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TWO PROOFS OF THE P = W CONJECTURE
[after Maulik–Shen and Hausel–Mellit–Minets–Schiffmann]

by Victoria Hoskins

INTRODUCTION

For a smooth projective complex algebraic curve C, non-abelian Hodge theory of
Hitchin (1987b) and Donaldson (1983, 1987), Corlette (1988) and Simpson (1994a, 1988,
1992) provides a real analytic isomorphism

(1) MDol
n,d (C) ≃MB

n,d(C)

where MDol
n,d (C) is the Dolbeault moduli space of rank n degree d semistable Higgs

bundles (E, θ : E → E ⊗ ωC) on C and MB
n,d(C) is the Betti moduli space of d-twisted

n-dimensional representations of the fundamental group π1(C).
These moduli spaces are complex algebraic varieties, and are smooth when n and d

are coprime; however, the above isomorphism is transcendental and does not preserve
the complex structures on these moduli spaces. In particular, the Dolbeault moduli
space depends on the complex structure of C, whereas the Betti moduli space only
depends on the topology (i.e. the genus) of C. The Betti moduli space is affine via its
construction as an affine geometric invariant theory quotient, while the Dolbeault moduli
space contains many compact subvarieties that appear as fibres of the Hitchin map. The
Hitchin map is a proper morphism h : MDol

n,d (C)→ An to an affine space which records
the coefficients of the characteristic polynomial of the Higgs field θ : E → E⊗ωC viewed
as a twisted endomorphism of the vector bundle E. By the spectral correspondence
(Beauville, Narasimhan, and Ramanan, 1989; Hitchin, 1987b; Schaub, 1998), the general
fibres h−1(a) are abelian varieties isomorphic to the Jacobian of an associated spectral
curve Ca ⊂ T ∗C := Tot(ωC), which is a degree n cover of C.

The homeomorphism (1) induces an isomorphism on cohomology, but this does not
preserve mixed Hodge structures. Assume from now on that n and d are coprime. Then
the Hodge structure of the Dolbeault moduli space is pure, as there is a Gm-action which
scales the Higgs field and provides a deformation retract onto its fixed locus, which is a
smooth projective subvariety. The mixed Hodge structure on the Betti moduli space is
genuinely mixed and does not see the complex structure of C; in fact, it turns out to
be of Hodge–Tate type. Consequently, one can ask if the non-trivial weight filtration
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on the cohomology of the Betti moduli space has a geometric interpretation on the
Dolbeault side via non-abelian Hodge theory.

Hausel and Rodriguez-Villegas (2008) spotted a symmetry in the Hodge numbers
of Betti moduli spaces and formulated a Curious Hard Lefschetz conjecture relating
opposite graded pieces of the weight filtration; they proved this in rank 2 and Mellit
(2019) recently proved this in higher ranks. This lead de Cataldo, Hausel, and Migliorini
(2012) to formulate (and prove in rank n = 2) the P = W conjecture: the weight filtration
W on the cohomology of the Betti moduli space should correspond to the perverse Leray
filtration P associated to the Hitchin map on the Dolbeault moduli space. This would
imply that the Curious Hard Lefschetz property is explained by the Relative Hard
Lefschetz Theorem for the Hitchin map. In 2022, two independent proofs of the P = W

conjecture were given by Maulik–Shen (MS) and Hausel–Mellit–Minets–Schiffmann
(HMMS).

Although these two proofs are very different, they share a common starting point:
the cohomology of the Dolbeault moduli space is generated by certain tautological
classes obtained from Künneth components of the Chern classes of the universal Higgs
bundle E → MDol

n,d × C by work of Markman (2002). If these tautological classes are
appropriately normalised, their weights are known by work of Shende (2017). Since
the weight filtration is multiplicative (i.e. the cup product adds weights), the P = W

conjecture can be studied entirely on the Higgs moduli space as a question about the
interaction between products of tautological classes and the perverse filtration. One key
challenge is that the perverse filtration is not in general multiplicative.

Maulik and Shen reduce the P = W conjecture to a sheaf-theoretic property they
call strong perversity for cup products with tautological classes in the derived category
of constructible sheaves over the Hitchin base. To prove that the Chern classes of the
universal bundle have the predicted strong perversity, they work with parabolic moduli
spaces appearing in Yun’s global Springer theory (Yun, 2012, 2011). The parabolic
structure is given by a full flag in a fibre and induces certain tautological line bundles
which have the desired strong perversity over an open in the Hitchin base by work of
Yun. Using the decomposition theorem (Bĕılinson, Bernstein, and Deligne, 1982), this
would automatically extend to the whole Hitchin base if the parabolic Hitchin map had
full supports. Unfortunately, this is not the case, but previous work of Maulik and Shen
(2021) that builds on work of Ngô (2006, 2010) and Chaudouard and Laumon (2016)
offers a solution: instead of classical Higgs bundles, consider D-twisted Higgs bundles
(E, θ : E → E ⊗ ωC(D)) for an effective divisor D. Maulik and Shen prove a parabolic
support theorem for D of sufficiently high degree and then pass from D-twisted Higgs
bundles to classical Higgs bundles via a vanishing cycles argument as in Maulik and
Shen (2021). Consequently, they deduce the image of the weight filtration under non-
abelian Hodge theory is contained in the perverse filtration and conclude they are equal
using the Relative and Curious Hard Lefschetz Theorems.
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Hausel, Mellit, Minets and Schiffmann approach the P = W conjecture by con-
structing Lie algebras acting on the cohomology using two natural operations on the
cohomology of Higgs moduli spaces (or rather their stacks): cup products with tauto-
logical classes and Hecke correspondences that modify a vector bundle at single point
in C. By the Relative Hard Lefschetz Theorem for the Hitchin fibration, a choice of
relatively ample divisor class provides an identification between opposite graded pieces
of the perverse filtration and defines a nilpotent operator on the associated graded
vector space that can be extended to an sl2-triple ⟨e, f ,h⟩ whose h-graded pieces are the
perverse graded pieces. The idea is to find a lifted sl2-triple acting on the cohomology
(rather than the associated graded object for P ) where the first two operators come
from tautological and Hecke operators respectively, the third induces the perverse filtra-
tion and the tautological classes are h-eigenvectors in order to describe the interaction
between tautological classes and the perverse filtration. The desired sl2-triple is found
by considering an action of a much larger Lie algebra H2 of polynomial Hamiltonian
vector fields on the plane and by using the spectral correspondence to instead work with
sheaves on surfaces and their cohomological Hall algebras as in Mellit, Minets, Schiff-
mann, and Vasserot (2023). In this story, there is again a technical problem to overcome:
Hecke correspondences do not preserve semistability and so first a result is shown on
the elliptic locus, where the spectral curves are integral, and then parabolic bundles
are used to pass from the elliptic locus to the whole moduli space. This proof actually
shows the perverse and weight filtrations both coincide with the filtration induced by
this sl2-triple and also gives a new proof of the Curious Hard Lefschetz Theorem.

Recently, a third proof due to Maulik, Shen, and Yin (2023) appeared, which offers
a new perspective; we do not include the details due to lack of time and space but
merely mention the main results. A key theorem is that the elliptic locus is a twisted
(self)-dualisable abelian fibration satisfying Fourier vanishing; this builds on Arinkin’s
work on compactified Jacobians of locally planar integral curves (Arinkin, 2013). For
any such fibration, Maulik, Shen, and Yin (2023) prove a (motivic) decomposition
and show that the perverse filtration is multiplicative; hence the tautological operators
have the expected perversity and the Chern filtration (see §2.4.1) is contained in the
perverse filtration, which suffices to conclude the equality P = W using the Curious
Hard Lefschetz Theorem.

Although the methods of proofs are very different, they involve similar moduli spaces
(for example, parabolic Higgs bundles and elliptic loci appear in all three proofs). The
third proof (Maulik, Shen, and Yin, 2023) may come closer to relating to the approach
in (HMMS) as follows. As a consequence of the semi-classical limit of the geometric
Langlands correspondence, the Hitchin fibration is expected to be self-dual, in the
sense that there is a derived equivalence which should exchange Hecke operators and
certain tautological operators. This expectation is realised over the regular locus by
Donagi and Pantev (2012) and over the elliptic locus by Arinkin (2013). Furthermore,
Polishchuk (2007) produced actions of sl2 (and H2) on the rational tautological Chow
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ring of the Jacobian of a curve using the Fourier transform, which suggests a possible
deeper relation between Maulik, Shen, and Yin (2023) and (HMMS).

The goal of this report is to give an overview of the main ideas in the proofs of
Maulik–Shen (MS) and Hausel–Mellit–Minets–Schiffmann (HMMS), and the relevant
background.

Many of the techniques and ideas in the proofs play an important role in the study
of moduli spaces more generally: operators constructed from tautological classes and
natural correspondences generate actions of interesting algebras in various contexts,
such as Hilbert schemes (Nakajima, 1997; Grojnowski, 1996), infinite symmetric powers
(Kimura and Vistoli, 1996), Jacobians (Polishchuk, 2007) and CoHAs (Mellit, Minets,
Schiffmann, and Vasserot, 2023). Furthermore vanishing cycles, support theorems and
duality for abelian varieties are important tools for studying (Higgs) moduli spaces.

0.1. Structure of the paper

In §1, we introduce the moduli spaces and recall non-abelian Hodge theory, then
provide some background on mixed Hodge structures and perverse sheaves in order to
state the P = W conjecture. In §2, we introduce the tautological classes and state
Markman’s result on tautological generation and Shende’s computation of the weights
of the tautological generators; this leads to various reformulations of the P = W

conjecture purely in terms of the interaction of the perverse filtration with tautological
classes on the Dolbeault side. Finally in §3 and in §4 respectively, we discuss the proofs
of Maulik–Shen (MS) and Hausel–Mellit–Minets–Schiffmann (HMMS).

0.1.1. Acknowledgements. — I am grateful to Junliang Shen, Olivier Schiffmann,
Alexandre Minets and Anton Mellit for answering various questions related to their
proofs. I would like to thank Simon Pepin Lehalleur for many helpful discussions,
and Ariyan Javanpeykar, Mirko Mauri, Alexandre Minets, Ben Moonen, Simon Pepin
Lehalleur and Junliang Shen for comments on a preliminary version.

1. MODULI SPACES AND THE P = W CONJECTURE

Throughout, we let C denote a smooth projective geometrically connected algebraic
curve of genus g over a field k, which will often be the complex numbers.

1.1. Moduli spaces and non-abelian Hodge theory

The terminology non-abelian Hodge theory is used to indicate a generalisation of
classical Hodge theory, which relates various cohomology theories with coefficients in the
abelian group C, to a version taking values in the non-abelian coefficient group GLn(C)
and leads to diffeomorphism of various moduli spaces related to these cohomology
theories.
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For a smooth complex projective variety X, the de Rham isomorphism and Hodge
decomposition give isomorphisms

Hk
B(Xan,C) ≃ Hk

dR(Xan,C) ≃
⊕

p+q=k

Hp,q(X)

between the (topological) Betti cohomology of singular cochains on the underlying
topological space Xan, the (differential geometric) de Rham cohomology groups and
the (holomorphic) Dolbeault cohomology groups, which can be expressed as sheaf co-
homology groups via the Dolbeault isomorphisms Hp,q(X) ≃ Hq(X,Ωp

X). The Hodge
decomposition involves relating both cohomology theories to harmonic operators; simi-
larly, harmonic metrics also play a central role in the non-abelian version of this story.

Let us focus on the case of a smooth complex projective curve C. We have

H1
B(Can,C) ≃ H1

dR(Can,C) ≃ H0,1(C)⊕H1,0(C) ≃ H1(C,OC)⊕H0(C, ωC).

The idea of non-abelian Hodge theory is to replace the abelian coefficient group C with
the non-abelian coefficient group GLn(C). For n = 1, on the Betti side we have

H1
B(C,C∗) ≃ Hom(π1(C),C∗) = Rep(π1(C),C∗)

characters of the fundamental group and on the Dolbeault side we have pairs consisting
of a holomorphic line bundle parametrised by H1(C,O∗

C) ≃ Pic(C) and a holomorphic
1-form parametrised by H0(C, ωC). For n > 1, the Betti moduli space MB

GLn
(C)

parametrises representations π1(C)→ GLn(C) and the Dolbeault moduli spaceMDol
n,0 (C)

parametrises certain rank n degree 0 holomorphic vector bundles on C equipped with a
Higgs field, which is a bundle endomorphism twisted by the canonical line bundle ωC .
We formally introduce these moduli spaces below. The non-abelian Hodge theorem gives
a real analytic isomorphism between the Dolbeault and Betti moduli spaces, which is
not compatible with their complex structures. The proof uses the existence of certain
harmonic metrics and a third de Rham moduli space of holomorphic bundles with
connections appears; however, we will not introduce the de Rham side, as the P = W

conjecture relates only the Betti and Dolbeault moduli spaces.
Non-abelian Hodge theory can be viewed as a complexification of the Narasimhan–

Seshadri Theorem, which relates irreducible unitary representations of the fundamental
group with stable vector bundles. The notion of stability appearing here was introduced
by Mumford to construct moduli spaces of (semi)stable vector bundles as geometric
invariant theory quotients. We begin by introducing moduli spaces of vector bundles
and the Narasimhan–Seshadri theorem, before proceeding to non-abelian Hodge theory.

