion. Equivalently, once a compatible complex structure on (Σ, σ) and a compatible
holomorphic structure on (E, σE) are fixed, a real CR-operator is a linear map from
RΓ(Σ, E) to RΓ(Σ, E ⊗C (TΣ)0,1) verifying the Leibniz rule D(fv) = (∂̄f)v+f(Dv) for
any real-valued function f (while the standard CR-operators verify the Leibniz formula
for any complex-valued function).

It turns out that a real CR-operator is Fredholm (in some appropriate completion of
the space of global sections), and in particular it has finite dimensional kernel and finite
dimensional cokernel. The index of a Fredholm operator D is by definition the integer
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indD = dim kerD − dim cokerD. A compact perturbation of a Fredholm operator is
still a Fredholm operator of the same index.

With any Fredholm operator D one can associate the correspondent determinant line,
defined as detD = Λtop

R (kerD) ⊗
(
Λtop

R (cokerD)
)∗

.
A short exact sequence of Fredholm operators

0 V ′ V V ′′ 0

0 W ′ W W ′′ 0
D′ D D′′

induces a canonical isomorphism

(1) detD ∼= (detD′) ⊗ (detD′′).

A continuous family of Fredholm operators Dt over a topological space U gives
rise to a line bundle detD over U , called the determinant line bundle, whose fiber
over t ∈ U is detDt. Moreover, for a continuous family of short exact sequences of
Fredholm operators, the isomorphism (1) induces a canonical isomorphism between the
determinant line bundles.

The space of real CR-operators on a real bundle pair (E, σE) over a symmetric
surface (Σ, σ) is contractible. This implies that there is a canonical homotopy class of
isomorphisms between any two real CR-operators on a real bundle pair (E, σE). For this
reason, we denote any such real CR-operator by D(E,σE). Remark that an orientation
of detD for one particular real CR-operator D on (E, σE) induces an orientation on the
determinant line detD′ for any other real CR-operator D′ on (E, σE).

Here are the two main examples of real CR-operators we will consider in the text.

Example 1.4. — Let (C, conj) → (Σ, σ) be the trivial bundle pair of rank 1. Given
j ∈ RσJ (Σ), one has the standard real CR-operator ∂̄C induced by j. We denote by
det∂̄C the associated determinant line.

Example 1.5. — Let (X,ω, σX) be a real symplectic manifold of dimension 2n and
fix J in RJ (X,ω). Let also fix a genus g symmetric surface (Σ, σ). Any j ∈ RσJ (Σ)
induces a bundle over the space of equivariant morphisms RσBg,l(X,A) (defined in the
Section 1.2) whose fiber over u is the space of (0, 1)-forms on (Σ, σ, j) with values in
u∗TX. The operator ∂̄J := 1

2(du+ J ◦ d ◦ j) is a section of such bundle (similarly, the
operator ∂̄J −ν, for ν a real Ruan–Tian perturbation). For any u, the linearization of the
operator ∂̄J −ν at u is a real CR-operator over u∗TX, denoted by Du. Its index is given
by the Riemann–Roch formula and equals (1 − g)n+ c1(A), where c1(A) := ⟨c1(X), A⟩.
Thus, the space RσBg,l(X,A) is equipped with a natural determinant line bundle, whose
fiber over u is detDu. If u verifies ∂̄Ju = ν (that is, u is a (J, ν)-holomorphic map from
(Σ, σ, j) to (X,ω, σX)) and if ∂̄J −ν vanishes transversally at u, then cokerDu = {0} and
the tangent space of {∂̄J − ν = 0} at u is given by kerDu. In this case, the determinant
of the tangent space of {∂̄J − ν = 0} at u is detDu.
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Similarly, given any family of morphisms from (eventually nodal) real Riemann sur-
faces to (X,ω, σX , J), we have an induced determinant line bundle over this family. In
particular, RMg,l(X,A) is equipped with a natural determinant line bundle, which we
denote by detD → RMg,l(X,A).

2. Orientability of the moduli space of real maps

In this section, we give the main arguments needed to orient the moduli space
RMg,l(X,A), where (X,ω, σX) is a real-orientable symplectic manifold of dimension 2n,
with n odd. The statement about the orientation of this moduli space is actually given in
Section 3 (see Theorem 3.4) but all the necessary material and main arguments involved
in its proof are given in this section. The idea to orient RMg,l(X,A) is as follows.
Assume that g + l ≥ 2. The moduli space RMg,l(X,A) is equipped with a natural
forgetful map f : RMg,l(X,A) → RMg,l mapping u = [u, (Σ, σ, j, z)] to [Σ, σ, j, z]. The
tangent bundle of RMg,l(X,A) at u then splits as a direct sum of the pullback of
TRMg,l at f(u) and the tangent space kerDu at u of the fiber f−1(f(u)) (this fiber is
the space of real J-holomorphic maps from a fixed real Riemann surface (Σ, σ, j); see
Example 1.5). Taking the determinant of this direct sum one obtains the isomorphism
of real lines

Λtop
R TuRMg,l(X,A) ∼= detDu ⊗ f∗Λtop

R Tf(u)RMg,l,

where Du is as in Example 1.5. In order to orient Λtop
R TuRMg,l(X,A) we will need to

orient detDu and Λtop
R Tf(u)RMg,l. However, RMg,l is never orientable if g ≥ 1. We will

prove the following:
(1) a real orientation orients the line detDu ⊗ (det∂̄C)⊗n;
(2) the line Λtop

R Tf(u)RMg,l ⊗ det∂̄C is naturally oriented.
These two points imply that detDu ⊗ f∗Λtop

R Tf(u)RMg,l ⊗ (det∂̄C)⊗(n+1) is oriented. If n
is odd, (det∂̄C)⊗(n+1) is canonically oriented (since it is a square of a line), and then in
this case detDu ⊗ f∗Λtop

R Tf(u)RMg,l is oriented, which proves what we want.
Points (1) and (2) are proved respectively in Sections 2.2 and 2.3. Both are proved in

a similar way. We first orient detDu ⊗ (det∂̄C)⊗n and Λtop
R Tf(u)RMg,l ⊗ det∂̄C when the

domain (Σ, σ, j) of u is smooth. This is done respectively in Propositions 2.4 and 2.10.
This orients RMg,l(X,A) when g + l ≥ 2; the other cases are obtained by adding
auxiliary complex-conjugate marked points and by remarking that the fibers of the
natural forgetful morphism RMg,l+m(X,A) → RMg,l(X,A) are canonically oriented.

After this, we then have to prove that such an orientation can be extended across
the codimension 1 strata of RMg,l(X,A), that are the strata which are formed by
stable maps from one-nodal domains. The orientation of detDu ⊗ (det∂̄C)⊗n induced by
the real orientation of (X,ω, σX) extends across the codimension 1 strata without any
big issues. The extension of the orientation of Λtop

R TRMg,l ⊗ det∂̄C → RMg,l is more
delicate. Indeed, the natural orientation of Λtop

R TRMg,l⊗det∂̄C → RMg,l constructed in
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Propositon 2.10 extends across the codimension one boundary of RMg,l corresponding to
one-nodal real curves of type (H2) and (H3) but does not extend across the codimension
one boundary corresponding to one-nodal real curves of type (E) and (H1). Now the
main remark is that passing through a boundary component of RMg,l corresponding
to a node of type (H2) and (H3) does not change the number of connected components
of the real locus of Σ, while passing through a boundary component corresponding
to a node of type (E) and (H1) changes this number by exactly one. This implies
that the orientation of the line bundle Λtop

R TRMg,l ⊗ det∂̄C → RMg,l extends to an
orientation of Λtop

R TRMg,l ⊗ det∂̄C → RMg,l after multiplication by (−1)b0(RσΣ), that
is, after reversing it on any component RσMg,l for which b0(RσΣ) is odd.

All these orientation results are in one way or another consequences of Proposition 2.3,
which is the result where the real orientability condition is exploited.

2.1. Orientability of the moduli space of real maps from smooth curves
2.1.1. Real orientations and induced homotopy class of trivializations. — Given a
symmetric surface (Σ, σ), we denote by (Ck, conj) the rank k trivial real bundle pair
(Σ ×Ck, σ× conj). The real part of this real bundle pair is denoted by Rk, which is the
rank k trivial real vector bundle RΣ × Rk over RΣ.

We now give the definition of real orientation of a real bundle pair over a topological
space equipped with an involution.

Definition 2.1. — Let (E, σE) be a real bundle pair over a topological space equipped
with an involution (M,σM). A real orientation on (E, σE) is a triple ((L, σL), [ψ], s)
satisfying the following three conditions:

(RO1): (L, σL) is a rank 1 real bundle pair over (M,σM) such that Λtop
C (E, σE)

is isomorphic to (L, σL)⊗2 and verifying w2(RE) = w1(RL)2;
(RO2): [ψ] is a homotopy class of isomorphisms of real bundle pairs between
Λtop

C (E, σE) and (L, σL)⊗2;
(RO3): s is a spin structure on the real vector bundle RE ⊕ 2(RL∗) over RM
compatible with the orientation induced by (RO2).

A real bundle pair admitting a real orientation is called real-orientable.

Remark 2.2. — An isomorphism ψ between Λtop
C (E, σE) and (L, σL)⊗2 induces a homo-

topy class of isomorphisms

(2) Λtop
C (E ⊕ 2L∗, σE ⊕ 2σL∗) ∼= (C, conj).