1.1.1. Moduli of semistable vector bundles. — In this section, we can work over an
arbitrary field k. The slope of a vector bundle E on C is µ(E) := deg(E)/ rk(E) and
we say E is semistable (respectively stable) if for every proper subbundle E ′ ⊊ E, we
have µ(E ′) ≤ µ(E) (respectively a strict inequality). Any semistable vector bundle E
has a (non-unique) Jordan–Hölder filtration 0 = E0 ⊊ E1 ⊊ · · ·El = E by subbundles
whose successive quotients are stable of the same slope as E; the associated graded
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object gr(E) = ⊕l
i=1Ei/Ei−1 is unique and is polystable (that is, it is a direct sum of

stable vector bundles of the same slope). Two semistable bundles are S-equivalent if
their Jordan–Holder graded bundles are isomorphic. Every vector bundle has a unique
maximally destabilising subbundle, which is a maximal subbundle of maximal slope;
this inductively gives rise to a unique Harder–Narasimhan filtration whose successive
quotients are semistable with decreasing slopes. If k is not algebraically closed, then
stability is not an open property, but by also asking for the base change to an algebraic
closure to be stable, we obtain a notion of geometrically stable, which is open in families;
we will mostly suppress this subtlety as we are primarily concerned with the case
when k = C. We will also focus on vector bundles of coprime rank and degree, where
semistability is equivalent to (geometric) stability.

Consider the moduli functor N s
n,d(C) : Schk → Sets that sends a k-scheme T to

the set of vector bundles on C × T which are fibrewise geometrically stable of rank n
and degree d modulo the relation E ∼= F ⊗ π∗

TL for a line bundle L on T (we allow
tensoring by pullbacks of line bundles on T to make this a Zariski sheaf). This moduli
functor is coarsely represented by a scheme N s

n,d = N s
n,d(C), which we refer to as the

moduli space of stable vector bundles. By deformation theory, T[E]N s
n,d ≃ Ext1(E,E)

and the obstructions to smoothness (of the stack) lie in Ext2 and so vanish on a
curve. Since (geometrically) stable bundles E only have scalar automorphisms, we have
χ(E,E) := ∑

i≥0(−1)i dim Exti(E,E) = 1 − dim Ext1(E,E). Hence, N s
n,d is smooth

and, for g > 1, we have by Riemann–Roch

dim(N s
n,d) = −χ(E,E) + 1 = n2(g − 1) + 1.

Over k, stable bundles exist for all n and d provided g > 1; thus N s
n,d is non-empty.

The stable moduli space has a compactification, the moduli space Nn,d = Nn,d(C) of
(S-equivalence classes of) semistable vector bundles, which is constructed via geometric
invariant theory as a projective variety (Mumford, Fogarty, and Kirwan, 1994; Newstead,
1978; Seshadri, 1967). Its geometric points parametrise polystable vector bundles of
rank n and degree d on C. Over the complex numbers, Nn,d can also be constructed
as a (real) symplectic reduction of a gauge group acting on the space of holomorphic
structures on a fixed smooth complex vector bundle (Atiyah and Bott, 1983).

If n and d are coprime, semistability and stability coincide and N s
n,d = Nn,d is a

smooth projective variety. If also C(k) ̸= ∅, then Nn,d is a fine moduli space, as there
is a universal family U → N s

n,d × C obtained via pullback from the stack of stable
rank n and degree d bundles, which is a neutral Gm-gerbe over Nn,d (see Heinloth, 2010,
Corollary 3.12). Conversely, if n and d are non-coprime, N s

n,d does not admit a universal
family (Ramanan, 1973).

1.1.2. The Narasimhan–Seshardi correspondence. — Assume now that k = C. Given
a unitary representation ρ : π1(C)→ U(n) (or equivalently a unitary local system), one
can construct an associated rank n degree 0 vector bundle

Eρ = C̃ ×ρ Cn
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from the representation ρ and the π1(C)-bundle given by the universal cover C̃ → C.

Theorem 1.1 (The Narasimhan–Seshadri Theorem (Narasimhan and Seshadri, 1965))
A degree 0 holomorphic vector bundle on a smooth projective curve C of genus g ≥ 2

is stable if and only if it arises from an irreducible unitary representation.

Although this statement concerns an individual vector bundle, its proof uses moduli
spaces: the (harder) forward direction involves showing that the natural map from the
moduli space of irreducible unitary representations to the moduli space of stable vector
bundles is a surjective real-analytic submersion by a deformation theory argument.

Narasimhan and Seshadri moreover proved for arbitrary d that Nn,d(C) is real analyti-
cally isomorphic to a moduli space of twisted unitary representations of the fundamental
group, which can be viewed as unitary representations of the fundamental group of a
punctured curve with prescribed monodromy at the puncture depending on d. The
analogue of these moduli space of twisted unitary representations obtained by replacing
U(n) with GLn(C) are the twisted Betti moduli spaces (see §1.1.3) appearing in the
non-abelian Hodge correspondence.

Let us outline a gauge-theoretic proof of the Narasimhan–Seshadri Theorem due to
Donaldson (1983), as similar ideas are used in the non-abelian Hodge correspondence.
Donaldson proved that a vector bundle is polystable if and only if it admits a Hermitian
metric whose associated unitary Chern connection is projectively flat (such connections
are called Hermitian–Einstein). For a vector bundle with such a Hermitian–Einstein
connection, one can use the Chern–Weil description of the degree to prove the inequality
needed for (poly)stability. Conversely, to find such a Hermitian–Einstein connection
on a (poly)stable vector bundle, Donaldson considered the Yang–Mills flow and used
Uhlenbeck compactness and stability to show the limit lies in the same gauge orbit.

1.1.3. The Betti moduli spaces of representations. — By replacing the unitary group
U(n) with its complexification GLn(C), we can take an algebro-geometric quotient of
the conjugation action on the space of representations π1(C)→ GLn(C) using geometric
invariant theory (Mumford, Fogarty, and Kirwan, 1994). The resulting quotient is an
affine complex variety and is known as the Betti moduli space or character variety.
Similarly to Betti cohomology, it forgets the complex structure on C and only depends
on the underlying topological space.

We can define the Betti moduli space over an arbitrary field k and may replace
GLn with any reductive Lie group G over k (and one can also replace C with a higher
dimensional variety). For the conjugation action of G on the affine variety

Rep(π1(C), G) := {(A1, . . . , Ag, B1, . . . , Bg) ∈ G2g :
n∏

i=1
[Ai, Bi] = I},

there is an associated affine GIT quotientMB
G =MB

G(C) := Rep(π1(C), G)//G given by
taking the spectrum of the k-algebra of G-invariant functions on Rep(π1(C), G), which
is finitely generated as G is reductive. The notation for the GIT quotient indicates
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that this is not an orbit space and orbits are identified if their closures meet. Conse-
quently the Betti moduli space parametrises closed orbits or equivalently semisimple
G-representations. To avoid these GIT identifications, we can instead consider the
Betti stack of G-representations which is the quotient stack of representations modulo
conjugation

MB
G = MB

G(C) := [Rep(π1(C), G)/G].

The Betti moduli stack classifies G-local systems on C, or equivalently G-bundles with
a flat connection by the Riemann–Hilbert correspondence. For G = GLn, the existence
of a flat connection implies that the corresponding vector bundle has degree 0.

To obtain twisted Betti moduli spaces in non-zero degrees, one considers the space
of representations of a punctured curve C \ {x} with prescribed diagonal monodromy
at x as follows. For G = GLn or SLn, the degree d twisted Betti moduli space is the
quotient MB

G,d(C) = Repd(π1(C), G)//G, where

Repd(π1(C), G) = {(A1, . . . , Ag, B1, . . . , Bg) ∈ G2g :
n∏

i=1
[Ai, Bi] = e2πid/nIn}.

We note that this moduli space only depends on the value of d modulo n. If n and d

are coprime, thenMB
GLn,d is smooth by Hausel and Rodriguez-Villegas (2008, Theorem

2.2.5), as Repd(π1(C),GLn) is smooth and the GLn-quotient coincides with the free
quotient by PGLn.

If we now replace GLn with PGLn, then the prescribed monodromy becomes trivial
and so we get an honest representation ρ : π1(C) → PGLn of the fundamental group.
The obstruction to lifting ρ to GLn is given by a Schur multiplier δ(ρ) arising from the
exact sequence

→ H1(π1(C),Gm)→ H1(π1(C),GLn)→ H1(π1(C),PGLn) δ→ H2(π1(C),Gm).

The PGLn-representations whose image under δ vanishes lift to GLn and otherwise they
lift to a twisted GLn-representation. Consequently, we can stratify the PGLn-moduli
space using Schur multipliers

MB
PGLn

=
⊔

d∈Z/nZ
MB

PGLn,d

where
MB

PGLn,d ≃MB
GLn,d/(C∗)2g ≃MB

SLn,d/µ
2g
n .

For G = GLn, we will simply write MB
n,d =MB

GLn,d for the Betti moduli space and

MB
n,d = [Repd(π1(C),GLn)/GLn]

for the Betti moduli stack.
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1.1.4. The Dolbeault moduli space. — In non-abelian Hodge theory, the complexified
version of the moduli space of (semi)stable vector bundles appearing in the Narasimhan–
Seshadri Theorem is the Dolbeault moduli space Mn,d := MDol

n,d (C) of (semi)stable
Higgs bundles introduced by Hitchin (1987b).

We can also define the Dolbeault moduli space over an arbitrary field k (and also in
much greater generality over a higher-dimensional base or in fact in families). A Higgs
bundle on C is pair (E, θ : E → E⊗ωC) consisting of a vector bundle E on C and a Higgs
field θ, which is an endomorphism of E twisted by the canonical bundle. Semistability
of Higgs bundles is given by verifying an inequality of slopes for all Higgs subbundles
(that is, subbundles which are invariant under the Higgs field). There is a moduli space
Mn,d =MDol

n,d (C) of (S-equivalence classes of) semistable Higgs bundles which can be
constructed as a quasi-projective variety using geometric invariant theory (Nitsure, 1991;
Simpson, 1994a) (see also Remark 1.3 below) or as a hyperkähler reduction via gauge
theory (Hitchin, 1987b). The moduli spaceMs

n,d of (geometrically) stable Higgs bundles
is a smooth open subvariety. If n and d are coprime, then Ms

n,d =Mn,d is smooth and
is a fine moduli space which admits a universal family. If additionally C(k) ̸= ∅, the
stack of stable rank n degree d Higgs bundles is a neutral Gm-gerbe over Ms

n,d.
From an algebraic perspective, Ms

n,d naturally arises as an algebraic symplectic
analogue of N s

n,d, as it contains T ∗N s
n,d as a dense open set: by deformation theory and

Serre duality we have

T ∗
[E]N s

n,d = Ext1(E,E)∗ ∼= Hom(E,E ⊗ ωC)

which is the space of Higgs fields on E. The algebraic symplectic form on this cotangent
bundle extends to Ms

n,d and moreover it admits a Lagrangian fibration to an affine
space given by the Hitchin fibration (see §1.2 below). In particular, for g ≥ 2, we have

dim(Mn,d) = 2 dim(Nn,d) = 2(n2(g − 1) + 1).

Tensoring a Higgs bundle by a line bundle L ∈ Pice(C) preserves (semi)stability and
determines an isomorphism Mn,d → Mn,d+ne; hence, over k, the Higgs moduli space
up to isomorphism only depends on the value of d modulo n. Moreover, there is a
χ-independence phenomena: various cohomological invariants of Mn,d are independent
of d. Non-abelian Hodge theory gives an isomorphism on cohomology for different d’s
coprime to n, and in this coprime setting, Kinjo and Koseki (2021) and de Cataldo,
Maulik, Shen, and Zhang (2021) prove the isomorphism on cohomology preserves the
perverse filtration and the cup product respectively, whereas Groechenig, Wyss, and
Ziegler (2020) show the point counts of Mn,d over finite fields are independent of d.

Similarly to the Betti moduli spaces, for any complex reductive group G, one can
define moduli spaces of semistable G-Higgs bundles MG(C) which are given by a
principal G-bundle P → C with a section θ ∈ H0(C, ad(P ) ⊗ ωC) of the associated
adjoint bundle of P twisted by the canonical bundle that satisfy a natural notion of
semistability.
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For G = SLn, we can realise MSLn = MSLn(C) as the closed subvariety of Mn,0
consisting of GLn-Higgs bundles (E, θ) such that det(E) ≃ OC and tr(θ) = 0. Since
Mn,0 andMSLn are in general singular, due to the existence of strictly semistable Higgs
bundles for non-coprime invariants, it is convenient to replace the SLn-Higgs moduli
space by twisted versions in non-zero degrees as follows. For a line bundle L ∈ Picd(C),
consider the closed subvariety

MSLn,L ⊂Mn,d

consisting of GLn-Higgs bundles (E, θ) such that det(E) ≃ L and tr(θ) = 0. We shall
refer to this as a (twisted) SLn-Higgs moduli space, which is smooth if n and d are
coprime. If k is algebraically closed, different choices of degree d line bundles gives
isomorphic twisted SLn-moduli spaces, as we can multiply by a root of their difference.

The PGLn-Higgs moduli spaces can be described as the following quotients

MPGLn,d
∼=MSLn,L/ Jac0(C)[n] ∼=Mn,d/T

∗ Jac(C),

where Jac0(C)[n] denotes the group of n-torsion points acting by tensorisation. Even
for n and d coprime, this moduli space may acquire singularities from quotienting by
the non-free action of the finite group Jac0(C)[n]. However, for n and d coprime, it is
smooth when viewed as a Deligne–Mumford stack:

MPGLn,d
∼= [MSLn,L/ Jac0(C)[n] ] ∼= [Mn,d/T

∗ Jac(C)].

Let us briefly introduce stacks of Higgs bundles, as we will sometimes need them later
on. The stack of rank n degree d Higgs bundles Higgsn,d is a singular Artin stack which
contains the stack Mn,d of semistable Higgs bundles as a finite type open substack. The
substack Ms

n,d of (geometrically) stable Higgs bundles is smooth and is a Gm-gerbe over
Ms

n,d, as every endomorphism of a (geometrically) stable Higgs bundle is given by a
scalar multiple of the identity. There is a natural map Mn,d →Mn,d which is a good
moduli space (Alper, 2013) if the characteristic of k is zero (and an adequate moduli
space in positive characteristic).

1.1.5. Non-abelian Hodge theory. — Over k = C, the Dolbeault moduli spaceMDol
n,d (C)

of semistable Higgs bundles on C and the Betti moduli space MB
n,d(C) of twisted

representations of the fundamental group of C are both complex algebraic varieties,
which are smooth when n and d are coprime.

Theorem 1.2 (Non-abelian Hodge Theory (Hitchin, 1987b; Donaldson, 1987; Corlette,
1988; Simpson, 1988))

There is a real analytic isomorphism

MDol
n,d (C) ≃MB

n,d(C).

This isomorphism is transcendental and is proved by relating both moduli problems to
moduli of harmonic metrics. In the degree d = 0 case, the Betti moduli space classifies
complex vector bundles with flat connections and by work of Donaldson (1987) and
Corlette (1988) such a flat connection admits a harmonic metric if and only if it is



1213–11

completely reducible. This harmonic metric splits the connection into a skew-Hermitian
and Hermitian part, which respectively give a holomorphic structure on the bundle
and an endomorphism valued 1-form. The existence of such a harmonic metric on a
Higgs bundle can be interpreted in terms of polystability by work of Hitchin (1987b)
and Simpson (1988), analogously to Donaldson’s proof of the Narasimhan–Seshadri
Theorem. For further details, we refer to Simpson (1997, 1994b) and the Bourbaki
seminar of Le Potier (1991).

The complex structures on the Betti moduli space and Dolbeault moduli space are
very different; for example, only the Dolbeault moduli space sees the complex structure
on C. In fact, these two different complex structures appear as part of the hyperkähler
structure on the smooth locus coming from the construction of moduli space of solutions
to Hitchin’s equations as a hyperkähler reduction (Hitchin, 1987b).

In rank n = 1, the Betti moduli space

MB
1,d(C) ∼= (C∗)2g

of a genus g curve C is diffeomorphic (but not biholomorphic) to

MDol
1,d (C) ∼= Picd(C)×H0(C, ωC) ∼= Cg/Λ× Cg,

as via polar coordinates we have a (non-holomorphic) diffeomorphism C∗ ≃ S1×R. The
diffeomorphism given by non-abelian Hodge theory depends on the complex structure
of C; for an explicit coordinate description, see (Goldman and Xia, 2008, §7.4).

The above statement admits many variants and generalisations. Simpson (1994b)
proved a non-abelian Hodge correspondence for any smooth complex projective variety.
For punctured non-compact curves, Simpson (1990) also worked out a correspond-
ing non-abelian Hodge correspondence via harmonic bundles which uses filtered (or
parabolic) Higgs bundles with certain tameness or regularity conditions at the bound-
ary. In higher dimensions, this has been extended to quasi-projective varieties with a
smooth completion with smooth boundary by Biquard (1997) and with normal crossings
boundary by Mochizuki (2009). The case of wild singularities was studied by Biquard
and Boalch (2004) and Mochizuki (2011). Simpson (1992) showed one can replace the
general linear group with another complex reductive group G (or even a real reductive
group) to obtain non-abelian Hodge theory with values in G. Non-abelian Hodge theory
has been developed in positive characteristic by Ogus and Vologodsky (2007) and over
p-adic fields by Faltings (2005) and Lan, Sheng, and Zuo (2019), among others.

The Dolbeault and Betti moduli spaces have alternative generalisations which have
no analogue under non-abelian Hodge theory. On the Dolbeault side, one can consider
D-twisted Higgs bundles (also known as meromorphic Higgs bundles), which are pairs
(E, θ : E → E ⊗ ωC(D)) for an effective divisor D on C. The moduli space MD

n,d

of D-twisted Higgs bundles only admits a Poisson structure rather than an algebraic
symplectic structure. These D-twisted Higgs moduli spaces play a key role in Maulik
and Shen’s proof of the P = W conjecture and have played a prominent role in the study
of Higgs bundles since their use by Ngô (2006). There is no Betti analogue of these
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D-twisted Higgs moduli spaces. On the Betti side, one can consider character varieties
where the fundamental group is replaced by any finitely generated group (Lawton and
Sikora, 2017; Lubotzky and Magid, 1985).

1.2. The Hitchin map and the spectral correspondence
A regular semisimple endomorphism of a finite dimensional complex vector space

is uniquely determined by its eigenvalues and their (1-dimensional) eigenspaces. The
Hitchin map on the moduli spaceMn,d of Higgs bundles on C records the eigenvalues (or
rather the coefficients of the characteristic polynomial) of the Higgs field and the spectral
correspondence describes the fibres in terms of families of 1-dimensional eigenspaces (or
more precisely rank 1 torsion-free sheaves on certain spectral covers of C).

1.2.1. The Hitchin map. — Viewing a Higgs field θ : E → E ⊗ ωC as an ωC-twisted
endomorphism of a rank n vector bundle E, we can consider its characteristic polynomial
whose coefficients are given by ai(θ) = (−1)i tr(∧iθ) ∈ H0(C, ω⊗i

C ). The assignment
(E, θ) 7→ a(θ) = (a1(θ), . . . , an(θ)) defines the Hitchin map

h : Mn,d → An :=
n⊕

i=1
H0(C, ω⊗i

C ).

Alternatively, the Hitchin map can be described as the affinisation morphism for the
Higgs moduli space. Since T ∗N s

n,d ⊂Mn,d is a dense open subset with complement of
codimension at least 2 (Hitchin, 1987a, Proposition 6.1 iv) and the Higgs moduli space
is normal (Simpson, 1992, Corollary 11.7), the rings of regular functions on T ∗N s

n,d and
Mn,d coincide. The Hitchin map coincides with the affinisation morphism

h : Mn,d → SpecO(Mn,d) = SpecO(T ∗N s
n,d) = An.

One of the most intriguing and intensively studied fibres is the fibre h−1(0) which is
called the nilpotent cone. We will see in Proposition 1.7 that there is a Gm-action on
Mn,d which induces a deformation retract onto the nilpotent cone.

1.2.2. Spectral curves. — Let π : T ∗C → C denote the projection; then there is a
tautological section λ ∈ H0(T ∗C, π∗ωC). For a = (a1, . . . , an) ∈ A = An, consider

λn + π∗a1λ
n−1 + · · ·+ π∗an ∈ H0(T ∗C, π∗ω⊗n

C )

whose vanishing locus Ca ⊂ T ∗C is the spectral curve over a ∈ A. The projection π

restricts to a degree n cover πa : Ca → C. The spectral curve Ca may singular, although
the singularities are locally planar as Ca ⊂ T ∗C, and moreover may be non-reduced (e.g.
for a = 0). We obtain a family of spectral curves C/A with C ↪→ T ∗C ×A → C ×A.

Since the projection from the cotangent bundle

π : T ∗C = Spec
C

(Sym• TC)→ C

is affine, we have π∗OT ∗C = Sym• TC and π∗ induces an equivalence of categories between
quasi-coherent OT ∗C-modules F and quasi-coherent Sym•(TC)-modules π∗F such that
π∗F is coherent if and only if supp(F ) ↪→ T ∗C → C is finite. Restricting π to a spectral
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curve πa : Ca → C, the OC-algebra (πa)∗OCa is isomorphic to the quotient of Sym•(TC)
by the ideal generated by the image of ua : T ⊗n

C → Sym•(TC) given by summing the
maps T ⊗n

C
ai−→ T ⊗n−i

C ↪→ Sym•(TC). Thus (πa)∗OCa = OC ⊕TC ⊕ · · · ⊕ T ⊗(n−1)
C and the

arithmetic genus of Ca is g(Ca) = 1− χ(Ca,OCa). By adjunction, we compute

χ(Ca,OCa) = χ(C, (πa)∗OCa) =
n∑

i=0
χ(C, T ⊗i) = (2− 2g)

(
n−1∑
i=0

i

)
+ n(1− g) = n2(1− g)

and so the arithmetic genus is given by g(Ca) = 1 + n2(g − 1).

1.2.3. The spectral correspondence. — Via a type of abelianisation procedure described
by Hitchin (1987b) for smooth spectral curves, and by Beauville, Narasimhan, and
Ramanan (1989) for integral spectral curves, and by Schaub (1998) in general, Higgs
bundles on C can be related to certain rank 1 torsion-free sheaves on spectral curves Ca.

Given a Higgs bundle (E, θ : E → E ⊗ ωC), we obtain from θ a homomorphism

Sym•(TC)⊗ E → E

thus there is an OT ∗C-module F such that π∗(F ) = E and the support of F is a
finite cover of C. Let a = h(E, θ); then by the Cayley–Hamilton Theorem, we have
θn + a1θ

n−1 + · · ·+ an = 0 and thus supp(F ) = Ca. Furthermore, since E is torsion-free,
the restriction of F to its support Ca is torsion-free (as the sheaf of rational functions
on Ca is obtained from that of C by tensoring over OC by OCa). Let ηi be generic points
on the irreducible components Ca,i of Ca,red and write Oηi

:= OC,ηi
; then∑

i

lOηi
(Oηi

) = deg(πa) = rk(E) = lOC,η
(EC,η) =

∑
i

lOηi
(Fηi

)

and since lOηi
(Fηi

) ≤ lOηi
(Oηi

), this inequality must be an equality on each connected
component, which means F has rank 1 (in the sense of Schaub, 1998, Définition 1.2).

Conversely, given a rank 1 torsion-free sheaf F on a spectral curve Ca, its pushforward
E = (πa)∗F to C is torsion-free (and thus locally free, as C is smooth) of rank n by
the above computation. The OCa-structure on F gives a Sym•(TC)-module structure on
E, which in particular gives a homomorphism TC → End(E) determining a Higgs field
θ : E → E ⊗ ωC . The degree of F and E = (πa)∗F are related as follows:

deg(F ) := χ(Ca, F )−rk(F )χ(Ca,OCa) = χ(C,E)−n2(1−g) = deg(E)+(n−n2)(1−g).

If Ca is smooth, then the torsion-free sheaf F is a line bundle and so there is a bijection
between rank n Higgs bundles on C with characteristic polynomial specified by a and
line bundles on Ca.

We outlined the idea behind the spectral correspondence above; let us briefly explain
its interaction with families and semistability (see Theorem 1.4 below for a concise
summary). The above correspondence works functorially in families and respects iso-
morphisms, so we obtain an isomorphism over A between the stack of rank n degree d
Higgs bundles on C and the stack of torsion-free rank 1 degree d + (n − n2)(1 − g)
sheaves on C/A. By a result of Schaub (1998), the spectral correspondence respects
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semistability of Higgs bundles (E, θ) and a natural notion of semistability for the corre-
sponding torsion-free rank 1 sheaf F = (πa)∗E on the spectral curve Ca, which involves
testing an inequality for all torsion-free rank 1 quotients of F restricted to subcurves
of Ca (see Chaudouard and Laumon, 2016, Remarque 4.2). In particular, if Ca is integral,
all torsion-free sheaves are stable and the corresponding Higgs bundles over a ∈ A are
automatically stable.

Remark 1.3. — Viewing F = π∗E as a pure 1-dimensional sheaf on T ∗C or its compact-
ification P(OC ⊕ TC), Simpson proved that slope semistability of (E, θ) corresponds to
Gieseker semistability of F on P(OC ⊕ TC) with respect to an appropriate polarisation.
Consequently, one can construct the moduli space of semistable Higgs bundles on C as
the open subscheme of the moduli space of Gieseker semistable 1-dimensional sheaves
on P(OC ⊕ TC) whose support is disjoint from the boundary. Since the moduli space of
Gieseker semistable sheaves on P(OC⊕TC) (with fixed Hilbert polynomial) is projective,
one immediately deduces that the moduli space of Higgs bundles is quasi-projective.

To succinctly summarise the above discussion, we need to introduce the smooth (or
regular) and elliptic loci in the Hitchin base; the latter acquires its name from Ngô’s
work on the fundamental lemma and endoscopy, where the word elliptic is used in
analogy with elliptic elements in reductive groups. Let Aell (resp. Asm) denote the
locus in A such that the spectral curve Ca is integral (resp. smooth and connected)
and let hell : Mell → Aell denote the restriction to the elliptic locus (and similarly
hsm : Msm → Asm). By Beauville, Narasimhan, and Ramanan (1989, Remark 3.5),
Asm ⊂ Aell ⊂ A are non-empty open subsets. For a projective flat family of curves X/S,
we let Pe(X/S) denote the relative Picard scheme of degree e line bundles on X/S and,
if the fibres of X/S are integral, we let Pe(X/S) denote the relative compactified Picard
scheme of torsion-free sheaves of rank 1 and degree e. Finally, let Pss

e (X) be the good
moduli space representing S-equivalence classes of semistable (in the sense of Schaub)
torsion-free sheaves of rank 1 and degree e on a projective curve X.

Theorem 1.4 (Spectral correspondence (Hitchin, 1987b; Beauville, Narasimhan, and
Ramanan, 1989; Schaub, 1998))

Let h : Mn,d(C) → A := ⊕n
i=1H

0(C, ω⊗i
C ) denote the Hitchin map and C/A denote

the spectral curve and write e := d + (n − n2)(1 − g). Then we have the following
isomorphisms.

(i) As stacks over A, we have an isomorphism

Higgsn,d(C) ≃ Coht.f.
1,e (C/A),

where the right side is the stack of torsion-free rank 1 degree e sheaves on C/A.
(ii) As schemes over Asm and Aell, we have isomorphisms

Msm
n,d(C) ≃ Pe(Csm/Asm) and Mell

n,d(C) ≃ Pe(Cell/Aell).
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(iii) For any a ∈ A, we have an isomorphism

h−1(a) ≃ Pss
e (Ca).

More generally, we can consider pairs (E,E → E ⊗L) where ωC is replaced by a line
bundle L; these pairs have an analogous Hitchin map and spectral description.