Indeed, one has the following chain of isomorphisms

Λtop
C (E⊕2L∗, σE⊕2σL∗) ∼= Λtop

C (E, σE)⊗(L∗, σL∗)⊗2 ∼= (L, σL)⊗2⊗(L∗, σL∗)⊗2 ∼= (C, conj)

where the first isomorphism is canonical, the second one is given by an isomorphism in
the homotopy class of (RO2) and the last isomorphism is given by the canonical pairing.
We call the homotopy class of the isomorphism (2) induced by an isomorphism ψ as in
(RO2) the homotopy class determined by (RO2).
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Proposition 2.3. — Let (E, σE) be a real-orientable bundle pair over a symmetric
surface (Σ, σ). Fix a real orientation ((L, σL), [ψ], s) on (E, σE). Then there exists an
isomorphism φ : (E ⊕ 2L∗, σE ⊕ 2σL∗) → (Cn+2, conj) such that:

(1) the isomorphism Rφ : RE ⊕ 2RL∗ → Rn+2 between real vector bundles over RΣ
induces the spin structure s on RE ⊕ 2RL∗;

(2) the isomorphism Λtop
C φ : Λtop

C (E ⊕ 2L∗, σE ⊕ 2σL∗) → (C, conj) induced by φ is in
the homotopy class of the isomorphism determined by (RO2) (see Remark 2.2).

Moreover, if ϕ is another isomorphism between (E ⊕ 2L∗, σE ⊕ 2σL∗) and (Cn+2, conj)
verifying the previous two properties, then ϕ and φ are in the same homotopy class of
isomorphisms.

Proof. — We will first prove the first part of the proposition and then the “moreover”
part. The first part of the proof will be divided into three parts. First we will construct
an isomorphism between (E ⊕ 2L∗, σE ⊕ 2σL∗) and (Cn+2, conj), then we will modify
it so that it verifies property (1), and later we will modify it so that it also verifies
property (2).

First step: construct an isomorphism. First we use a result of Biswas, Huisman,
and Hurtubise (2010) saying that a real bundle pair (F, σF ) over a symmetric surface
(Σ, σ) is determined, up to isomorphism, by three invariants: the rank of F , the first
Chern class of F and the first Stiefel–Whitney class of RF . By hypothesis, we have that
c1(E ⊕ 2L∗) = 0 and w1(RE ⊕ 2RL∗) = 0. So the real bundle pair (E ⊕ 2L∗, σE ⊕ 2σL∗)
has the same rank and the same Chern and Stiefel–Whitney classes as the trivial real
bundle pair (Cn+2, conj). This implies that the real bundle pair (E ⊕ 2L∗, σE ⊕ 2σL∗)
is isomorphic to (Cn+2, conj). Let φ′ : (E ⊕ 2L∗, σE ⊕ 2σL∗) → (Cn+2, conj) be an
isomorphism. Of course, there is no reason why φ′ should verify the two properties
required by the proposition, so the idea is to modify this isomorphism to find one that
does the job. This is the topic of the next two steps.

Second step: modify the induced spin structure. Let RΣ1, . . . ,RΣm be the connected
components of RΣ and let REi ⊕ 2RL∗

i and Rn+2
i be respectively the restrictions of

RE ⊕ 2RL∗ and of the trivial real vector bundle of rank n+ 2 over RΣi. We denote by
Rφ′

i : REi ⊕ 2RL∗
i → Rn+2

i the induced isomorphism. For any i ∈ {1, . . . ,m}, one can
find an automorphism gi of the trivial bundle Rn+2

i (that is, a map gi : RΣi → GLn+2(R))
so that gi ◦ Rφ′

i : REi ⊕ 2RL∗
i → Rn+2

i identifies the standard orientation and spin
structure of Rn+2

i with the desired orientation and spin structure on REi ⊕ 2RL∗
i . Now,

using that the inclusion GLn+2(R) ↪→ GLn+2(C) induces trivial homomorphisms from
the fundamental group of each of the components of GLn+2(R) to π1 (GLn+2(C)), one
can extend gi ∈ Aut(Rn+2

i ) to an automorphism of real bundle pair Gi ∈ RAut(Cn+2)
which is the identity outside a small tubular neighborhood of RΣi. By construction, the
isomorphism φ′′ := G1 ◦ · · · ◦Gm ◦ φ′ : (E ⊕ 2L∗, σE ⊕ 2σL∗) → (Cn+2, conj) induces the
chosen orientation and spin structure on RE ⊕ 2RL∗. This means that the first point
of the statement of the proposition is satisfied by φ′′. However, we do not know yet if
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the second point is satisfied, that is we do not know if Λtop
C φ′′ lies in the homotopy class

of the isomorphism determined by (RO2). This will be the topic of the next step.
Third step: modify the top-wedge without changing the spin structure. Let F be an

isomorphism between Λtop
C (E ⊕ 2L∗, σE ⊕ 2σL∗) and (C, conj) lying in the homotopy

class of the isomorphism determined by (RO2). We then have the equality F = fΛtop
C φ′′,

for some function f ∈ RAut(C). Remark that, as F and φ′′ induce the same orientation
on RE ⊕ 2RL∗, the restriction Rf of f to RΣ is a strictly positive function.

Let φ = Mf ◦φ′′ be the composition of φ′′ with the automorphism Mf of (Cn+2, conj)
given by the diagonal matrix Diag(f, 1, . . . , 1). By construction, φ is an isomorphism
verifying the two conditions in the statement of the proposition. This proves the first
part of the proposition.

The “moreover” part is a direct consequence of the following more general principle: if
ϕ and ψ are two isomorphisms between a rank k real bundle pair (E, σE) and (Ck, conj)
such that:

– the isomorphisms Rϕ and Rψ between RE and Rk are homotopic;
– the isomorphisms Λtop

C ϕ and Λtop
C ψ between (Λtop

C E, σΛtop
C
E) and (C, conj) are

homotopic;
then so are the isomorphisms ϕ and ψ. This fact is itselt essentially a direct consequence
of the fact that if f ∈ RC∞(Σ, SLkC) is such that Rf ∈ C∞(RΣ, SLkR) is homotopic to
a constant map, then f is homotopic to the identity through maps in RC∞(Σ, SLkC).
Details about this last part can be found in Corollary 5.5 of the paper of Georgieva and
Zinger (2018).

2.2. Orientation of the determinant line bundle

2.2.1. Orientation of the determinant lines. — Let us briefly recall why the deter-
minant line bundle over the space of morphisms from a surface Σ to an almost-
complex manifold (X, J) is orientable, and even canonically oriented. This follows
from the fact that the determinant line of a CR-operator on a complex vector bundle
E → Σ always has a canonical orientation. A CR-operator on E is an R-linear map
D : Γ(Σ, E) → Γ(Σ, E ⊗C (TΣ)0,1) of the form D = ∂̄ +R where ∂̄ is the ∂̄-operator for
some complex structure j on Σ and some compatible holomorphic structure on E and
R ∈ Γ (Σ,HomR(E, (TΣ)0,1 ⊗C E)) is a 0-th order perturbation.

The two spaces Γ(Σ, E) and Γ(Σ, E ⊗C (TΣ)0,1) are complex vector spaces, but the
operator D is not C-linear, so in particular kerD and cokerD are not complex vector
spaces and they do not have a natural orientation (and therefore, a priori, neither the
determinant line has one). The key observation is that one can consider a homotopy Dt

of CR-operators betweenD1 = D andD0 = ∂̄ by deforming the 0-th order term R to zero.
This deformation induces a homotopy class of isomorphisms between the determinant
lines detD and detDt. The determinant line detD0 has a natural orientation induced
by the orientations of kerD0 and cokerD0, which are complex vector spaces since D0
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is C-linear. The homotopy class of isomorphisms of determinant lines detDt and the
orientation on detD0 then induces an orientation on detD.

This does not apply to the determinant line of a real CR-operator on a real bundle
pair. Indeed, in that case the vector spaces involved in the previous argument are all
real vector spaces and thus they do not have a preferred orientation. The point of this
section is to show that if (X,ω, σX) is real-orientable, then a real orientation orients the
line bundle detD ⊗ (det∂̄C)⊗n on the space of real maps to (X,ω, σX).

Proposition 2.4. — Let (E, σE) be a rank n real-orientable bundle pair over (Σ, σ)
and let D(E,σE) be a real CR-operator on (E, σE). Then a real orientation on (E, σE)
induces an orientation on detD(E,σE) ⊗ (det∂̄C)⊗n.

Proof. — Let ((L, σL), [ψ], s) be a real orientation on (E, σE). The short exact sequence
of real bundle pairs

0 → (2L∗, 2σL∗) → (E ⊕ 2L∗, σE ⊕ 2σL∗) → (E, σE) → 0

induces a canonical homotopy class of isomorphisms between determinant lines

detD(E⊕2L∗,σE⊕2σL∗ ) ∼= detD(E,σE) ⊗
(
detD(L∗,σL∗ )

)⊗2
.

Since the line
(
detD(L∗,σL∗ )

)⊗2
is canonically oriented, so is the line

(3) detD(E⊕2L∗,σE⊕2σL∗ ) ⊗ detD(E,σE).

By Proposition 2.3, the real orientation on (E, σE) gives rise to a homotopy class of
isomorphisms (E ⊕ 2L∗, σE ⊕ 2σL∗) ∼= (Cn+2, conj) which in turn induces a homotopy
class of isomorphisms of determinant lines detD(E⊕2L∗,σE⊕2σL∗ ) ∼= (det∂̄C)⊗(n+2). Such
homotopy class of isomorphisms determines an orientation on

detD(E⊕2L∗,σE⊕2σL∗ ) ⊗ (det∂̄C)⊗(n+2),

which combined with the canonical orientation of the line (3) gives an orientation on
detD(E,σE) ⊗ (det∂̄C)⊗n.

Recall that given a real symplectic manifold (X,ω, σX) one can construct a family of
real CR-operators D over families of morphisms from real Riemann surfaces to (X,ω, σX)
whose fiber over u is given by Du, see Example 1.5. The next corollary orients the line
bundle detD⊗(det∂̄C)⊗n over the moduli space of real maps from real Riemann surfaces
to (X,ω, σX).

Corollary 2.5. — Let (X,ω, σX) be a 2n-dimensional real-orientable symplectic man-
ifold. Let g, l ∈ Z≥0 and let (Σ, σ) be a genus g symmetric surface. Fix a homology
class A ∈ H2(X,Z). Then a real orientation on (X,ω, σX) induces an orientation on
the real line bundle

detD ⊗ (det∂̄C)⊗n → RσMg,l(X,A).
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Proof. — For any [u, (Σ, σ, j, z)] ∈ RσMg,l(X,A), we apply Proposition 2.4 to the real
bundle pair u∗(TX, dσX) to obtain an orientation on detDu ⊗ (det∂̄C)⊗n which varies
continuously with u.

2.2.2. Extension of the orientation of detD ⊗ (det∂̄C)⊗n. — Let RσMg,l(X,A) be the
moduli space of real maps from genus g real Riemann surfaces (Σ, σ, j) with topological
type of involution σ. In Corollary 2.5, we have seen that a real orientation on (X,ω, σX)
orients the determinant line bundle detD ⊗ (det∂̄C)⊗n → RσMg,l(X,A). The next
problem is then to see if this orientation extends across the boundary in the full moduli
space

RMg,l(X,A) =
⋃
σ

RσMg,l(X,A).

The codimension one boundary of RMg,l(X,A) \ RMg,l(X,A) is the one formed by
elements representing maps from one-nodal real Riemann surfaces. The node of such one-
nodal real Riemann surfaces is necessarily real, and can be of type (E) or (H) as defined
in Section 1.1. By analyzing what happens when passing through these singularities
one shows that the analogue of Proposition 2.3 is true for one-nodal symmetric surfaces.
Actually Georgieva and Zinger (2016) proved that this is true for any nodal symmetric
surface:

Proposition 2.6. — Let (E, σE) be a rank n real-orientable bundle pair over a nodal
symmetric surface (Σ, σ). Fix a real orientation ((L, σL), [ψ], s) on (E, σE). Then there
exists an isomorphism φ : (E ⊕ 2L∗, σE ⊕ 2σL∗) → (Cn+2, conj) such that:

(1) the isomorphism Rφ : RE ⊕ 2RL∗ → Rn+2 between real vector bundles over RΣ
induces the spin structure s on RE ⊕ 2RL∗;

(2) the isomorphism Λtop
C φ : Λtop

C (E ⊕ 2L∗, σE ⊕ 2σL∗) → (C, conj) induced by φ is in
the homotopy class of the isomorphism determined by (RO2) (see Remark 2.2).

Moreover, if ϕ is another isomorphism between (E ⊕ 2L∗, σE ⊕ 2σL∗) and (Cn+2, conj)
verifying the previous two properties, then ϕ and φ are in the same homotopy class of
isomorphisms.

Let C → (−1, 1) be a flat family of real Riemann surfaces, that is, the fiber over
t ∈ (−1, 1) is a (eventually nodal) real Riemann surface Ct = (Σt, σt, jt). Suppose
that C0 is nodal and the other fibers are smooth. Let (E , σE) → C be a rank n real
bundle pair that we can see as a family of rank n real bundle pairs (Et, σEt) → (Σt, σt).
Taking the determinant of the real CR-operators of these real bundle pairs, we obtain
the determinant line bundle detD(E,σE ) → (−1, 1), whose fiber over t is detD(Et,σEt ). If
(E , σE) is real-orientable and we fix a real orientation, then the latter restricts to a real
orientation on any fiber (Et, σEt). Thus, by Proposition 2.4, we obtain an orientation
on the line bundle detD(Et,σEt ) ⊗ (det∂̄C)⊗n, for any t ̸= 0. The following proposition
says that this orientation extends across t = 0.
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Proposition 2.7. — A real orientation on (E , σE) orients the real line bundle
detD(E,σE ) ⊗ (det∂̄C)⊗n → (−1, 1). Moreover, the induced orientation of a fiber
detD(Et,σEt ) ⊗ (det∂̄C)⊗n, for t ̸= 0, is the orientation induced by the restriction of the
real orientation of (E , σE) to (Et, σEt) as in Proposition 2.4.

Proof. — Let ((L, σL), [ψ], s) be a real orientation of (E , σE), where (L, σL) → C is
a real bundle pair of rank 1 that we see as a family of rank 1 real bundle pairs
(Lt, σLt) → (Σt, σt). Thus, the real orientation ((L, σL), [ψ], s) restricts to a real orienta-
tion ((L0, σL0), [ψ0], s0) on (E0, σE0). By Proposition 2.6, this determines an isomorphism

φ0 : (E0 ⊕ 2L∗
0, σE0 ⊕ 2σL∗

0
) → (Cn+2, conj).

Remark that any real bundle pair (F , σF) → C retracts to the real bundle pair in the
central fiber (F0, σF0) → (Σ0, σ0). This implies that the isomorphism φ0 extends to an
isomorphism

φ : (E ⊕ 2L∗, σE ⊕ 2σL∗) → (Cn+2, conj).

By taking the determinant of the real CR-operators on both sides, we see that such
isomorphism induces an orientation on the line bundle detD(E,σE ) ⊗ (det∂̄C)⊗n → (−1, 1).
We now have to prove that the restriction of such orientation to a fiber detD(Et,σEt ) ⊗
(det∂̄C)⊗n is the orientation given by the restriction of the real orientation of (E , σE) to
(Et, σEt) given by Proposition 2.4.

The homotopy class of the extension φ is uniquely determined by the homotopy
class of φ0 which, in turn, is uniquely determined by the conditions (1) and (2) of
Proposition 2.6. These conditions are topological conditions and so the isomorphism
φt := φ|Et⊕2L∗

t
also verifies conditions (1) and (2) of Proposition 2.3 with respect to

the real orientation ((Lt, σLt), [ψt], st). By Proposition 2.3, if an isomorphism verifies
conditions (1) and (2), then it is in the homotopy class of isomorphisms induced by the
real orientation ((Lt, σLt), [ψt], st). Thus, the restriction of the orientation of detD(E,σE )⊗
(det∂̄C)⊗n to detD(Et,σEt ) ⊗ (det∂̄C)⊗n is the orientation induced by the restriction of the
real orientation of (E , σE) to (Et, σEt).

Proposition 2.7 implies that the orientations of the line bundle detD ⊗ (det∂̄C)⊗n

over RσMg,l(X,A) for each topological type of involution σ are compatible and can
be extended to an orientation of the line bundle detD ⊗ (det∂̄C)⊗n over the compact
moduli space RMg,l(X,A). This is resumed by the following result.

Corollary 2.8. — Let (X,ω, σX) be a 2n-dimensional real-orientable symplectic man-
ifold. Let g, l ∈ Z≥0 and fix a homology class A ∈ H2(X,Z). Then a real orientation on
(X,ω, σX) induces an orientation on the real line bundle

detD ⊗ (det∂̄C)⊗n → RMg,l(X,A).
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2.3. Orientation of the moduli space of real stable curves
2.3.1. Orientation of the moduli space of smooth real curves. — In this section, we
prove that the real line bundle Λtop

R TRσMg,l ⊗ det∂̄C over RσMg,l is orientable, and
even canonically oriented. For this, we need the following result which is a consequence
of Proposition 2.3.

Corollary 2.9. — Let (L, σL) be a rank 1 real bundle pair over a real Riemann
surface (Σ, σ). If RL → RΣ is orientable, then there exists a canonical homotopy
class of isomorphisms between (L⊗2 ⊕ 2L∗, σL⊗2 ⊕ σ2L∗) and (C3, conj). If RL → RΣ
is not orientable, then an orientation of each component RΣi of RΣ over which RL is
non-orientable determines a canonical homotopy class of isomorphisms between the real
bundle pairs (L⊗2 ⊕ 2L∗, σL⊗2 ⊕ σ2L∗) and (C3, conj). Changing the orientation over
such a component RΣi changes the induced spin structure, but not the orientation, of
RL⊗2 ⊕ 2RL∗ over RΣi.

Proof. — We want to apply Proposition 2.3 for (E, σE) = (L, σL)⊗2. For this, we have
to fix a real orientation on (E, σE). This can be done as follows. The rank 1 real bundle
pair realizing the condition (RO1) is (L, σL), while the homotopy class of isomorphisms
between (E, σE) and (L, σL)⊗2 required by (RO2) is the homotopy class of the identity.
Thus conditions (RO1) and (RO2) are ensured; we now have to choose a spin structure
of RL⊗2 ⊕ 2RL∗.

If the real part of (L, σL) is orientable, then both RL⊗2 and 2RL∗ have a canon-
ical homotopy class of trivializations which then induces a canonical spin structure
scan on RL⊗2 ⊕ 2RL∗. Thus, in this case, (L, σL)⊗2 has a canonical real orientation
((L, σL), [id], scan) and then Proposition 2.3 gives the result.

If RL is not orientable on some connected component of RΣ, then 2RL∗ does not have
a canonical homotopy class of trivializations on that connected component (however,
RL⊗2 still does). In this case, an orientation of each of these components gives an
identification between the restriction of RL∗ to each component and the tautological
line bundle ORP1(−1) over RP1. One can explicitely construct a homotopy class of
trivializations of 2ORP1(−1) which then induces a trivialization of RL⊗2 ⊕ 2RL∗, and
a spin structure s. Thus, we obtain a real orientation ((L, σL), [id], s) of (L, σL)⊗2 and
then Proposition 2.3 gives the result also in this case.