1.2.4. Properness of the Hitchin map. — As the properness of the Hitchin map is used
to define the perverse filtration, we sketch the proof via the spectral correspondence.

Proposition 1.5. — The Hitchin map h : Mn,d(C)→ A is proper.

Proof. — Let R be a DVR with fraction field K. For a diagram

Spec(K) //

��

Mn,d(C)

��

Spec(R) // A,

the top morphism corresponds to a Higgs bundle (EK , θK) on CK . By the spectral
correspondence (EK , θK) corresponds to a semistable 1-dimensional sheaf FK on SK

where S = P(OC ⊕ TC). By Langton’s proof (Langton, 1975) of the valuative criterion
for properness of semistable sheaves on S, the semistable sheaf FK on SK extends to a
semistable sheaf FR on SR. To show that FR corresponds to a family of semistable Higgs
bundles over R extending (EK , θK) it remains to show that the support of FR is disjoint
from the boundary of T ∗C ⊂ S. However, as the map Spec(K) → Mn,d(C) → A
extends to Spec(R), we know that the spectral curve CK extends to CR, which is the
support of FR (see §1.2.3), and so is disjoint from the boundary.

1.3. Hodge theory

The Hodge decomposition for a smooth complex projective variety X equips its ith
cohomology groups with a pure Hodge structure of weight i: we have a decomposition

H i(X,C) =
⊕
p,q

Hp,q

satisfying Hp,q = Hq,p and Hp,q = 0 whenever p + q ̸= i. We define an associated
decreasing Hodge filtration F jH i(X,C) = ∑

k≥j H
k,i−k such that

H i(X,C) = F jH i(X,C)⊕ F i−j+1H i(X,C)

for any 0 ≤ j ≤ i. We say the Hodge structure on the cohomology of X is of pure
Hodge–Tate type if Hp,q = 0 whenever p ̸= q. In particular, this implies that the odd
cohomology groups of X must be trivial. For example, the cohomology of projective
spaces is of pure Hodge–Tate type.

Deligne showed that this can be extended to singular and non-compact varieties via
the notion of a mixed Hodge structure.
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Theorem 1.6 (Deligne). — The cohomology H∗(X,Q) of a complex algebraic variety X
admits a mixed Hodge structure (MHS) consisting of an increasing weight filtration
W•H

i(X,Q) and a decreasing Hodge filtration F •H i(X,C) for all i such the Hodge
filtration induced by F • on the graded pieces of the weight filtration GrW

l H i(X,Q) is a
pure Hodge structure of weight l. Furthermore, the following properties hold.

(i) Mixed Hodge structures are functorial with respect to algebraic morphisms and
compatible with the cup product and Künneth isomorphism.

(ii) H i(X,Q) has weights contained in [0, 2i]; that is, it stabilises outside of this range

W−1 = 0 ⊂ W0 ⊂ · · · ⊂ W2iH
i(X,Q) = H i(X,Q).

(iii) If X is proper, H i(X,Q) has weights in [0, i]; that is, WiH
i(X,Q) = H i(X,Q).

(iv) If X is smooth, H i(X,Q) has weights in [i, 2i]; that is, Wi−1H
i(X,Q) = 0.

(v) If X is smooth, then WiH
i(X,Q) = Im(j∗ : H i(X,Q)→ H i(X,Q)) for any smooth

compactification j : X ↪→ X.

We say a class γ ∈ H∗(X,Q) has weight j if γ ∈ WjH
∗(X,Q), but γ /∈ Wj−1H

∗(X,Q).
We define the Hodge subspace by

(2) kHodi(X) := W2kH
i(X,C) ∩ F kH i(X,C).

We say that the MHS on H∗(X,Q) is of mixed Hodge–Tate type if the induced pure
Hodge structure on each GrW

l H i(X,Q) is of pure Hodge–Tate type.

1.3.1. Purity. — The MHS on H i(X,Q) is pure if the weight filtration is trivial with
weight equal to the cohomological degree; that is, 0 = Wi−1H

i(X,Q) ⊂ WiH
i(X,Q) =

H i(X,Q) so that H i(X,Q) = GrW
i H i(X,Q) has pure Hodge structure of weight i.

For example, via the compactification Gm ↪→ P1, the MHS on H1(Gm,Q) is

W1H
1(Gm,Q) = Im(H1(P1,Q)→ H1(Gm,Q)) = 0 ⊂ W2H

1(Gm,Q) = H1(Gm,Q)

which has weight 2 in cohomological degree 1, and so the MHS is not pure, but it
is of mixed Hodge–Tate type. This can be confusing, as we have an isomorphism
H1(Gm,Q) ∼= H2(P1,Q) of abstract mixed Hodge structures: for Gm the weight does
not match the cohomological degree, whereas for P1 it does.

From the final statement of Theorem 1.6, for a smooth variety X and a smooth
compactification X, we can define the pure part of the cohomology of X as follows

H∗
pure(X,Q) := Im(H∗(X,Q)→ H∗(X,Q)),

whose induced MHS is pure. The pure part of the cohomology is preserved under
pullbacks and proper pushfowards. As explained in (HMMS, §2.2), the restriction map
H∗(X,Q)→ H∗

pure(X,Q) factors as

H∗(X,Q) pr∗
1−→ H∗(X ×X,Q) ∪[∆]−→ H∗(X ×X,Q) pr2∗−→ H∗(X,Q)

where ∆ ⊂ X × X denotes the diagonal. Hence the pure cohomology H∗
pure(X,Q) is

spanned by the classes in any Künneth decomposition of ∆. Later, for certain smooth
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moduli spaces with natural tautological classes, we will use this to deduce that the
tautological and pure cohomology rings coincide.

1.3.2. Purity on the Dolbeault side. — There is a Gm-action on the Dolbeault moduli
space of Higgs bundles given by scaling the Higgs field. The Hitchin map is Gm-
equivariant for the Gm-action on A with weight i on H0(C, ω⊗i

C ). We will use this action
to show that the cohomology of Mn,d = Mn,d(C) is pure when n and d are coprime.
Hitchin (1987b) used this Gm-action to compute the Betti numbers of M2,1.

Proposition 1.7. — If (n, d) = 1, then H∗(Mn,d,Q) has a pure Hodge structure.

Proof. — Since Gm acts on A with positive weights, every point a ∈ A flows to 0 ∈ A
under the Gm-action as t → 0. Thus, as h : Mn,d → A is Gm-equivariant and proper,
the limit of the Gm-action on all points in Mn,d exists as t→ 0 and lies in h−1(0).

SinceMn,d is smooth, the Gm-fixed locus is smooth (see Fogarty, 1973) and the fixed
locus is proper, as it is closed in the proper scheme h−1(0). By work of Białynicki-Birula
(1973), the downward Gm-flow is a deformation retractMn,d → (Mn,d)Gm and the MHS
on H∗(Mn,d,Q) is pure, as it is a direct sum of (pure Tate twists of) cohomology groups
of smooth proper varieties (namely the connected components of the fixed locus).

In contrast, the MHS on the Betti moduli space is genuinely mixed. For example,
MB

1,0
∼= (Gm)2g has non-pure Hodge structure, as we explained for Gm above.

1.4. The decomposition theorem and perverse filtrations

In this section, we will introduce the necessary results needed from the theory of
perverse sheaves (Bĕılinson, Bernstein, and Deligne, 1982); an excellent reference for
this material is the survey of de Cataldo and Migliorini (2009), as well as the Bourbaki
seminar of Williamson (2017).

For a complex variety X, we let Db
c(X,Q) be the constructible derived category

of sheaves of Q-vector spaces. This category has a six operation formalism given by
the four operations f−1, Rf∗, Rf!, f

! for a morphism f of complex varieties, as well as a
tensor product and internal homomorphism RHom. Moreover, there is a Verdier duality
DK := RHom(K, ωX), where ωX = π!Q is the dualising complex for the structure map
π : X → Spec(C). Verdier duality gives Hi(DK) ≃ (H−i

c K)∗ which recovers Poincaré
duality when X is smooth, as then ωX ≃ QX [2 dimX].

For a morphism f : X → Y of complex varieties, the cohomology sheaves of the
complex Rf∗QX ∈ Db

c(Y,Q) compute the higher direct images Hi(Rf∗QX) = Rif∗QX .

Theorem 1.8 (Deligne’s Decomposition Theorem). — Let f : X → Y be a smooth
projective morphism of smooth complex varieties. Then there is a decomposition

Rf∗QX ≃
2d⊕

i=0
Rif∗QX [−i]

and the sheaves Rif∗QX [−i] are semisimple local systems on Y .
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In particular, H∗(X,QX) ≃ ⊕2d
i=0 H

∗−i(X,Rif∗QX). In general, one can compute
the cohomology of X from the Leray spectral sequence associated to f and Deligne
showed that this degenerates on the E2 page if f is smooth and projective. To generalise
Deligne’s decomposition theorem to the singular case, one must replace cohomology
with intersection cohomology and work with perverse sheaves.

1.4.1. Perverse sheaves. — The category P(X,Q) of perverse sheaves on X is the full
subcategory of Db

c(X,Q) consisting of complexes K such that

dim suppHi(K) ≤ −i and dim suppHi(DK) ≤ −i

for all i ∈ Z. These conditions are known as the support and cosupport conditions
and determine subcategories pD≤0

X and pD≥0
X respectively which define the perverse t-

structure on Db
c(X,Q) whose heart is P(X,Q). In particular, this is an abelian category

and the perverse cohomology sheaves pHi :=p τ≥0 ◦pτ≤0[i] can be computed in terms of
the perverse truncation functors

pτ≤i−1K −→ pτ≤iK −→ pHiK[−i] +1−→ .

The category P(X,Q) of perverse sheaves is Noetherian and Artinian with simple
objects given by intersection cohomology complexes associated to local systems on
locally closed irreducible subvarieties. For a local system L on a locally closed smooth
subvariety S ↪→ X, the intersection cohomology complex is defined as

ICX(S, L) := i∗j!∗L[dimS]

where i : S ↪→ X is the closed embedding of the closure of S in X and j : S ↪→ S is
the open embedding and j!∗K := Im(pH0j!K →pH0j∗K) is the intermediate extension of
Goresky–MacPherson. By definition j∗i∗ICX(S, L) = L[dimS]. The scheme S is called
the support of this intersection cohomology complex.

The intersection cohomology complex of X is defined as ICX := ICX(Xreg,QXreg).
The intersection cohomology groups IH∗(X,Q) are the (shifted) cohomology sheaves
of ICX . If X is smooth of dimension dX , we have ICX(X,Q) = QX [dX ].

1.4.2. Decomposition theorem. — Deligne’s decomposition generalises as follows.

Theorem 1.9 (Beilinson–Bernstein–Deligne–Gabber Decomposition Theorem
(Bĕılinson, Bernstein, and Deligne, 1982))

For a proper morphism f : X → Y of complex varieties, there is a decomposition

(3) Rf∗ICX ≃
⊕
i∈Z

pHi(Rf∗ICX)[−i].

The perverse sheaves on the right are semisimple, so are sums of intersection complexes
ICX(Sα, Lα) for simple local systems Lα on locally closed smooth subvarieties Sα.

In particular, IH∗(X,Q) = ⊕
α H

∗−dα(X, IC(Sα, Lα)) where the sum ranges over
finitely many local systems Lα over locally closed subset Sα ⊂ X. The decomposition
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theorem over the complex numbers was originally deduced from a corresponding decom-
position over finite fields in the derived category of ℓ-adic sheaves (Bĕılinson, Bernstein,
and Deligne, 1982); see also de Cataldo and Migliorini (2009, §3.3) for a geometric proof
in the complex setting.

The supports of Rf∗ICX are by definition the supports Sα of the simple summands in
the decomposition theorem for f . We say f has full supports, if these supports Sα are all
equal to Y . In this case, pHi(Rf∗ICX) is determined by its restriction to a dense open
subset: if j : U ↪→ Y is a dense open, then pHi(Rf∗ICX) = j!∗j

∗(pHi(Rf∗ICXU
)). If f is

a small morphism (see de Cataldo and Migliorini, 2009, Remark 4.2.4; for example, the
Grothendieck–Springer resolution of a semisimple Lie algebra is small), then Rf∗Q[dX ]
is the intersection complex of a semisimple local system with full support Y .

If X is smooth and f has relative dimension d, then the Goresky–MacPherson in-
equality states that any support Z of Rf∗QX has codimension at most d and if equality
is achieved, then R2df∗QX has a direct summand over Z. A key idea of Ngô is that this
inequality can be improved when f is a weak abelian fibration in the sense of Ngô (2010,
Section 7), which in particular means there is a smooth commutative group scheme
P/Y acting on f such that f is generically a P-torsor. If f is a weak abelian fibration,
the idea is to bound the codimension of a support by the minimal value of a δ-function
on that support and if equality is achieved and f has irreducible fibres, then this support
is a full support. Ngô uses this δ-inequality to prove a support theorem for δ-regular
abelian fibrations and we will explain in §3.3.1 how he applies this to show the Hitchin
fibration restricted to the elliptic locus has full supports (for both classical G-Higgs
bundles and D-twisted G-Higgs bundles).

1.4.3. Perverse filtrations. — The decomposition (3) is not canonical (see de Cataldo
and Migliorini, 2009, §1.4.2), but there is a canonical perverse Leray filtration for
f : X → Y whose graded pieces describe the cohomology of the perverse sheaves in the
decomposition theorem.

For any K ∈ Db
c(X,Q), we can define (up to a choice of shift) a perverse filtration

P f
• H(X,K) by taking the images of H∗(Y,pτ≤•Rf∗K) → H∗(X,K). We will make a

shift so that the perverse filtration is graded only in non-negative degrees, so we can
naturally compare it with the weight filtration. For a proper morphism f : X → Y

between smooth quasi-projective varieties, the decomposition theorem gives

Rf∗QX [dX − rf ] =
2rf⊕
i=0

pHi(Rf∗QX [dX − rf ])[−i]

where rf = dimX ×Y X − dimX is the defect of semismallness; see de Cataldo and
Migliorini (2009, Definition 4.2.2) for the definition of a semismall morphism. The
perverse filtration of f is defined by

P f
i H

j(X,Q) = Im
(
Hj−dX+rf (Y,pτ≤iRf∗QX [dX − rf ])→ Hj(X,Q)

)
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which is supported in degrees [0, 2rf ] and whose graded pieces compute the cohomology
of the summands in the decomposition theorem:

GrP,f
i H∗(X,Q) = P f

i H
∗(X,Q)/P f

i−1H
∗(X,Q) = H∗(Y,pH−i(Rf∗QX [dX − rf ])).

We say a class γ ∈ H∗(X,Q) has perversity i if γ ∈ P f
i H

∗(X,Q) and γ /∈ P f
i−1H

∗(X,Q).
In the case where the target is an affine space (as, for example, is the case for the

Hitchin map), de Cataldo and Migliorini (2010) proved that the perverse filtration is
given by a flag filtration:

P iHj(X,Q) = ker
(
H i(X,Q)→ H i(f−1(Λj−i−1),Q)

)
where Λj−i−1 ⊂ Y is a general affine subspace of dimension j − i − 1. However, this
concrete description does not seem helpful to tackle the P = W conjecture in general.

Example 1.10. — We have M1,d(C) ≃ Picd(C) × H0(C, ωC) and the Hitchin map is
identified with the projection onto the second factor. Consequently the perverse filtration
coincides with the Leray filtration and is trivial:

0 = Pl−1H
l(M1,d,Q) ⊂ PlH

l(M1,d,Q) = H l(M1,d,Q).

1.4.4. Relative Hard Lefschetz. — The final ingredient that we need concerning per-
verse sheaves is the relative Hard Lefschetz Theorem. For a smooth projective manifold
and an ample class η ∈ H2(X,Q), the classical Hard Lefschetz theorem states that
ηi : HdX−i(X) → HdX+i(X) is an isomorphism. This extends to the relative setting
and can also be generalised to allow singular fibres provided one works with perverse
cohomology sheaves as follows.

Theorem 1.11 (Relative Hard Lefschetz). — Let f : X → Y be a projective morphism
of smooth complex varieties and ω = c1(L) ∈ H2(X,Q) be a relatively ample class. Then

pH−i(Rf∗QX [dX ]) ωi

−→ pHi(Rf∗QX [dX ])

is an isomorphism for all i ≥ 0.

In terms of the perverse filtration associated to f , which we shifted to be concentrated
in degrees [0, 2rf ], the Relative Hard Lefschetz Theorem gives isomorphisms

ωi : GrP,f
rf −i H

∗(X,Q) ∼= GrP,f
rf +i H

∗(X,Q).

Remark 1.12. — The cup product with the relatively ample class ω defines a Lef-
schetz operator, which we also denote by ω. On the associated graded vector space
GrP H∗(X,Q) := ⊕

i GrP
i H

∗(X,Q) ∼= H∗(X,Q), the Lefschetz operator is nilpotent of
degree 2 and so, by the Jacobson–Morozov Theorem, extends to an sl2-triple ⟨e, f, h⟩ act-
ing on GrP H∗(X,Q) such that e equals the Lefschetz operator ω and the h-graded pieces
are the P -graded pieces GrP

i H
∗(X,Q) up to a shift in indices (see HMMS, Proposition

8.2 which gives a more abstract formulation in terms of Lefschetz structures).



1213–21

1.4.5. Functoriality of perverse filtrations. — In this section, we briefly state (without
proof) the results of (HMMS, §8.2) concerning the compatibility of perverse filtrations
with cup products, pullbacks, Gysin maps and correspondences.

Proposition 1.13. — Assume we have a commutative diagram of quasi-projective
smooth complex varieties

X1

f1   

X
π1
oo

π2
//

f
��

X2

f2~~

Y

where f and fi are projective. Then the following statements hold.

(i) The cup product with α ∈ H i
pure(X) shifts the perverse filtration by i:

α ∪ P f
k H

∗
pure(X,Q) ⊂ P f

k+iH
∗
pure(X,Q).

In particular, α has perversity bounded by i.
(ii) The pullback map for πi satisfies

π∗
i P

fi
k H

∗
pure(Xi,Q) ⊂ P f

k+dXi
−dX

H∗
pure(X,Q).

(iii) The Gysin map for πi satisfies

πi∗P
f
k H

∗
pure(X,Q) ⊂ P fi

k+dXi
−dX

H
∗+2dXi

−2dX
pure (Xi,Q).

(iv) The correspondence [X]♯ given by α 7→ π2∗(π∗
1(α) ∪ [X]vir) satisfies

[X]♯P f1
k H∗(X1,Q) ⊂ P f2

k+dX1 +dX2 −2dX+2lH
∗+2dX2 −2dX+2l(X2,Q),

where [X]vir ∈ H2l
pure(X) is the virtual fundamental class (see HMMS, §2.4). If Xi

are algebraic symplectic and X ⊂ X1×X2 is Lagrangian (so 2dX−2l = dX1 +dX2),
then [X]♯ respects the perversity.

1.5. Statement and history of the P = W conjecture

We can now state the P = W conjecture of de Cataldo, Hausel, and Migliorini (2012).
Recall that the weight filtration W•H

∗(MB
n,d,Q) is concentrated in weights [0, 2N ]

where N = dimMB
n,d and satisfies W2i = W2i+1, whereas the perverse Leray filtration

P h
• H

∗(MDol
n,d ,Q) is concentrated in degrees [0, 2rh] where rh = dimMDol

n,d−dimAn = 1
2N .

Theorem 1.14 (P = W Conjecture for GLn). — For n and d coprime, the perverse
filtration for the Hitchin map h : MDol

n,d → An on the Dolbeault moduli space coincides
with the weight filtration on the cohomology of the Betti moduli space MB

n,d under the
isomorphism on cohomology induced by non-abelian Hodge theory:

P h
i H

∗(MDol
n,d ,Q) = W2iH

∗(MB
n,d,Q) = W2i+1H

∗(MB
n,d,Q).
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This was proved in rank 2 by de Cataldo, Hausel, and Migliorini (2012) and in
arbitrary rank independently by Maulik and Shen (MS) and Hausel, Mellit, Minets,
Schiffmann (HMMS). More recently an alternative proof was given by Maulik, Shen,
and Yin (2023).

1.5.1. History of the P = W conjecture. — The origins of the P = W conjecture
can be traced back to work of Hausel and Rodriguez-Villegas (2008) on computing the
mixed Hodge structures of twisted GLn-character varieties by point counting over finite
fields. As well as writing down a conjectural formula for the mixed Hodge polynomials
of character varieties, they observed that the E-polynomials of character varieties are
palindromic and thus satisfy a curious Poincaré duality-type symmetry. This symmetry
is traced back to Alvis–Curtis duality for the character theory of the general linear group
over a finite field. Based on this, Hausel and Rodriguez-Villegas formulated a curious
Hard Lefschetz conjecture for character varieties and proved this in rank n = 2 (Hausel
and Rodriguez-Villegas, 2008); this is now a theorem of Mellit (2019) in arbitrary rank
and coprime degree.

Theorem 1.15 (Curious Hard Lefschetz (Hausel and Rodriguez-Villegas, 2008; Mellit,
2019))

For n and d coprime, there is a class α ∈ H2(MB
n,d,Q) such that αi induces an

isomorphism
GrW

N−2i H
∗
c (MB

n,d,C) ∼−→ GrW
N+2i H

∗+2i
c (MB

n,d,C)
where N = dimMB

n,d.

The name Curious Hard Lefschetz points to two surprising features: i) the Betti
moduli space is affine and ii) the Lefschetz operator α is a type (2, 2) class rather than
a (1, 1) class as in the classical Hard Lefschetz Theorem, so all indices are doubled and
the cup product with α increases the cohomological degree by 2 and the weight by 4.
We give an outline of the methods in Mellit’s proof in §1.5.2.

The curious Hard Lefschetz conjecture lead de Cataldo, Hausel, and Migliorini (2012)
to propose the P = W conjecture, as it would explain the curious Hard Lefschetz sym-
metry for the Betti moduli space as coming from the relative Hard Lefschetz Theorem
for the perverse Leray filtration for the Hitchin map.

One fundamental obstruction to proving this conjecture in general is that although the
weight filtration is multiplicative (i.e. compatible with the cup product), the perverse
Leray filtration is not in general. In rank 2, de Cataldo, Hausel, and Migliorini (2012)
prove the P = W conjecture for GL2, PGL2 and SL2 by restricting to a dense open in
the Hitchin base over which they prove the perverse Leray filtration coincides with the
Leray filtration, which is multiplicative. This enables them to describe the perversity
of generators of the cohomology (see §2.2.2 below).

Let us mention a few other cases of the P = W conjecture that were established
before the general case for GLn was proved by Maulik and Shen (MS) and Hausel, Mellit,
Minets, and Schiffmann (HMMS).



1213–23

There is a class of parabolic Higgs moduli spaces labelled by the affine Dynkin dia-
grams which are Hilbert schemes of points over elliptic fibrations described by Groechenig
(2014). For these parabolic Higgs moduli spaces, Shen and Zhang (2021) prove a P = W

conjecture by showing tautological generation of the cohomology and proving that the
perverse filtration is multiplicative.

The topology of Lagrangian fibrations on compact hyperkähler manifolds was studied
by Shen and Yin (2022) and Harder, Li, Shen, and Yin (2021), where they prove a
numerical P = W statement. Subsequently, de Cataldo, Maulik, and Shen (2022a)
study the P = W conjecture by considering an embedding j : C ↪→ A of C in an
abelian surface in order to realise the Hitchin fibration as a degeneration of a family
of Lagrangian fibrations on moduli spaces of sheaves on abelian surfaces, which are
compact hyperkähler manifolds. They study the specialisation map on cohomology
associated to this degeneration, which in general loses a lot of information, but they
can describe the behaviour of tautological classes lying in the image of the restriction
map j∗. By the Abel–Jacobi map, a genus 2 curve can be embedded in its Jacobian,
so that the restriction on cohomology is surjective; consequently, they deduce that the
P = W conjecture holds in genus g = 2. Since j∗ always contains the even part of the
cohomology of C, they deduce that P = W holds for the subring of even tautological
classes.

1.5.2. Mellit’s proof of curious Hard Lefschetz. — Since Maulik and Shen use the
Curious Hard Lefschetz Theorem in their proof of the P = W conjecture, we will give
an outline of the ideas involved in this section.

In fact, Mellit proved a Curious Hard Lefschetz Theorem for GLn-character varieties
with several punctures provided the monodromies around these punctures are diago-
nalisable and ‘generic’ in the sense of Mellit (2019, Definition 4.6.1). His proof can be
divided into the following steps:

(i) Describe the form ω ∈ H2(MB
n,d,C) explicitly to show it has type (2, 2).

(ii) If one local monodromy is regular semisimple, find a homotopy replacement given by
a unipotent character variety, which is cellular, and deduce curious Hard Lefschetz
from the corresponding statements on the cells.

(iii) Deduce the general case (which includes the case of MB
n,d for n and d coprime)

from the previous case by adding an extra puncture and varying the monodromy at
that puncture to produce a family of character varieties such that the cohomology
of the fibres can be related via a natural Weyl group action.

For (1), Mellit uses the evaluation map for the character stack

ev∗ : H∗(BGLn)→ H∗(MB
n,d × C)

and considers ω =
∫

[C] ev∗(ωGLn) ∈ H2(MB
n,d) for a class ωGLn ∈ H∗(BGLn) constructed

from certain differential forms on the bar construction of GLn (Mellit, 2019, Proposition
4.5.1). For (2), let us assume for simplicity of exposition that we consider a character
variety MB for a curve with one puncture and fixed regular semisimple monodromy,
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so the eigenvectors can be used to construct a basis. The homotopy replacement is a
unipotent character variety which is a fibre bundle M̃B → MB with fibre the group
Un of upper triangular unipotent matrices, where M̃B is constructed as a quotient of
the space of tuples (A1, . . . , Ag, B1, . . . , Bg) ∈ GL2g

n such that the difference between
the commutator ∏n

i=1[Ai, Bi] and the monodromy is strictly upper triangular. The
cellular decomposition on M̃B is induced by the Bruhat decomposition and it suffices
to show the corresponding statement on each cell by Mellit (2019, Proposition 2.6.4).
For (3), by allowing the monodromy to vary at an additional puncture, Mellit shows
the cohomology of MB

n,d (which corresponds to the fibre where the monodromy at the
extra puncture is trivial) is the sign component of the cohomology of a character variety
where the extra puncture has regular semisimple monodromy. This involves relating
these character varieties to the Grothendieck–Springer resolution for GLn.

Since ω ∈ F 2H2(MB,C), the cup product with ω gives a nilpotent operator whose
associated filtration coincides with the Hodge filtration and splits the weight filtration.
Moreover, for n and d coprime, the mixed Hodge structure on the twisted GLn-character
variety MB

n,d splits (Mellit, 2019, Corollary 1.5.4).
In fact, Mellit shows Curious Hard Lefschetz holds for any ‘log-canonical’ non-

degenerate 2-form ω on a torus and moreover the Lefschetz operator ω has an adjoint,
which together with ω forms part of an sl2-triple. This is a shadow of the idea employed
in (HMMS) to prove the P = W conjecture.

1.5.3. Other versions of P = W . — Since non-abelian Hodge theory holds after replac-
ing GLn by any complex reductive group G, one can also predict a version of P = W

in these cases. We discuss the groups PGLn and SLn and their relation with GLn in
further detail in §2.4. One reason the case of GLn (and PGLn) is accessible is that
H∗(Mn,d,Q) is tautologically generated when n and d are coprime (see §2.2.2).