In the explicit construction of a trivialization of 2ORP1(−1), one checks that changing
the orientation of one of the components over which RL is not orientable does not change
the induced orientation of RL⊗2 ⊕ 2RL∗ but does change the induced spin structure of
RL⊗2 ⊕ 2RL∗ over this component.

Proposition 2.10. — Let g, l ∈ Z≥0 be such that g+ l ≥ 2. For any topological type σ
of orientation-reversing involutions the real line bundle

Λtop
R (TRσMg,l) ⊗ det∂̄C → RσMg,l

is canonically oriented.
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As will also be emphasized during the proof of the proposition, it is crucially used
here that the marked points are pairs of complex-conjugate points and that there are
therefore no real marked points.
Proof. — We denote by [C, z] an element of RσMg,l, where C is a real curve (Σ, σ, j)
and z = (z+

1 , z
−
1 , . . . , z

+
l , z

−
l ) denotes the l pairs of complex-conjugate marked points.

Let TC(−z) and T ∗C(z) be the real holomorphic line bundles of holomorphic tangent
vectors vanishing at the marked points and of meromorphic one-forms with at most
simple poles at the marked points respectively. We denote by RH i(C, TC(−z)) and
RH i(C, T ∗C(z)) the cohomology groups of real sections (i.e. sections invariant by the
real structures) of these real holomorphic line bundles.

Instead of directly orienting the line bundle Λtop
R (TRσMg,l) ⊗ det∂̄C, we will orient

its dual, that is Λtop
R (T ∗RσMg,l) ⊗ det∂̄C. For this, recall that the cotangent bundle

of RσMg,l at a real marked curve [C, z] is naturally identified with RH0 (C, T ∗C⊗2(z)).
Indeed, the Kodaira–Spencer map provides a canonical isomorphism between the tangent
space of RσMg,l at the point [C, z] and the cohomology group RH1 (C, TC(−z)), while
Serre duality provides a canonical isomorphism

RH1 (C, TC(−z)) ∼= RH0
(
C, T ∗C⊗2(z)

)∗
.

For any real marked curve (C, z), we then have to orient the line

Λtop
R RH0

(
C, T ∗C⊗2 (z)

)
⊗ det∂̄C = detDT ∗C⊗2(z) ⊗ det∂̄C,

where the equality follows from RH1 (C, T ∗C⊗2 (z)) = 0. We will do it in two steps.
First step: orienting detDT ∗C⊗2 ⊗ det∂̄C. Remark that the real locus T ∗RC of the

cotangent bundle over RC is always orientable. We can then apply Corollary 2.9
to (L, σL) = T ∗C to obtain a canonical homotopy class of isomorphisms between
T ∗C⊗2 ⊕ 2TC and the trivial rank 3 real bundle pair (C3, conj). Any choice of an
isomorphism in this homotopy class induces an isomorphism of determinant lines

det∂̄C3 ∼= detDT ∗C⊗2 ⊗ detD2T C ,

which then induces an isomorphism
(4) detDT ∗C⊗2 ⊗ det∂̄C3 ∼= (detDT ∗C⊗2)⊗2 ⊗ detD2T C .

Now, one has detD2T C
∼= (detDT C)⊗2 while det∂̄C3 ∼= (det∂̄C)⊗2 ⊗ det∂̄C. We remark

that the lines (detDT C)⊗2, (detDT ∗C⊗2)⊗2 and (det∂̄C)⊗2 are canonically oriented (as
square of lines). These canonical orientations together with the isomorphism (4) induces
an orientation on the line
(5) detDT ∗C⊗2 ⊗ det∂̄C.
Hence, the first step is proved.

Second step: orienting detDT ∗C⊗2(z) ⊗ det∂̄C. Let S+ (resp. S−) be the skyscraper
sheaf ⊕l

i=1 T
∗
z+

i

C (resp. ⊕l
i=1 T

∗
z−

i
C). Note that S+ and S− are not defined over R (i.e.

there is no natural anti-holomorphic involution acting on them), but their direct sum
S+ ⊕ S− is.



1215–22

An easy but fundamental remark is that there is an explicit isomorphism between
RH0(C,S+⊕S−) andH0(C,S+). This isomorphism is given by the natural identification
between RH0(C,S+ ⊕ S−) and the space (H0(C,S+) ⊕ H0(C,S−))σ of σ-invariant
sections (that is, sections (s+, s−) ∈ H0(C,S+) ⊕ H0(C,S−) such that s+ = σ∗s−)
followed by the projection to the first factor (H0(C,S+) ⊕H0(C,S−))σ → H0(C,S+).
The space H0(C,S+) is a complex vector space isomorphic to ⊕l

i=1 T
∗
z+

i

C, so it has a
natural orientation: we can then equip RH0(C,S+ ⊕ S−) with the orientation induced
by the previous isomorphism. Note that in this point we have used that the marked
points are pair of conjugate points in a crucial way; we could not have done this trick
with the presence of a real marked point (in the presence of marked points, the statement
of the proposition is false in general).

The short exact sequence of real bundle pairs

0 → T ∗C ⊗ T ∗C → T ∗C ⊗ T ∗C(z) → S+ ⊕ S− → 0

induces an exact sequence

0 → RH0
(
C, T ∗C⊗2

)
→ RH0

(
C, T ∗C⊗2 (z)

)
→ RH0(C,S+ ⊕ S−) → RH1

(
C, T ∗C⊗2

)
→ 0,

where we used that RH1 (C, T ∗C⊗2 (z)) = 0. The last exact sequence gives an iso-
morphism between the tensor product det∂̄T ∗C⊗2 ⊗ Λtop

R (RH0(C,S+ ⊕ S−)) and the
line

detDT ∗C⊗2(z) = Λtop
R

(
RH0

(
C, T ∗C⊗2(z)

))
.

The orientation that we fixed on RH0(C,S+ ⊕ S−) then induces an orientation on the
line

(6) detDT ∗C⊗2(z) ⊗ detDT ∗C⊗2 .

Now, this orientation, together with the canonical orientation of (det∂̄C)⊗2, induces
an orientation of

detDT ∗C⊗2(z) ⊗ det∂̄C ⊗ detDT ∗C⊗2 ⊗ det∂̄C.

The latter, together with the orientation obtained in the first step, proves the second
step and hence the result.

Remark 2.11. — Crétois (2013a,b) achieved very similar results to those of Proposi-
tions 2.4 and 2.10 but with very different methods of a more analytical nature, based
on the study of the action of automorphisms of real bundle pairs on the determinant
lines of real CR-operators.
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2.3.2. Extension of the orientation. — Let RσMg,l be the moduli space of real genus g
Riemann surfaces (Σ, σ, j) with topological type of involution σ together with l pairs of
complex-conjugate marked points on (Σ, σ). In Proposition 2.10 we have seen that the
line bundle Λtop

R TRσMg,l ⊗ det∂̄C → RσMg,l is naturally oriented for any topological
type of involution σ on Σ. The disjoint union RMg,l = ⋃

σ RσMg,l of the moduli spaces
of real curves of given topological type of involution has a natural compactification: the
Deligne–Mumford compactification RMg,l given by adding genus g stable real curves
with l pairs of complex-conjugate marked points. The codimension-one stratum of
the boundary RMg,l \ RMg,l is formed by one-nodal stable real curves. The only
node is necessarily real and can be of type (E), (H1), (H2) or (H3), as described in
Section 1.1. The line bundle Λtop

R TRMg,l ⊗ det∂̄C → RMg,l extends to a line bundle
Λtop

R TRMg,l ⊗ det∂̄C → RMg,l. The question now is: does the natural orientation
of the former extend to an orientation of the latter? Asked as it is, the answer to
the question is no. Indeed, we will prove that, along a path of real Riemann surfaces
passing through a one-nodal real Riemann surface with a node of type (E) or (H1),
the canonical orientation of the line bundle Λtop

R TRσMg,l ⊗ det∂̄C does not extend. On
the contrary, along a path of real Riemann surfaces passing through a one-nodal real
Riemann surface with a node of type (H2) or (H3), the canonical orientation of the line
bundle Λtop

R TRσMg,l ⊗ det∂̄C always extends. The main remark now is that passing
through a degeneration of type (H2) or (H3) does not change the number of connected
components of the real locus of the real Riemann surfaces, while passing through a
degeneration of type (E) or (H1) changes the number of connected components of RΣ
by exactly one. If one multiplies the canonical orientation of Λtop

R TRσMg,l ⊗ det∂̄C by
(−1)b0(RσΣ), then one obtains an orientation on Λtop

R TRMg,l ⊗ det∂̄C that extends over
RMg,l.

Remark 2.12. — The actual choice of Georgieva and Zinger is to multiply the canonical
orientation Λtop

R TRσMg,l ⊗ det∂̄C by (−1)b0(RσΣ)+g+1: in this way the orientation of the
line bundle Λtop

R TRMg,l ⊗det∂̄C over the real Riemann surfaces of separating type is the
canonical one. Remark that real Riemann surfaces of separating type play an important
role in open Gromov–Witten theory of real symplectic manifolds, that is, in the study
of Riemann surfaces with boundary in RX.