Non-abelian Hodge theory also extends to parabolic Higgs bundles, which are Higgs
bundles with flag structures in some fibres that are compatible with the Higgs field, and
so one can also formulate a version of P = W in the parabolic case.

Returning to GLn but in the non-coprime case, the Betti and Dolbeault moduli spaces
are singular, but still homeomorphic via non-abelian Hodge theory. In this case, Relative
Hard Lefschetz fails in general and the Curious Hard Lefschetz property fails for the
Betti moduli spaces, as their E-polynomial are no longer palindromic. Instead one can
either formulate P = W on the isomorphism between intersection cohomology groups
given by non-abelian Hodge theory (as in de Cataldo and Maulik, 2020, Question 4.1.7)
or consider P = W on a resolution of singularities by lifting the non-abelian Hodge
isomorphism (as in Felisetti and Mauri, 2022). When the character variety admits a
symplectic resoluton, Felisetti and Mauri (2022) prove the intersection cohomology (or
equivalently resolution) version of P = W .

There is no natural lift of the non-abelian Hodge isomorphism to the level of stacks
(except in genus 0), as the non-abelian Hodge isomorphism relies on the polystability of
the Higgs bundle in an essential way. However Davison (2023) and Davison, Hennecart,
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and Schlegel Mejia (2023) show that the stack of n-dimensional representations of π1(C)
and the stack of semistable degree 0 rank n Higgs bundles have isomorphic Borel–Moore
homologies (with appropriate coefficients), by using the theory of cohomological Hall
algebras to express both sides in terms of a BPS algebra, which is a free algebra encoding
the intersection cohomology of the good moduli spaces. Davison (2023) also formulates a
stacky version of the P = W conjecture (provided the perverse filtration is appropriately
defined), which via the above Hall algebra result is equivalent to the intersection P = W

conjecture.
One can also replace the curve C by a higher-dimensional smooth projective variety,

where non-abelian Hodge theory applies and thus one can also ask whether P = W

holds. In the case of an abelian variety, where the topology of the Hitchin map is much
simpler and both filtrations P and W are trivial, this has been verified in Bolognese,
Küronya, and Ulirsch (2023). Moreover, P = W phenomena have been studied on
generalisations of the Dolbeault and Betti moduli spaces over a curve, such as cluster
varieties (Zhang, 2021) and hyperkähler manifolds (Harder, Li, Shen, and Yin, 2021).

A geometric P = W conjecture of Katzarkov, Noll, Pandit, and Simpson (2015) aims
to understand the cohomological P = W phenomena by giving a geometric description
of neighbourhoods of infinity in natural compactifications of the Dolbeault and Betti
moduli spaces up to homotopy. Under certain technical assumptions, the geometric
P = W conjecture implies the cohomological P = W conjecture at the highest weight
(Mauri, Mazzon, and Stevenson, 2022, Theorem A).

2. TAUTOLOGICAL CLASSES

The aim of this section is to reduce the P = W conjecture to statements entirely on
the Dolbeault side about the interaction of the perverse filtration with cup products of
tautological classes, constructed from the universal bundle.

2.1. Universal families

For a general complex reductive group G, the Dolbeault and Betti moduli stacks
naturally come with universal families, which are given by a universal G-bundle that
is equipped with a universal Higgs field in the Dolbeault case and a universal flat
connection in the Betti case. The non-abelian Hodge correspondence only concerns the
corresponding moduli spaces, which only admit universal families if they are fine moduli
spaces, and moreover these universal families may be non-unique.

On the Betti stack MB
G of G-local systems there is a universal flat G-bundle

(PG,∆G)→MB
G × C

where PG = [C̃ × Rep(π1(C), G) × G/π1(C) × G] and C̃ is a universal cover of C.
Forgetting the flat structure ∆G, the topological G-bundle Pan

G determines a classifying
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map
ν : (MB

G)an × Can → BGan.

On the Dolbeault side, for G = GLn and a coprime degree d, the Higgs moduli space
MDol

n,d is a fine moduli space. In particular, there is a universal Higgs bundle

(E ,Θ: E → E ⊗ π∗
CωC)→MDol

n,d × C.

that is unique up to tensoring with pullbacks of line bundles on MDol
n,d . The non-

uniqueness of the universal family on MDol
n,d can be dealt with in several different ways:

i) by passing from GLn-Higgs bundles to PGLn-Higgs bundles which have a unique
universal family, ii) by projectivising the universal bundle as in Hausel and Thaddeus
(2004, §5), iii) by considering universal families twisted by a cohomology class with
appropriately normalised first Chern class as in de Cataldo, Maulik, and Shen (2022a,
§0.3), or iv) by using a normalised (virtual) universal family similarly to Atiyah and
Bott (1983, p. 582). All these perspectives are closely related: the PGLn-bundle P(E)
on MDol

n,d × C is isomorphic to the pullback of the universal PGLn-Higgs bundle EPGLn

on MDol
PGLn,d × C via the quotient map q : MDol

n,d →MDol
PGLn,d.

The non-abelian Hodge correspondence for PGLn gives a diffeomorphism of orbifolds

MB
PGLn,d ≃MDol

PGLn,d

and an isomorphism of the underlying universal PGLn-bundles PPGLn ≃ EPGLn . For
GLn, the diffeomorphismMDol

n,d ≃MB
n,d gives an isomorphism of universal PGLn-bundles

P(E) ≃ (qB × IdC)∗PPGLn where qB : MB
n,d →MB

PGLn,d is the quotient map (see Hausel
and Thaddeus, 2004, §5 for further details).

2.2. Cohomology of Higgs moduli spaces and tautological generation
For the general linear group GLn and d coprime to n, the cohomology of the Higgs

moduli space Mn,d is generated by certain tautological classes constructed from the
universal bundle. We will see that the same is also true for the PGLn-Higgs moduli
space, whose cohomology differs from that ofMn,d by a tensor factor of the cohomology
of the Jacobian of C. However, for SLn, the tautological ring is a proper subring of the
cohomology of the SLn-Higgs moduli space.

2.2.1. Relating the cohomology of Higgs moduli spaces for different groups. — Let us
begin by describing the relationship between the cohomology of the moduli spacesMG,d

of G-Higgs bundles for G = GLn, SLn and PGLn of degree d coprime to n. First,
as the PGLn-moduli space is the quotient of the SLn-moduli space by the action of
Γ = Jac(C)[n], we have

H∗(MPGLn,d,Q) ∼= H∗(MPGLn,d,Q) ∼= H∗(MSLn,d,Q)Γ,

as MPGLn,d = [MSLn,d/Γ] is a Deligne–Mumford stack.
We note that the Γ-action on the cohomology ofMSLn,d is non-trivial, as was already

observed by Hitchin (1987b) in rank n = 2. The corresponding endoscopic decomposition
associated to this Γ-action plays an important role in topological mirror symmetry for
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SLn and PGLn-Higgs bundles (Groechenig, Wyss, and Ziegler, 2020; Maulik and Shen,
2021) and was carefully described by Maulik and Shen (2021). The variant part of
the cohomology is related to the cohomology of endoscopic moduli spaces attached to
non-trivial characters of Γ which can be described as Higgs moduli spaces on a Galois
cover of C determined by the character of Γ.

On the geometric level, we have an isomorphism of varieties

MSLn,d ×Γ T ∗ Jac(C)→MGLn,d

and thus the cohomology ofMGLn,d is the Γ-invariant cohomology ofMSLn,d×T ∗ Jac(C).
Since the Γ-action on the cohomology of Jac(C) is trivial, we obtain isomorphisms of
Q-algebras

(4) H∗(MGLn,d) ∼= H∗(MSLn,d)Γ ⊗H∗(Jac(C)) ∼= H∗(MPGLn,d)⊗H∗(Jac(C)).

In particular, to provide generators for the cohomology of MGLn,d it suffices to find
generators for the cohomology of MPGLn,d.

2.2.2. Tautological generation. — For d coprime to n, a choice of universal Higgs
bundle (E ,Θ) → Mn,d × C determines tautological classes, which are defined as the
Künneth components of the Chern character of the underlying universal bundle E . These
tautological classes generate a subring of H∗(MG,d,Q) called the tautological ring.

First, we note that often tautological classes are defined as the Künneth components
of the Chern classes of the universal bundle, but we will use the Chern character as in
(MS) due to its multiplicativity properties; since we are working with Q-coefficients, this
does not change the tautological ring as we can determine the components chk(E) of the
Chern character from the Chern classes ck(E) and vice versa. In (HMMS) a different
choice of tautological generators is used (see §4.2.2).

Second, as the universal family on Mn,d × C is non-unique, the tautological classes
will only be uniquely defined if they are appropriately normalised. This normalisation
is not important for tautological generation of the cohomology, but it is crucial to
compute the perversity and weights of the tautological classes. There are different ways
to correctly normalise the tautological classes: work with the universal PGLn-bundle
or the PGLn-moduli space as in (MS), or consider twisted universal families which are
normalised as in de Cataldo, Maulik, and Shen (2022a, §0.3) or work with a normalised
rational virtual universal bundle of degree 0.

For concreteness, we define the tautological classes using the universal PGLn-bundle
EPGLn on MPGLn,d × C when n and d are coprime. For all γ ∈ H i(C,Q) we define

ck(γ) := pM∗(chk(EPGLn) ∪ p∗
C(γ)) ∈ H i+2k−2(MPGLn,d,Q)

where pC and pM denote the natural projections.
In rank n = 2, Hausel and Thaddeus (2004) showed that the tautological classes

generate MPGL2,1, and combining these with the classes coming from Jac(C), they
obtained generators for MGL2,1. Markman (2002) generalised this to higher rank by
viewing Higgs bundles as sheaves on a surface T ∗C via the spectral correspondence and
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using an idea of Ellingsrud and Strømme (1993) and Beauville (1995) to express the
diagonal class of the moduli space in terms of the Chern classes of the universal family.

Theorem 2.1 (Markman’s tautological generation). — For n and d coprime, the
following statements hold.

(i) The classes ck(γ) generate H∗(MPGLn,d,Q) as a Q-algebra.
(ii) H∗(MGLn,d,Q) as in (4) is generated as a Q-algebra by ck(γ) and the pullbacks

ξ1, . . . , ξ2g under det : MGLn,d →MGL1,d
∼= Jacd(C)×H0(C, ωC) of the generators

of H∗(Jac(C),Q).

The tautological classes ck(γ) can also be directly defined using Chern character
components of a normalised virtual universal family as follows. Let E → MGLn,d × C
denote a universal family, then as we are working with Q-coefficients we can take a
virtual nth root of det(E)−1 in the (rational) Grothendieck group of vector bundles. The
rational Chern characters chk := chk(E ⊗ det(E)⊗−1/n) of the degree 0 virtual bundle
E ⊗ det(E)⊗−1/n are independent of E and coincide with the Chern characters of the
pullback of EPGLn →MPGLn,d × C.

The cohomology of the SLn-Higgs moduli space is not tautologically generated, as all
tautological classes are Γ-invariant and so they cannot describe the variant cohomology.
This means the P = W conjecture is substantially more complicated for SLn and is only
known when n is prime (see §2.4).

For certain other smooth fine moduli spaces M of sheaves on surfaces, one can
define a tautological ring using the Künneth components of the universal sheaf. The
tautological ring is contained in the pure part of the cohomology ofM and they coincide
in certain nice situations: for example, since H∗

pure(M,Q) is generated by the Künneth
components of the diagonal in M×M for a smooth compactification (see §1.3), it
suffices to express the diagonal in terms of tautological classes as in Markman (2002) in
order to conclude the tautological and pure rings coincide; this argument is employed
in (HMMS), see §4.3.

2.3. Weights of tautological classes on the Betti moduli space

Recall that the universal G-bundle PG →MB
G × C determines a classifying map

ν : (MB
G)an × Can → BGan

and a corresponding pullback on cohomology ν∗ : H∗(BG,Q)→ H∗(MB
G,Q)⊗H∗(C,Q).

One then obtains tautological Betti classes by taking the Künneth components of the
images of the generators of H∗(BG,Q).

More concretely, for GLn, we have

H∗(BGLn,Q) ∼= H∗(BGn
m,Q)Sn ∼= Q[α1, . . . , αn]Sn ∼= Q[c1, . . . , cn] ∼= Q[ch1, . . . , chn],
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where ci are the elementary symmetric polynomials in the Chern roots αi. The Chern
roots can be viewed as generators of the different copies of H∗(BGm,Q). For a GLn-
bundle P → X corresponding to a classifying map νP : X → BGLn, the corresponding
cohomological pullback ν∗

P : H∗(BGLn,Q)→ H∗(X) sends ck to ck(P ).
The weights of the tautological classes on the Betti stack of G-local systems on C

(or in fact a more general topological space X of finite type) were calculated by Shende
(2017). Since the pullback on cohomology along an algebraic morphism respects Hodge
structures, Shende replaces the non-algebraic classifying map by an algebraic evaluation
map of simplicial schemes by replacing C with a simplicial set ∆C whose geometric
realisation is homotopy equivalent to C. By viewing ∆C as a constant simplicial scheme,
its mixed Hodge structure is of weight zero. Since the classifying stack BG has a pure
Hodge structure of Hodge–Tate type

H∗(BG,Q) =
⊕
k≥0

k Hod2k(BG),

Shende concludes that the cup product with γ ∈ Hk(C,Q) increases the cohomological
degree by k but does not change the Hodge degree.

For G = PGLn and coprime degree d, the Betti moduli stack MB
PGLn,d is a Deligne–

Mumford stack whose underlying coarse moduli space MB
PGLn,d has the same rational

cohomology. The tautological Betti classes

cB
k (γ) =

∫
γ

chk(PPGLn) := (pM)∗(p∗
C(γ) ∪ chk(PGLn)) ∈ H∗(MB

PGLn,d,Q)

correspond to the tautological (Dolbeault) classes ck(γ) as the underlying universal
(complex) PGLn-bundles are isomorphic (see §2.1). We can now precisely state Shende’s
result for PGLn-moduli spaces.