Let us recall how we oriented the line bundle Λtop
R TRσMg,l ⊗ det∂̄C over an element

[C, z] of RσMg,l (where C denotes a real curve (Σ, σ, j) and z = (z+
1 , z

−
1 , . . . , z

+
l , z

−
l )

denotes the l pairs of complex-conjugate marked points). This can be resumed in two
steps:

(1) We oriented detDT ∗C⊗2⊗det∂̄C using Corollary 2.9. This induced an orientation on
Λtop

R RH0(C, T ∗C⊗2(z))⊗det∂̄C. We call this orientation the canonical orientation.
(2) We identified RH0(C, T ∗C⊗2(z))∗ with RH1(C, TC(−z)) using Serre duality,

and then RH1(C, TC(−z)) with T[C,z]RσMg,l using the Kodaira–Spencer iso-
morphism.
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Let us explain how the line bundle on RMg,l whose fiber over [C, z] ∈ RMg,l equals
Λtop

R RH0(C, T ∗C⊗2(z)) extends to a line bundle on RMg,l. For this, let us first introduce
the relative dualizing line bundle. Let I := (−1, 1) and C → I be a family of (eventually
nodal) real Riemann surfaces. Over the family C there is the relative dualizing line
bundle ωC/I , which restricts over the fiber Ct to a line bundle denoted by ωCt . If Ct is
smooth, then ωCt is isomorphic to T ∗Ct. If Ct is nodal, then ωCt is isomorphic to the
line bundle whose sections are holomorphic 1-forms on the normalization C̃t → Ct of Ct

with at most a simple pole on the preimage of the nodes, and such that if two points
of C̃t are mapped to the same node of Ct, then the residues of the holomorphic 1-forms
at these points are opposite. The dual ω∗

C/I =: TC/I of the relative dualizing line bundle
is the line bundle over C which restricts to a line bundle TCt to any fiber Ct. If Ct is a
smooth fiber, then TCt is isomorphic to the tangent bundle of Ct and, if Ct is a nodal
fiber, then TCt is isomorphic to the line bundle whose sections are holomorphic vector
fields on the normalization of Ct vanishing at the preimages of the nodes and such that
the covariant derivatives of these vector fields at the preimage of a node are opposite.

Let (C, z) → I be a family of (eventually nodal) stable real Riemann surfaces with
l pairs of complex-conjugate points. By this, we mean that the fiber of (C, z) over
t ∈ I is (Ct, zt) where Ct = (Σt, σt, jt) is a real Riemann surface and zt are l pairs of
complex-conjugate marked points on Σt. Over the family (C, z) we consider the line
bundles ω⊗2

C/I(z) and TC/I(−z) whose restrictions to (Ct, zt) equal ω⊗2
Ct

(zt) and TCt(−zt).
These two line bundles induce two real vector bundles of rank 3g − 3 + 2l over I,
that are R0π∗ω

⊗2
C/I(z) and R1π∗TC/I(−z). The fiber over t of the first vector bundle is

RH0(Ct, ω
⊗2
Ct

(zt)), while the fiber over t of the second one is RH1(Ct, TCt(−zt)).
We now study what happens to the orientation on Λtop

R RH0(C, T ∗C⊗2(z)) ⊗ det∂̄C
given by Corollary 2.9 when we cross the boundary of RMg,l.

For this, let C → I be a flat family of real Riemann surfaces such that C0 is a one-nodal
real Riemann surface and the other fibers are smooth. We denote by detDω⊗2

C/I
⊗ det∂̄C

the line bundle over (−1, 1) \ {0} whose fiber over t is given by detDT ∗C⊗2
t

⊗ det∂̄C.

Proposition 2.13. — The canonical orientation on detDω⊗2
C/I

⊗det∂̄C over (−1, 1)\{0}
extends over (−1, 1) if and only if the node of C0 is of type (E) or (H1).

Proof. — If C0 is of type (E) or (H1), then the real locus of the line bundle ωC0 is
orientable. By Corollary 2.9, one obtains a canonical homotopy class of isomorphisms
between ω⊗2

C0 ⊕ 2ω∗
C0 and (C3, conj) which induces an isomorphism between the deter-

minant lines of such bundle pairs, and thus an orientation on detDω⊗2
C0

⊗ det∂̄C. Since
the line bundle ω⊗2

C/I → C retracts to the line bundle of the central fiber ω⊗2
C0 → C0, an

isomorphism between ω⊗2
C0 ⊕ 2ω∗

C0 and (C3, conj) extends to an isomorphism between
ω⊗2

C/I ⊕ 2ω∗
C/I and (C3, conj). By taking the fiberwise determinant of such bundle pairs,

one obtains an orientation of each fiber detDω⊗2
Ct

⊗ det∂̄C. Using the same arguments
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as in Proposition 2.7, one shows that this orientation coincides with the canonical ori-
entation. This shows that if the node of C0 is of type (E) or (H1), then the canonical
orientation on detDω⊗2

C/I
⊗ det∂̄C over (−1, 1) \ {0} extends over (−1, 1).

If C0 is of type (H2) or (H3), then the real locus of the line bundle ωC0 is not orientable
over the connected component Y of the real locus containing the node. In order to apply
Corollary 2.9, one has to orient this connected component. The latter is diffeomorphic
to two S1 attached at the node. There are then four choices of orientation for this: two
for each S1. For each one of the four orientations of Y , Corollary 2.9 gives a homotopy
class of isomorphisms between ω⊗2

C0 ⊕ 2ω∗
C0 and (C3, conj), which in particular induces

a homotopy class of trivializations of Rω⊗2
C0 ⊕ 2Rω∗

C0 over Y . As before, this can be
extended to an isomorphism between ω⊗2

C/I ⊕ 2ω∗
C/I and (C3, conj) over the whole family.

Let us denote by Ψ such an isomorphism. We claim that, for each one of the four
orientations of Y , the restriction Ψt of the isomorphism Ψ to a fiber ω⊗2

Ct
⊕ 2ω∗

Ct
lies in

the canonical homotopy class of isomorphisms given by Corollary 2.9 for t belonging to
one and only one connected component of I \ {0} and does not belong to the canonical
homotopy class if t belongs to the other connected component of I \{0}. More precisely,
for this other connected component, the homotopy class of Ψt differs from the canonical
one by the induced spin structure of Rω⊗2

Ct
⊕ 2Rω∗

Ct
over Yt, where Yt the smoothing

of Y over t ∈ I (that is, the connected component of RCt that degenerates to Y when t
goes to 0). Thus, for t in one connected component of I \{0}, the induced orientation of
detDω⊗2

Ct

⊗ det∂̄C is the canonical one, while, for t in the other connected component, a
result of Fukaya, Oh, Ohta, and Ono (2009) says that the induced orientation of the line
detDω⊗2

Ct

⊗ det∂̄C is the opposite one. Thus, if C0 is of type (H2) or (H3) the canonical
orientation on detDω⊗2

C/I
⊗ det∂̄C over (−1, 1) \ {0} does not extend over (−1, 1), proving

the result.
Let us now give an idea about the proof of the claim. Recall that Y is homeomorphic

to two circles, say Sa and Sb, attached at a point. Consider two intervals [a−, a+] and
[b−, b+] so that Sa and Sb are identified with respectively [a−, a+] and [b−, b+] with the
two extrema glued together (so that Y obtained by gluing together the four extrema of
the intervals). Let us fix an orientation oa of Sa and an orientation ob of Sb. For the sake
of clearness, suppose that such orientation is the one obtained by orienting the intervals
[a−, a+] and [b−, b+] from left to right. Suppose that, for this choice of orientation, the
induced spin structure of Rω⊗2

Ct
⊕ 2Rω∗

Ct
over Yt is the canonical one for t > 0. We now

see that it cannot be the canonical one for t < 0. For this, remark that the circle Yt

for t > 0 is obtained by identifying a+ with b+ and a− with b−, while Yt for t < 0 is
obtained by identifying a+ with b− and a− with b+. Thus, passing from Yt with t > 0
to Yt with t < 0 is equivalent to flipping the orientation of the interval [b−, b+]. Thus
the trivialization over Yt with t < 0 with respect to the given orientations oa and ob is
the same as the trivialization over Yt with t > 0 but with respect to the orientations oa

and −ob. By Corollary 2.9, changing the orientation on one circle does change the spin
structure of the bundle Rω⊗2

C0 ⊕ 2Rω∗
C0 over Y , and then does change the spin structure
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on the nearby fibers. In particular, as we supposed that for Rω⊗2
Ct

⊕ 2Rω∗
Ct

over Yt, with
t > 0, the spin structure is the canonical one, then for t < 0 the spin structure is not
the canonical one.

Let (C, z) → I be a flat family of stable real Riemann surfaces with l pair of complex-
conjugate points such that C0 is a one-nodal real Riemann surface and the other fibers
are smooth. Recall that the canonical orientation on Λtop

R RH0(C, T ∗C⊗2(z)) ⊗ det∂̄C is
induced by the canonical orientation on detDT ∗C⊗2 ⊗ det∂̄C and by the second step of
the proof of Proposition 2.10. By repeating the reasoning of this second step and by
Proposition 2.13 one immediately gets the following corollary.

Corollary 2.14. — The canonical orientation on Λtop
R R0π∗ω

⊗2
C/I(z) ⊗ det∂̄C over

(−1, 1) \ {0} extends over (−1, 1) if and only if the node of C0 is of type (E) or (H1).

We now study how Serre duality and the Kodaira–Spencer isomorphism extend to a
family of nodal real curves. This is resumed by the following proposition.

Proposition 2.15. — Suppose that the interval I = (−1, 1) is embedded on RMg,l so
that 0 is in the main stratum of RMg,l \ RMg,l and t is in RMg,l for t ̸= 0. Suppose
that (C, z) is the universal family over I. Then the orientation on the line bundle
Λtop

R R0π∗ω
⊗2
C/I(z) ⊗ Λtop

R TRMg,l over (−1, 1) \ {0} induced by the composition of Serre
duality and the Kodaira–Spencer isomorphism does not extend over (−1, 1).

Proof. — Serre duality extends to families without any issues, that is one has the
isomorphisms of vector bundles over I between R0

∗ω
⊗2
C/I(z)∗ and R1

∗TC/I(−z), which
restricts to the classical Serre duality on each fiber.

Let us now study the Kodaira–Spencer isomorphism for the elements on I. First,
one writes the tangent space of RMg,l along I as a direct sum of the normal bundle N
of I in RMg,l and of the tangent space of I, that is TRMg,l|I = N ⊕ TI. For any
t ∈ I \ {0}, we write RH1(Ct, TCt(−zt)) = A[Ct,zt] ⊕ B[Ct,zt], where A[Ct,zt] and B[Ct,zt]
are the images by the Kodaira–Spencer map of N[Ct,zt] and T[Ct,zt]I. In particular, for
any t ∈ (−1, 1) \ {0}, one obtains the splitting

(7) Λtop
R RH1(Ct, TCt(−zt))∗ ⊗ Λtop

R T[Ct,zt]RMg,l
∼=

Λtop
R A∗

[Ct,zt] ⊗ Λtop
R N[Ct,zt] ⊗B∗

[Ct,zt] ⊗ T[Ct,zt]I.

One shows that the restriction to N of the Kodaira–Spencer isomorphism can be
extended along the whole interval I. By this we mean that the vector spaces A[Ct,zt] can
be put in family as a vector bundle A over I and that the Kodaira–Spencer map extends
to an isomorphism of vector bundles over I between N and A. This extension of the
Kodaira–Spencer isomorphism orients the line bundle Λtop

R A∗ ⊗ Λtop
R N over I. We now

show that the orientation on B∗
[Ct,zt]⊗T[Ct,zt]I given by the Kodaira–Spencer isomorphism

does not extend across t = 0. For this, denote by θt ∈ B[Ct,zt] ⊂ RH1(Ct, TCt) the
image by the Kodaira–Spencer isomorphism of the tangent vector − ∂

∂t
∈ T[Ct,zt]I if t < 0

and of the tangent vector ∂
∂t

∈ T[Ct,zt]I if t > 0. One can use the concrete description
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in Čech cohomology of the Kodaira–Spencer isomorphism to prove that the elements
θ̂t := |t|θt ∈ B[Ct,zt] can be put in family as an element θ̂ ∈ Γ(I, R1π∗TC/I(−z)). On the
contrary, the vector field defined by − ∂

∂t
∈ T[Ct,zt]I for t < 0 and ∂

∂t
∈ T[Ct,zt]I for t > 0

cannot be extended to a vector field on I. Thus, since the positive direction of the line
B∗

[Ct,zt] ⊗T[Ct,zt]I is given by the element θ̂∗
t ⊗ ∂

∂t
if t > 0 and by θ̂∗

t ⊗
(
− ∂

∂t

)
if t < 0, one

obtains that this orientation does not extend across t = 0.
Hence, we have that the induced orientation on Λtop

R A∗
[Ct,zt]⊗Λtop

R N[Ct,zt] extends across
t = 0, while the orientation on B∗

[Ct,zt] ⊗ T[Ct,zt]I does not extend across t = 0. The
splitting (7) then implies that the orientation on Λtop

R RH1(Ct, TCt(−zt))∗ ⊗Λtop
R TRMg,l

does not extend across t = 0, which proves the result.

Corollary 2.16. — The line bundle Λtop
R TRMg,l ⊗ det∂̄C → RMg,l is canonically

oriented. Moreover, the canonical orientation of Λtop
R TRMg,l ⊗ det∂̄C over RσMg,l

coincides with (−1)b0(RσΣ) times the orientation given by Proposition 2.10.

Proof. — In Proposition 2.10, the orientation of Λtop
R TRσMg,l ⊗ det∂̄C over [C, z] was

given by the canonical orientation of Λtop
R RH0(C, T ∗C⊗2(z)) ⊗ det∂̄C followed by Serre

duality and the Kodaira–Spencer isomorphism which gives

Λtop
R RH0(C, T ∗C⊗2(z))∗ ∼= Λtop

R RH1(C, TC(−z)) ∼= Λtop
R TRσMg,l.

By Corollary 2.14, the canonical orientation of Λtop
R RH0(C, T ∗C⊗2(z))⊗det∂̄C extends

if one crosses an element of the boundary of RMg,l whose node is of type (E) or (H1)
and flips if one crosses an element of the boundary whose node is of type (H2) or (H3).

By Proposition 2.15, the orientation on Λtop
R TRσMg,l ⊗ Λtop

R RH0(C, T ∗C⊗2(z)) ∼= R
given by Serre duality and the Kodaira–Spencer isomorphism flips every time we cross
an element of the boundary.

Hence, the induced orientation on Λtop
R TRσMg,l ⊗ det∂̄C flips every time we cross

an element of the boundary of type (E) or (H1) and extends otherwise. Crossing a
singularity of type (E) or (H1) changes the number of connected components of RΣ by
exactly one, while crossing a singularity of type (H2) or (H3) does not change the number
of connected components of RΣ. Hence, the orientation of Λtop

R TRMg,l⊗det∂̄C → RMg,l

extends to an orientation of Λtop
R TRMg,l ⊗ det∂̄C → RMg,l after multiplication by

(−1)b0(RσΣ), that is, after reversing it on any component RσMg,l for which b0(RσΣ) is
odd.

3. Real Gromov–Witten theory and real enumerative geometry

In this section, we describe some consequences of the results given in Section 2. In
particular, we define genus g real Gromov–Witten invariants with complex-conjugate
constraints for real-orientable symplectic manifolds of dimension 2n, with n odd, as well
as enumerative invariants for some real symplectic sixfolds. We restrict ourselves to the
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case of strongly semipositive real symplectic manifolds where a geometric definition of
Gromov–Witten invariants can be done. In the general case, one should introduce the
virtual fundamental class machinery to define GW-invariants, but this goes beyond the
scope of this introductory text.

3.1. Real Gromov–Witten theory

Recall how Ruan and Tian (1997) have constructed Gromov–Witten invariants for
compact semipositive symplectic manifolds. First consider a generic pair (J, ν), where
J is a calibrated almost complex structure and ν is a Ruan–Tian perturbation. One
then considers the space of simple (J, ν)-holomorphic maps Mg,k(X,A)∗ from smooth
domains, that is, maps u : (Σ, j) → (X, J) that do not factor through multiple covers
and solve the equation ∂̄Ju = ν. For generic (J, ν), this moduli space is a smooth
manifold of the expected dimension 2c1(A) + (2 − 2g)(n− 3) + 2k. The moduli space
Mg,k(X,A)∗ is naturally oriented, essentially for the reasons we explained at the begin-
ning of Section 2.2.1. When X is semipositive (a condition similar to but weaker than the
one in Definition 3.5 below), the evaluation map ev : Mg,k(X,A)∗ → Xk is a so-called
pseudocycle. This informally means that the image of this map can be compactified by
adding the image of a smooth map from a manifold of dimension dim Mg,k(X,A)∗ − 2.
In this case, ev (Mg,k(X,A)∗) defines a homology class in H∗(Xk,Q) that turns out
to be independent of the choice of the generic (J, ν). The product of the evaluation
map ev and the forgetful map f is also a pseudocycle that defines a homology class
in H∗(Xk × Mg,k,Q) which can be used to define mixed GW-invariants. A gentle
introduction to pseudocycles can be found in the book of McDuff and Salamon (2012).

Remark 3.1. — The reason why we use rational coefficients in the homology of X
instead of integer coefficients is because the Ruan–Tian perturbation ν is in fact defined
on a finite cover of Mg,k over which there is a universal family of curves, so one should
actually divide the class of ev (Mg,k(X,A)∗) by the degree of this cover, in order for
the homology class to be independent of the choices of ν and the finite cover.

For real GW-invariants, one can do a similar construction as soon as the moduli
space of real maps is orientable and the evaluation map (or the product ev × f of the
evaluation map and the forgetful map) is a pseudocycle. The first condition is assured
by the real-orientability condition on X, and the second one by the strongly semipositive
condition given in Definition 3.5.

Definition 3.2. — A J-holomorphic map u from P1 to (X, J) is simple if it is not
multiple covered, that is it cannot be written as u = v ◦φ, where φ : P1 → P1 is a degree
d ≥ 2 branched covering.

Let g, l ∈ Z≥0 be such that g+ l ≥ 2. A real (J, ν)-holomorphic map u from a genus g
real nodal curve (Σ, σ, j) with l pairs of complex-conjugate marked points is simple
if the restriction of u to each non-stable irreducible component (which is necessarily
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a smooth P1) of Σ is simple and the images of any two such non-stable components
under u are distinct.

Let (X,ω, σX) be a real symplectic manifold. As throughout the text, we assume that
X is compact. Let RMg,l(X,A)∗ := RMJ,ν

g,l (X,A)∗ be the subspace of RMg,l(X,A)
consisting of simple (J, ν)-holomorphic real maps from domains with at most one node.
It turns out that, for (J, ν) generic enough, RMg,l(X,A)∗ is a smooth manifold of di-
mension c1(A)+(1−g)(n−3)+2l, where dimX = 2n. The smoothness of RMg,l(X,A)∗

follows from standard transversality arguments, which essentially use the Sard–Smale
theorem on the genericity of regular values for Fredholm maps between Banach manifolds.
The idea is as follows. One defines a universal moduli space consisting of elements of the
form (u, (J, ν)) with u = [u, (Σ, σ, j, z)], where u is a simple (J, ν)-holomorphic real map
defined from a real Riemann surface (Σ, σ, j) with at most one node and with l pairs
of complex-conjugate marked points z and realizing the class A. This universal moduli
space is a Banach manifold which admits a natural map to the space of pairs (J, ν). It
turns out that this map is a Fredholm map, and thus by the Sard–Smale theorem the
regular values form a Baire subset. The preimage of (J, ν) is exactly RMJ,ν

g,l (X,A)∗,
which then is smooth for (J, ν) generic. The dimension c1(A) + (1 − g)(n − 3) + 2l is
an index computation and follows from the Riemann–Roch theorem.