Theorem 2.2 (Shende (2017)). — For γ ∈ H∗(C,Q), we have ck(γ) ∈ kHod∗(MB
PGLn,d).

Hence, the tautological class ck(γ) has homogeneous weight 2k and type (k, k) which is
independent of the cohomological degree of γ.

For G = GLn, where the universal family on Mn,d is non-unique, only appropriately
normalised tautological classes have the correct weight as explained in de Cataldo,
Maulik, and Shen (2022a, Lemma 4.6). In fact by Shende (2017), the weight 2 Hodge
classes in the second degree cohomology ofMn,d ×C are precisely the middle Künneth
components

1 Hod2(C ×MB
n,d) = H1(C,Q)⊗H1(MB

n,d,Q)
and so the normalised Chern characters of the universal bundle must be defined so the
first Chern character lies in this Künneth component and thus has weight 2.

For G = PGLn, the cohomology is generated by tautological classes ck(γ) of even
weight 2k of type (k, k). Hence, we conclude W2k+1H

∗(MG,d,Q) = W2kH
∗(MG,d,Q).

Since the weight filtration is multiplicative, we have
s∏

i=1
cki

(γi) ∈ W∑s

i=1 2ki
H∗(MB

PGLn,d,Q).
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2.4. Equivalent formulations of P = W

In the case of G = GLn and PGLn, we can exploit the fact that the cohomology of
the Dolbeault moduli space is tautologically generated and the weights of the generators
are known to reduce the P = W conjecture to statements about the perversity of the
tautological classes and their products.

Proposition 2.3. — For n and d coprime, the following statements are equivalent:
(i) The P = W conjecture holds for GLn and degree d.
(ii) The P = W conjecture holds for PGLn and degree d.
(iii) The tautological classes ck(γ) ∈ H∗(MDol

n,d ,Q) have perversity k and the perverse
filtration is multiplicative: Pi ∪ Pj ⊂ Pi+j.

(iv) For any k1, . . . , ks ∈ Z>0 and γ1, . . . , γs ∈ H∗(C,Q), we have
s∏

i=1
cki

(γi) ∈ P∑s

i=1 ki
H∗(MDol

n,d ,Q).

(v) For all k, we have W2kH
∗(MDol

n,d ,Q) ⊂ PkH
∗(MB

n,d,Q).

Proof. — The cohomology of GLn and PGLn-Higgs moduli spaces are related by Eq.
(4) and, by Theorem 2.1, the (tautological) generators of the GLn-Higgs moduli space
are the (tautological) generators of the PGLn-Higgs moduli space together with the
pullbacks ξ1, . . . , ξ2g of the generators of H∗(Jac(C),Q) via the (smooth) determinant
map in the following diagram

MDol
n,d

det
//

hn

��

MDol
1,d

h1
��

An = ⊕n
i=1 H

0(C, ω⊗i
C ) // A1 = H0(C, ωC).

Since the rank 1 Hitchin fibration h1 is smooth and in fact a trivial fibration, the
classes ξi have weight 2 and perversity 1 (see de Cataldo, Hausel, and Migliorini, 2012,
Proposition 1.4.1). By realising MDol

PGLn,d as the quotient of the moduli space of trace-
free GLn-Higgs bundles by the Jacobian of C as in de Cataldo, Hausel, and Migliorini
(2012, §2.4), one obtains as in Eq. (2.4.14) of loc. cit.

P≤kH
i(MDol

n,d ,Q) =
⊕
j≥0

P≤k−jH
i−j(MDol

PGLn,d,Q)⊗
j∧
H1(C,Q)

 ,
from which the equivalence of (i) and (ii) follows.

Since the weights of the tautological classes are known and the weight filtration is
multiplicative, we see (ii) =⇒ (iii) =⇒ (iv). Since the cohomology is generated by
tautological classes whose weights are known we conclude (iv) =⇒ (v) for MDol

PGLn,d,
but then this gives the corresponding statement for MDol

GLn,d as the cohomology only
differs by a factor H∗(Jac(C),Q) whose weights and perversity were described above.
Finally, to deduce (v) =⇒ (i), one can compare dimensions and inductively see that
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Relative Hard Lefschetz and Curious Hard Lefschetz (Theorems 1.11 and 1.15) force
certain inequalities to become equalities. For example, we deduce P0 = W0 as

dimW2N/W2N−1
CHL= dimW0 ≤ dimP0

RHL= dimPN/PN−1 ≤ W2N/W2N−1,

where N = dimMB = 2rh, then one proceeds inductively to show Pi = W2i.

The perversity of the tautological classes is computed by de Cataldo, Maulik, and
Shen (2022a), who show

ck(γ) ∈ Pk(MDol
n,d ,Q),

although this is not used in either (MS) or (HMMS). This means it suffices to prove the
multiplicativity of the perverse filtration for the Hitchin map. We note that in general,
the perverse filtration is not multiplicative (for example, see de Cataldo, 2017b, Exercise
5.6.8) and so the P = W proofs heavily rely on the specific geometry of the Hitchin
fibration.

Let us finally remark on the additional difficulties concerning the P = W conjecture
for SLn (with coprime degree). The P = W conjecture for PGLn (or equivalently GLn)
gives the P = W conjecture for the invariant part of the cohomology of the SLn-Higgs
moduli space under the action of Γ = Jac(C)[n]. The variant part of the cohomology
is described by endoscopic moduli spaces attached to non-trivial characters of Γ which
can be realised as subvarieties of GLn/r-Higgs moduli spaces on a degree r Galois cover
of C determined by the character of Γ as in Hausel and Pauly (2012) and Maulik
and Shen (2021). If n = p is prime, the endoscopic moduli spaces parametrise rank 1
vector bundles on a degree n Galois cover of C; consequently they are the total space
of cotangent bundles of Prym varieties whose associated perverse filtrations are trivial.
By using topological mirror symmetry (Hausel and Thaddeus, 2003; Groechenig, Wyss,
and Ziegler, 2020; Maulik and Shen, 2021) to explicitly compute the E-polynomials of
the variant part on the Betti and Dolbeault side for n = p prime, de Cataldo, Maulik,
and Shen (2022b, Theorem 1.5) show that the P = W conjecture for SLp is equivalent
to the P = W conjecture for GLp; in particular, the P = W conjecture for SLp with p

prime is now a theorem.

2.4.1. Perverse equals Chern. — We have seen that via tautological generation, the
P = W conjecture can be entirely phrased on the Dolbeault moduli space as the
interaction of specific tautological classes with the perverse filtration. More precisely, it
suffices to show the perverse filtration coincides with the Chern filtration (as explained
in Maulik, Shen, and Yin, 2023 and denoted P = C), where the Chern filtration is
defined as

Ck := Span
(∏

i

ψki
(γi) :

∑
i

ki ≤ k

)

for a fixed choice of tautological generators ψk(γ) := pM∗(fk(E) ∪ p∗
C(γ)) ∈

H2k+deg(γ)−2(MDol
n,d ) defined using degree k homogeneous polynomials fk.
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One advantage of thinking in this framework is that this makes sense in a broader
context. For example, there is no Betti-version of D-twisted Higgs moduli spaces, so
we cannot ask about P = W , but we can ask whether P = C holds.

Remark 2.4. — In all three proofs of the P = W conjecture for GLn, non-abelian
Hodge theory plays a minimal role due to tautological generation. More precisely, the
tautological cohomology rings on the Dolbeault and Betti moduli spaces can both be
viewed as quotients of the same ring (the Fock space, see §4.4.2) which has a natural
filtration by Chern degree. Shende shows for any G that the image of the Chern
filtration agrees (up to rescaling indices) with the weight filtration on the tautological
cohomology of the Betti moduli space. All existing proofs for GLn (or PGLn) involve
showing P contains (or in (HMMS) is equal to) the image of the Chern filtration C on the
tautological cohomology of the Dolbeault moduli space. Only at the end, non-abelian
Hodge theory is combined with Markman’s tautological generation (and additionally
Curious Hard Lefschetz in (MS) and Maulik, Shen, and Yin, 2023) to conclude.

3. THE PROOF OF MAULIK AND SHEN

3.1. Strong perversity and overview of the proof

Consider the perverse filtration of a proper morphism f : X → Y between smooth
irreducible quasi-projective varieties over k = C. A class γ ∈ H l(X,Q) can be viewed
as a morphism γ : QX → QX [l]. For c ≥ 0, we say as in (MS) that γ ∈ H l(X,Q) has
strong perversity c (with respect to f) if for all i the composition

pτ≤iRf∗QX ↪→ Rf∗QX
Rf∗γ→ Rf∗QX [l]

has image contained in pτ≤i+(c−l)(Rf∗QX [l]). As the perverse truncation pτ≤i is functorial,
γ ∈ H l(X,Q) automatically has strong perversity l and so this notion is only interesting
for c < l. Moreover, if γ has strong perversity c, then it has perversity at most c.

The following proposition collects many useful consequences of this notion that are
used in the proof of Maulik and Shen.

Proposition 3.1. — For a proper morphism f : X → Y between smooth irreducible
quasi-projective varieties, the following statements hold.

i) If γ ∈ H l(X,Q) has strong perversity c, then γ ∪ P f
i H

∗(X,Q) ⊂ P f
i+cH

∗+l(X,Q).
ii) (Strong perversity is multiplicative). If γi ∈ H∗(X,Q) has strong perversity ci for

i = 1, . . . , s, then ∏s
i=1 γi has strong perversity ∑s

i=1 ci.
iii) (Splitting principle for strong perversity). If E → X is a vector bundle with a

filtration whose subquotients are line bundles Li whose first Chern classes have
strong perversity 1, then ck(E) and chk(E) have strong perversity k for all k.
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iv) A class γ ∈ H l(X,Q) has strong perversity l − 1 if and only if
pHi(Rf∗γ) : pHi(Rf∗QX)→ pHi(Rf∗QX [l])

vanishes for all i. In particular, if f has full supports, one can check that pHi(Rf∗γ)
vanishes over any non-empty open subset U ⊂ Y .

Proof. — For i), by strong perversity of γ, we have a commutative square

H∗(Y,pτ≤iRf∗QX)
∪γ
//

��

H∗(Y,pτ≤i+c−lRf∗QX [l])

��

H∗(Y,Rf∗QX)
∪γ

// H∗(Y,Rf∗QX [l])

where H∗(Y,pτ≤i+c−lRf∗QX [l]) = H∗+l(Y pτ≤i+cRf∗QX). Since the images of the vertical
maps are PiH

∗(Y,Rf∗QX) and Pi+cH
∗+l(Y,Rf∗QX) respectively, if a class lies in the

image of the left vertical map, then after applying γ it lies in the image of the right
vertical map.

For ii), we use the commutative diagram

pτ≤iRf∗QX

Rf∗γ1
//

� _

��

pτ≤i+c1−l1Rf∗QX [l1]
Rf∗γ2

//
� _

��

pτ≤i+c1+c2−l1−l2Rf∗QX [l1 + l2]� _

��

Rf∗QX

Rf∗γ1
// Rf∗QX [l1]

Rf∗γ2
// Rf∗QX [l1 + l2].

For iii), we note that a linear combination of classes with strong perversity c has
strong perversity c and a k-fold product of classes with strong perversity 1 has strong
perversity k by ii). Since ck(E) and chk(E) are homogeneous degree k polynomials in
the first Chern classes c1(Li) (e.g. ck(E) = ek(c1(L1), . . . , c1(Ln)) for the elementary
symmetric polynomials ek), we conclude ck(E) and chk(E) have strong perversity k.

Finally iv) holds as we have a distinguished triangle
pτ≤i−1(Rf∗QX [l])→ pτ≤i(Rf∗QX [l])→ pHi(Rf∗QX [l])[−i] +1→

and thus pHi(Rf∗γ) = 0 if and only if pτ≤i ◦Rf∗γ factors via pτ≤i−1(Rf∗QX [l]).

As a relatively straightforward corollary of the first two statements, one sees that it
suffices to show the tautological classes ck(γ) ∈ H∗(MDol

n,d ) have strong perversity k to
prove the P = W conjecture for PGLn (or equivalently GLn by Proposition 2.3). In fact,
Maulik and Shen show it suffices to prove that chk(EPGLn) ∈ H∗(MPGLn,d,Q) has strong
perversity k with respect to the morphism hPGLn × IdC : MPGLn,d × C → APGLn × C,
where EPGLn →MPGLn,d × C is the universal bundle for n and d coprime.

Lemma 3.2. — Let d be coprime to n. If chk(EPGLn) has strong perversity k with respect
to hPGLn × IdC : MPGLn,d × C → APGLn × C, then for γ ∈ H∗(C,Q), the cup product
with ck(γ) increases the perversity with respect to hPGLn by at most k. In particular, the
P = W conjecture holds for PGLn (and GLn) with d coprime to n.
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Proof. — Fix a homogeneous basis Π = {γ0, . . . , γ2g+2} of H∗(C,Q) with Poincaré dual
basis γ∨

0 , . . . , γ
∨
2g+2 and write

chk(E) =
∑
γ∈Π

γ∨ ⊗ ck(γ).

Since chk(E) has strong perversity k, we have

(5) − ∪ chk(E) : P hPGLn ×IdC

i H∗(MPGLn,d × C,Q)→ P
hPGLn ×IdC

i+k H∗(MPGLn,d × C,Q)

by Proposition 3.1. Using the Künneth isomorphism

P
hPGLn ×IdC

i H∗(MPGLn,d × C,Q) ∼= H∗(C,Q)⊗ P h
i H

∗(MPGLn,d,Q)

we can apply the morphism (5) to γ ⊗ P hPGLn
i H∗(MPGLn,d,Q) to conclude

− ∪ ck(γ) : P hPGLn
i H∗(MPGLn,d,Q)→ P

hPGLn
i+k H∗(MPGLn,d,Q)

as claimed. The final claim follows by Proposition 2.3.