Remark 3.3. — If we had removed the “simple” condition in the previous argument, the
associated universal moduli space would not have been a Banach manifold, and therefore
we could not have used the Sard–Smale theorem. This is not only a problem in the proof,
though, but a serious problem in the theory of moduli spaces of J-holomorphic curves:
it is known that transversality fails if one includes multiple covers, that is RMg,l(X,A)
is highly singular in general, and contains components of dimension bigger than the
expected one.

We now collect the main results proved by Georgieva and Zinger (2018) and comment
on them.

Theorem 3.4. — Let (X,ω, σX) be a real-orientable symplectic manifold of dimension
2n, with n odd. Let A ∈ H2(X,Z) and g, l ∈ Z≥0 with g + l ≥ 2. Then, for (J, ν)
generic enough, the moduli space RMg,l(X,A)∗ is an orientable manifold of dimension
c1(A) + (1 − g)(n− 3) + 2l. Moreover, the choice of a real orientation of (X,ω, σX)
orients RMg,l(X,A)∗.

Proof. — The smoothness of RMg,l(X,A)∗ was treated in the previous paragraph and,
as mentioned, is a standard argument in the theory of moduli spaces. Zinger (2017)
gave all the necessary details. Let us now study the orientability question. Consider
an element u = [u, (Σ, σ, j, z)] in RMg,l(X,A)∗, where z is a collection of l pairs
of complex-conjugate marked points. Assume that (Σ, σ, j, z) is stable. Then, the
forgetful map f : RMg,l(X,A)∗ → RMg,l gives an isomorphism between the tangent
space of RMg,l(X,A)∗ at u and the direct sum of the tangent space at u of the fiber



1215–30

f−1(f(u)) (which is isomorphic to kerDu; see Example 1.5) with f∗Tf(u)RMg,l. Taking
the determinant of these vector spaces one gets an isomorphism

Λtop
R TuRMg,l(X,A) ∼= detDu ⊗ f∗Λtop

R Tf(u)RMg,l.

In order to orient RMg,l(X,A)∗ at u, one needs to orient detDu ⊗ f∗Λtop
R Tf(u)RMg,l.

By Corollary 2.8, a real orientation of (X,ω, σX) orients detDu ⊗ (det∂̄C)⊗n, while by
Corollary 2.16, f∗Λtop

R Tf(u)RMg,l ⊗ det∂̄C is canonically oriented. In particular, a real
orientation orients detDu ⊗ f∗Λtop

R Tf(u)RMg,l ⊗ (det∂̄C)⊗(n+1). If n is odd, (det∂̄C)⊗(n+1)

is canonically oriented. This proves the result when the source f(u) = (Σ, σ, j, z) is
stable. The remaining case is proved by adding auxiliary complex-conjugate marked
points (in order to have a stable source) and by remarking that the fibers of the natural
forgetful morphism RMg,l+m(X,A) → RMg,l(X,A) are canonically oriented

Definition 3.5. — A symplectic 2n-manifold (X,ω) is strongly semipositive if, for
any spherical class A ∈ H2(X,Z) (i.e. a class realized by a smooth map u : S2 → X)
such that ⟨ω,A⟩ > 0 and c1(A) ≥ 2 − n, one has c1(A) ≥ 1.

The main example of strongly semipositive symplectic manifolds are smooth Fano
projective manifolds. For strongly semipositive real symplectic manifolds equipped
with a real orientation, one obtains that the evaluation map ev : RMg,l(X,A)∗ → X l

mapping u = [(u, (Σ, σ, j), z)] to (u(z+
1 ), . . . , u(z+

l )) is a pseudocycle. This intuitively
means that dim(ev(RMg,l(X,A) \ RMg,l(X,A)∗) ≤ dim(ev(RMg,l(X,A)∗)) − 2 and
then that the image ev(RMg,l(X,A)∗) defines a homology class of X l whose intersection
with cohomology classes of X l defines real Gromov–Witten invariants.

Corollary 3.6. — Let (X,ω, σX) be a strongly semipositive real-orientable symplectic
manifold of dimension 2n, with n odd. Let A ∈ H2(X,Z) and g, l ∈ Z≥0 with g + l ≥ 2.
Fix a real orientation of (X,ω, σX). Then for any (J, ν) generic enough, the evaluation
map from RMg,l(X,A)∗ (resp. the product of the evaluation map with the forgetful map)
is a pseudocycle, and thus defines a class in H∗(X l,Q) (resp. in H∗(X l ×RMg,l,Q)) of
degree c1(A) + (1 − g)(n− 3) + 2l, which is independent of the choice of generic (J, ν).
Intersecting cohomology class of X l (resp. X l × RMg,l) with the previous pseudocycles
defines real Gromov–Witten invariants of X.

As mentioned in Remark 3.1, one should actually divide the homology class of
ev(RMg,l(X,A)∗) by the degree of the covering of RMg,l used to define the real Ru-
an–Tian perturbation ν. That is, if b is the degree of this covering, then the real
Gromov–Witten invariant GW σX

g,A(α1, . . . , αl) is defined as

⟨1
b
[ev(RMg,l(X,A)∗)], α1 × · · · × αl⟩.

Proof. — By Theorem 3.4, for generic (J, ν), the space RMg,l(X,A)∗ is a smooth
manifold of dimension c1(A) + (1 − g)(n− 3) + 2l which is oriented by a real-orientation
of (X,ω, σX). The condition that (X,ω, σX) is strongly semipositive ensures that
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ev(RMg,l(X,A) \ RMg,l(X,A)∗) (resp. (ev × f)(RMg,l(X,A) \ RMg,l(X,A)∗)) has
dimension strictly smaller than c1(A)+(1−g)(n−3)+2l−1, and thus that one obtains
a pseudocycle. Moreover, given a generic family (Jt, νt) of almost-complex structures
and of real Ruan–Tian perturbations, one can show that there is a cobordism between
the correspondent family of pseudocycles, and thus that the homology class in H∗(X l,Q)
(resp. in H∗(X l × RMg,l,Q)) is independent of the generic choice of (J, ν).

For certain real symplectic sixfolds, it is also possible to define real GW-invariants
with real points insertions as well, as described by the following result.

Theorem 3.7. — Let (X,ω, σX) be a strongly semipositive real-orientable symplectic
manifold of dimension 6. Suppose that c1(A) := ⟨c1(X), A⟩ is a multiple of 4, for any
A ∈ H2(X,Z). Then for any (J, ν) generic enough, for any A ∈ H2(X,Z) and l and k
in Z≥0 with l+k ≥ 1, a real orientation of (X,ω, σX) determines a real Gromov–Witten
invariant GW σX

1,A(ptl; ptk), which is a signed count of genus one real (J, ν)-holomorphic
maps passing through l pairs of complex-conjugate points and k real points in X.

For example, (P3, conj) verifies the hypothesis of the previous theorem. The moduli
spaces involved in the proof of Theorem 3.7 are the moduli spaces RM1,l,k(X,A)∗

of genus one real (J, ν)-holomorphic maps together with l pairs of complex-conjugate
marked points and k real marked points. These moduli spaces are not orientable in
general, so the evaluation map in this case is not a pseudocycle (for a pseudocycle, one
needs smooth oriented manifolds). The proof of Theorem 3.7 is obtained by showing
that a divisor Z representing the first Stiefel–Whitney class of RM1,l,k(X,A)∗ (which is
responsible for the non-orientability) is not crossed by the preimage by the evaluation
map of a generic path of l pairs of complex-conjugate points and k real points. In
this part of the proof, the condition ⟨c1(X), A⟩ ∈ 4Z is crucial. This preimage is
then always included in the complement of the divisor Z, which is oriented by a real
orientation of (X,ω, σX). Such orientation then defines a signed count of genus one real
(J, ν)-holomorphic maps passing through a generic configuration of l pairs of complex-
conjugate points and k real points, which is independent of the generic choice of the
configuration of points as well as the generic choice of (J, ν).

3.2. Applications to real enumerative geometry

The invariants we have discussed in the previous section can be used to define enu-
merative invariants for sufficiently positive real-orientable symplectic sixfolds, as shown
by Georgieva and Zinger (2019a) for the genus one case and by Niu and Zinger (2018)
for the higher genus case (see Theorem 3.8). Such enumerative invariants give lower
bounds in real enumerative geometry, and thus they can be seen as a higher genus
analogue of Welschinger invariants. Let us see how these invariants are defined.

Let (X,ω, σX) be a strongly semipositive real-orientable symplectic manifold of di-
mension 2n = 6. Fix A ∈ H2(X,Z). Let α1, . . . , αl be cohomology classes of X such
that ∑l

i=1 degαi = c1(A) + 2l. Let hi : Yi → X be a pseudocycle representative of the
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Poincaré dual of αi. Fix J ∈ RJ (X,ω) generic. Let RMJ
g,l(X,A, h) be the set of

J-holomorphic real maps u : (Σ, σ, j) → (X, σX , J) from smooth real Riemann surfaces
(Σ, σ, j), that do not factor through multiple covers (i.e. that can not be written as
u = v◦φ, with φ : (Σ, σ, j) → (Σ′, σ′, j′) of degree ≥ 2), with l pairs of conjugate marked
points z = {(z+

i , z
−
i )}i=1,...,l such that u(z+

i ) ∈ hi(Yi). A real orientation on X endows
RMJ

g,l(X,A)∗ with an orientation and thus, if the set

RMJ
g,l(X,A, h) =

{
([u, z], (yi)i) ∈ RMJ

g,l(X,A)∗ ×
l∏

i=1
Yi

∣∣∣ u(z+
i ) = hi(yi)

}

is finite and regular (that is, the map ([u, z], (yi)i) 7→ (u(z+
i ), hi(yi)) ∈ X l × X l is

transverse to the diagonal in X l × X l), it gives an orientation s(u) ∈ {−1,+1} to
any curve u = (u, z) ∈ RMJ

g,l(X,A, h). For generic J and a generic choice of the
pseudocycle representative hi, the previous set is indeed finite and regular. Denote by
W σX

g,A(h1, · · · , hl, J) = ∑
u∈RMJ

g,l
(X,A,h) s(u).

Theorem 3.8. — Let (X,ω, σX) be a strongly semipositive real orientable symplec-
tic manifold of dimension 6 equipped with a real orientation. If c1(A) > 0 then
W σX

g,A(h1, · · · , hl, J) does not depend on the generic choice of J and of the represen-
tatives of the Poincaré duals of the αi’s.

As a consequence, the number W σX
g,A(h1, · · · , hl, J) can be denoted by W σX

g,A(α1, . . . , αl).
By construction, such invariants are signed counts of genus g real J-holomorphic curves
passing through generic representatives of the Poincaré duals of the constraints αi.
Their absolute value gives lower bounds in real enumerative geometry, that is it bounds
from below the number of genus g real J-holomorphic curves passing through generic
representatives of the Poincaré duals of the constraints αi.

The next theorem gives an explicit relation between the higher genus Welschinger
invariants and the real Gromov–Witten invariants of the previous section. Remark
that the latter are signed counts of real (J, ν)-holomorphic curves, and not of real
J-holomorphic curves.

Theorem 3.9. — For any A ∈ H2(X,Z) with c1(A) > 0, the genus g real
GW-invariants and the genus g W-invariants verify the following relation

GW σX
g,A(α1, . . . , αl) =

∑
0≤g′≤g
g−g′∈2Z

Cg′,A

(
g − g′

2

)
W σX

g′,A(α1, . . . , αl)

where the coefficients Cg′,A

(
g−g′

2

)
are rational numbers defined by the formula

∞∑
a=0

Cb,A(a)t2a =
(

sinh(t/2)
t/2

)b−1+c1(A)/2

for any positive integer b ∈ Z≥0.
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For example, Cg′,A (0) = 1, which implies that the genus one real GW- and W-
invariants are equal. In particular the genus one real Gromov–Witten invariants of a
real-orientable Fano threefold are enumerative. The value of Cg′,A (1) is 2g′−2+c1(A)

48 and
so the genus two real GW-invariants verify GW σX

2,A = W σX
2,A + c1(A)−2

48 W σX
0,A .

In Theorem 3.9, the formula relating the two invariants is invertible, in the sense
that, from that, one can obtain a formula expressing the genus g Welschinger invariant
W σX

g,A from the real Gromov–Witten invariants GW σX
g′,A with g′ ≤ g. Theorem 3.8 is

then a consequence of Theorem 3.9 and of the invariance of the real Gromov–Witten
invariants.

Theorems 3.8 and 3.9 also apply for the genus one real Gromov–Witten invariants
of Theorem 3.7 and thus they allow one to give lower bounds for genus one real
J-holomorphic curves passing through a real configuration of points (pairs of complex-
conjugate points as well as real points) as soon as we are in the hypothesis of Theorem 3.7,
for example for the projective space (P3, conj).

Theorems 3.8 and 3.9 are proved by Georgieva and Zinger (2019a) in genus one
and by Niu and Zinger (2018) in the general case. They are the real analogues of a
theorem by Zinger (2011) in the complex/symplectic setting in which he confirmed the
Gopakumar–Vafa prediction for Fano classes in symplectic sixfolds, as conjectured by
Pandharipande (1999).

One advantage of Theorem 3.9 is that one has an explicit formula to compute the
enumerative W-invariants from the real GW-invariants. In some good situations (like in
projective spaces) the latter can be computed using the equivariant localization formula.
The equivariant localization formula of Atiyah and Bott (1984) informally says that
the integral of a closed differential form over a manifold on which there is an action
of a torus can be computed in terms of an integral over the fixed locus of the action.
To formalize this, one should use equivariant cohomology. In GW-theory, this formula
was first used by Kontsevich (1995) to enumerate rational curves in projective spaces.
Indeed, the natural action of the torus (C∗)n+1 on Pn induces an action on M0,k(Pn, d)
and then GW-invariants can be computed in terms of the fixed locus of the induced
action. In higher genus, the moduli space of stable maps are highly singular, and then
one needs to use the virtual localization formula of Graber and Pandharipande (1999)
to compute higher genus GW-invariants of Pn. Georgieva and Zinger (2019a) have done
all the necessary computations for the equivariant localization formula in the case of
(P2n−1, conj) (and of some complete intersections), that is, they computed the fixed
loci of the induced action of the torus on RMg,l(P2n−1, d) as well as the equivariant
Euler classes of their normal bundles. Explicit calculations of some real GW-invariants
of P3 for genus g ≤ 5 and degree d ≤ 8 were made by Niu and Zinger (2018). Such
computations, together with Theorems 3.8 and 3.9, imply that in P3 there are at least:
4 genus 1 degree 6 real curves passing through 6 general pairs of conjugate points, 10
genus 2 degree 7 real curves passing through 7 general pairs of conjugate points and 40
genus 5 degree 8 real curves passing through 8 general pairs of conjugate points. These
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computations join the list of existence results in real algebraic geometry given by the
calculation of a Gromov–Witten or Welschinger invariant. For example, by computing
Welschinger invariants of (P2, conj), Itenberg, Kharlamov, and Shustin (2003) proved
there are at least d!/2 real rational curves of degree d through any 3d− 1 generic points
in RP2. Before the discovery of Welschinger (2005a,b, 2007a) and the computation of
his invariants it was not known whether a degree d real rational curve always passes
through any generic 3d− 1 points in RP2 (even for degree 4).

These enumerative invariants are then a powerful way to show the existence of curves
passing through given constraints. However, their computation is often a challenging
problem. In dimension 4, Welschinger invariants have been extensively studied. For
example, they have been computed for all real algebraic rational surfaces, as a conse-
quence of the work of many people (see the papers of Itenberg, Kharlamov, and Shustin
(2003, 2013b,a, 2015), Welschinger (2007b), Brugallé and Mikhalkin (2009), Chen (2022)
and Brugallé (2015, 2020), and references therein). Recently, Chen (2022) proved a real
Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) relation for Welschinger invariants in real
symplectic fourfoulds, as predicted by Solomon (see Horev and Solomon (2012)).

In dimension greater than or equal to 6 much less is known. The invariants W0,d

of (P2n−1, conj) and of (P4n−1, τ) with complex-conjugate constraints were computed
respectively by Georgieva and Zinger (2017) using a real WDVV relation by pulling a
relation on RM0,3 and by Farajzadeh Tehrani and Zinger using the localization formula
(see the appendix to the paper of Farajzadeh Tehrani (2016)). Recently, Chen and
Zinger (2021) proved a real WDVV relation for Welschinger invariants for some real
symplectic sixfolds.

For (P3, conj), Brugallé and Georgieva (2016) computed the degree d genus 0
Welschinger invariants where the constraints are real configurations of points with
at least two real points. These invariants were known to vanish in even degree d for
symmetric reasons, as firstly remarked by Mikhalkin. In this case, one can ask if there
exists a real configuration of points for which there are no degree d real rational curves.
Kollár (2015) showed that such a configuration indeed exists and its construction was
actually the starting point for the result of Brugallé and Georgieva. Recently, Nguyen
(2023) generalized the methods of Kollár and of Georgieva and Brugallé to compute
genus 0 Welschinger invariants of many Fano threefolds and proved a sharpness result in
such cases. By sharpness of a Welschinger invariant, we mean that the lower bound in
real enumerative geometry given by it is sharp, that is, there exists a real configuration
of points such that the number of real rational curves passing through it and realizing
a given homology class is equal to the absolute value of the correspondent Welschinger
invariant. Remark also that Welschinger (2007b) already proved a sharpness result for
his invariants in dimension four. This raises the question if the higher genus Welschinger
invariants defined by Georgieva and Zinger (2018, 2019a) and by Niu and Zinger (2018)
and presented in this section are also sharp.
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Another natural question comes from a result of Brugallé (2020) in which he proved
a strong invariance property for the Welschinger invariants in dimension 4. It may
be intriguing to investigate such strong invariance for the higher genus Welschinger
invariants presented in this section.

Finally, we observe that Welschinger invariants have been computed or estimated
using very different methods than those mentioned in this text. As a guise of example,
Welschinger (2007b) and Brugallé and Puignau (2015) used symplectic field theory;
Itenberg, Kharlamov, and Shustin (2003, 2013b), Brugallé and Mikhalkin (2009), Arroyo,
Brugallé, and Medrano (2011) used tropical geometry. It would be interesting to use
such techniques to study or compute the real Gromov–Witten invariants discussed in
this text.
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