3.1.1. Idea behind the proof of Maulik and Shen. — We have just seen it suffices to
show the kth component of the Chern character of the universal bundle EPGLn has strong
perversity k for h× IdC . Moreover, the last two statements in Proposition 3.1 provide
some insight into the idea behind Maulik and Shen’s approach.

Inspired by Yun’s global Springer theory (Yun, 2011, 2012), Maulik and Shen instead
work with a moduli space of parabolic Higgs bundles, where the word parabolic indicates
the additional data of a full flag in a fibre of the underlying vector bundle over some
point in C. This extra data gives rise to a flag on the universal bundle, so the above
splitting principle could be applied and it suffices to know the first Chern classes of the
tautological line bundles have strong perversity one. Yun (2012) proves the first Chern
classes of these universal line bundles (at least in the PGLn case) have strong perversity
one over an open set in the Hitchin base. It remains to show this strong perversity
extends over the full Hitchin base, which would be automatic if the parabolic Hitchin
map had full supports. However, this Hitchin map does not have full supports.

The fix for this problem is understood by previous work of Maulik and Shen (e.g.
Maulik and Shen, 2021), which builds on work of Ngô (2006, 2010) and Chaudouard
and Laumon (2016): rather than working with classical Higgs bundles, one must use
D-twisted Higgs bundles (E, θ : E → E⊗ωC(D)) for an effective divisor D. One should
show the Hitchin map has full supports if D has sufficiently high degree and then use
Maulik and Shen’s already established vanishing cycles trick to pass from D-twisted
Higgs bundles to classical Higgs bundles. The key new ingredient is a parabolic support
theorem.

3.1.2. Key steps in the proof of Maulik and Shen. — We divide the proof as follows.
(A) Pass to a moduli space of parabolic D-twisted Higgs bundles appearing in Yun’s

global Springer theory, where the splitting principle can be applied as the universal
bundle is filtered by tautological line bundles.
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(B) The first Chern classes of the tautological line bundles on parabolic Higgs moduli
spaces have strong perversity 1 over an open in the Hitchin base by work of Yun.

(C) Prove the parabolicD-twisted Hitchin map has full supports whenD has sufficiently
high degree to deduce strong perversity over the whole Hitchin base.

(D) Use vanishing cycles to go from D-twisted Higgs bundles to classical Higgs bundles.

3.2. Steps (A) – (B): Parabolic moduli spaces and global Springer theory

Let us start by recalling Ngo’s description (Ngô, 2006, Section 2) of the stack of
G-Higgs bundles and the Hitchin map in terms of the quotient of the adjoint action
of G on its Lie algebra g, before then turning to Yun’s global Springer theory which
involves incorporating the Grothendieck–Springer resolution g̃→ g.

For a reductive group G, the stack of G-Higgs bundles over a point can be identified
with the stack [g/G]. The good moduli space of this stack is the affine GIT quotient
[g/G] → g//G ≃ t//W which is isomorphic to the spectrum of the Weyl invariant
functions on the Lie algebra t of a maximal torus T < G by the Chevalley restriction
theorem. This is a polynomial ring in n = rk(T ) variables of homogeneous degrees di

which are one more than the exponents of G. If Gm acts on g by scalar multiplication
and on g//G with weights (d1, . . . , dn), then the GIT quotient χ : g → c := g//G is
Gm-equivariant. Furthermore, the restriction to the regular elements greg → g//G is an
orbit space and Kostant constructed sections ϵ : g//G → greg associated to sl2-triples
(e, f, h) where e is regular nilpotent.

3.2.1. Ngô’s description of the Hitchin fibration. — The above picture can be globalised
from a point to a curve C by noting that a morphism

C → [g/G]

corresponds to a G-bundle E on C with a G-equivariant map E → g or equivalently
a section of ad(E) = E ×G g. For an effective divisor D on C, a D-twisted G-Higgs
bundle on C is a pair (E, θ) given by a G-bundle E and θ ∈ H0(C, ad(E) ⊗ ωC(D));
this pair corresponds to a section

C → [g/G]D := [g/G]×Gm ρD,

where ρD is the Gm-torsor on C corresponding to the line bundle ωC(D). Thus the
stack HiggsD

G of all D-twisted G-Higgs bundles over C classifies sections C → [g/G]D
and the universal family corresponds to an evaluation map

(6) evH : HiggsD
G × C → [g/G]D.

The Hitchin base AD
G = ⊕n

i=1H
0(C, ωC(D)⊗di) parametrises sections C → (g//G)D :=

g//G ×Gm ρD. Thus the Hitchin map hH on the whole stack is induced by the good
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moduli space morphism [g/G]→ g//G in the sense that the following square is cartesian

HiggsD
G × C

evH
//

hH×IdC

��

[g/G]D

��

AD
G × C

evA
// (g//G)D.

If deg(ωC(D)) ≥ 2g, then ωC(D)⊗i is globally generated for all i ≥ 1 and thus the
evaluation map evA is smooth, as it is a surjective bundle map over C.

We assume that ωC(D) has a square root, in order to obtain a Hitchin–Kostant section
ϵD : AD

G → HiggsD
G from a Kostant section g//G→ g as in Ngô (2006, Proposition 2.5).

3.2.2. Step (A): Yun’s Global Springer Theory. — By combining Ngô’s description
of the Hitchin fibration with the Grothendieck–Springer resolution, Yun introduces a
global version of Springer theory. Recall that the Grothendieck–Springer resolution for
a reductive group G with fixed Borel subgroup B < G is given by

πg : g̃ := {(x, b′) ∈ g× B : x ∈ b′} → g

where B = G/B is the flag variety, which we identify with the space of Borel subalgebras
b′ ⊂ g. The map πg : g̃→ g is a small map and a torsor under the Weyl group W over
a dense open, thus

(Rπg∗Q g̃)W ∼= Qg.

Yun’s global Springer theory describes the moduli stack of parabolic D-twisted G-Higgs
bundles as the fibre product of the stack quotient of the Grothendieck–Springer reso-
lution with the evaluation morphism appearing in Equation (6). The stack HiggsD,par

G

classifies tuples (E, θ, x, EB
x ) where (E, θ) ∈ HiggsD

G and x ∈ C and EB
x denotes a re-

duction of the fibre Ex to a fixed Borel subgroup B < G. By Yun (2011, Lemma 2.1.2),
the natural forgetful map π : HiggsD,par

G → HiggsD
G × C fits into a Cartesian square

HiggsD,par
G

evpar
H
//

πH

��

[g̃/G]D
πg

��

HiggsD
G × C

evH
// [g/G]D,

where [g̃/G]D := [g̃/G]×Gm ρD.
Since the stack of all Higgs bundles is not smooth, we will restrict to the open stable

locus. By the spectral correspondence, Higgs bundles whose spectral curve is integral
are automatically stable, so over the elliptic locus the stack of all Higgs bundles coincides
with the stack of stable Higgs bundles.

Let MD
G ↪→ HiggsD

G denote the substack of stable D-twisted G-Higgs bundles on C and
let MD,par

G ↪→ HiggsD,par
G be corresponding open substack which fits into a commutative
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diagram

(7) MD,par
G

//

hpar

yy

evpar

))

π

��

HiggsD,par
G

πH

��

evpar
H

// [g̃/G]D
πg

��

AD
G × C MD

G × C //

h×IdC

oo

ev

55
HiggsD

G × C
evH
// [g/G]D

where both squares are Cartesian. We will refer to MD,par
G as the stack of ‘stable’

parabolic D-twisted G-Higgs bundles, where stability is determined by the stability of
the underlying Higgs bundle. In fact, for parabolic Higgs bundles, there are different
notions of stability depending on a choice of weights (see Mehta and Seshadri, 1980).

By construction, the pullback F := π∗E of the universal Higgs bundle (E ,Φ) on
MD

G × C admits a Borel reduction FB. Hence, there is a tautological T -torsor LT =
FB×B T over MD

G and from any character χ : T → Gm, the Gm-torsor LT ×χGm defines
a universal line bundle Lχ on HiggsD,par

G .

Example 3.3. — The GIT quotient for the adjoint action of G = GLn

χ : gln ↠ gln//GLn
∼= Spec(k[x1, . . . , xn]Sn) ∼= Spec(k[σ1, . . . , σn]) ∼= An

sends a matrix to the coefficients of its characteristic polynomial. The generators of
this polynomial ring have homogeneous degrees (1, . . . , n). By identifying B := GLn/B

with the space of full flags in kn, we can view the stack [g̃ln/GLn] as the stack of
endomorphisms θ : kn → kn with a full flag 0 = V0 ⊂ V1 ⊂ · · ·Vn = kn that is preserved
by θ; this pair defines is a parabolic Higgs bundle (with a full flag) over a point. The
Grothendieck–Springer resolution is a Sn-torsor over the set of matrices with n distinct
eigenvalues: a flag preserved by this matrix is given by an ordering of the distinct
1-dimensional eigenspaces or equivalently an ordering of the eigenvalues. The stack
Higgspar

GLn
parametrises GLn-Higgs bundles together with a point x ∈ C and a full flag

in the fibre over x. Consequently the pullback of the universal bundle F := π∗E admits
a full flag 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F whose successive quotients are line bundles
Li = Lχi

associated to the characters χi : T → Gm corresponding to the standard basis.

Let us explain how to descend strong perversity statements for the stack of parabolic
Higgs bundles to the stack of Higgs bundles via the map π : MD,par

G → MD
G × C in

Diagram (7) obtained as a base change of the Grothendieck–Springer resolution.
For G = PGLn, SLn or GLn, the evaluation morphism ev : MD

G ×C → [g/G]D on the
stable locus is smooth by the deformation theory argument in (Maulik and Shen, 2021,
Proposition 4.1). Consequently the morphism π is the pullback of the Grothendieck–
Springer resolution along a smooth map and so π is also a small morphism and a
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W -torsor over a dense open set and thus

(Rπ∗QMD,par
G

)W ≃ QMD
G×C .

From this equality and the fact that hpar = (h× IdC) ◦ π, we obtain the following result.

Lemma 3.4 (MS, Lemma 3.3). — For G = PGLn, SLn or GLn and γ ∈ H∗(MD
G×C,Q),

the pullback π∗γ has strong perversity k for hpar if and only if γ has strong perversity k
for h× IdC.

3.2.3. Step (B): Strong perversity of universal line bundles over an open set. — The
following result of Yun (in the case of G = PGLn) is vital for Maulik and Shen’s proof.

Proposition 3.5 (Yun, 2012, Lemma 3.2.3). — If G is semisimple and deg(ωC(D)) >
2g, there is a Zariski dense open subset of C ×AD

G over which
pHi

hpar(c1(Lχ)) : pHi
hpar(Rhpar

∗ QMD,par
G

)→pHi
hpar(Rhpar

∗ QMD,par
G

[2])

vanishes. In particular, c1(Lχ) has strong perversity one for hpar over this open set.

Throughout the rest of this subsection, as G and D are fixed, we will drop them from
the notation. We will explain the proof of this proposition over a smaller open subset
than Yun does (as for our purposes it suffices to know it over any dense open subset).
In particular, we will only need to care about ordinary cohomology rather than perverse
cohomology, as the fibres of the Hitchin map are smooth on this open locus.

The proof of this proposition involves identifying the Higgs stack with a Picard stack
P/A over an open set in the Hitchin base (via a spectral correspondence) and using
the fact that G is semisimple to see that the cup product with c1(Lχ) is determined
by its action on the relative cohomology of the neutral component P0. Once this is
known, the proof really boils down to the fact that multiplication by N on an abelian
group scheme acts by multiplication by N i on the ith cohomology. After introducing
the Picard stack of Ngô and the enhanced parabolic Hitchin fibration of Yun, we will
outline Yun’s proof.

Let us introduce the Picard stack P/A following Ngô (2010, §4.3.1). In Ngô (2010,
§2.1), he constructs a group scheme J of regular centralisers over c := g//G with a
G-equivariant homomorphism χ∗J → I to the universal centraliser group scheme I/g,
such that χ∗J |greg ≃ I|greg . In particular [greg/G] → c is a J-gerbe. Since J → c is
Gm-equivariant, we can twist by the Gm-torsor ρD to produce JD → cD. The fibre Pa

of P over a ∈ A is the stack of torsors over C under the group Ja := ev∗
aJD. Then

P acts fibrewise on Higgs→ A and moreover Higgsreg (the locus mapping to [greg/G]
under evH) is a P-torsor over the Hitchin base (Ngô, 2010, Proposition 4.3.3). For
example, if G = GLn, then P is the Picard stack for the spectral curve CD

n /AD
n and P

has components indexed by all d ∈ Z. For G = SLn, the Picard stack P is the relative
Prym stack for the spectral curve CD

SLn
/AD

SLn
and P has n components.
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Yun works with the enhanced parabolic Hitchin fibration h̃ which fits in the diagram

P ×A Ã =: P̃

g̃
''

τ̃
// Higgspar π

//

hpar

&&

h̃
��

Higgs× C
pr1

//

h×IdC

��

Higgs

h

��

Pτ
oo

g
}}

Ã

ϵ̃

EE

q
//

p̃

66A× C
p=pr1

// A

ϵ

EE

where q : Ã → A×C is the enhanced Hitchin base (also known as the universal cameral
cover) which is a branched W -cover defined as the base change of tD → (t//W )D ≃
(g//G)D along evA. As deg(ωC(D)) ≥ 2g, the evaluation map evA is smooth and so is
Ã by Yun (2011, Lemma 2.2.3). Let qa : C̃a = q−1({a} × C)→ C which is a branched
W -cover known as the cameral cover. For G = GLn, the cameral cover factors via the
spectral curve as qa : C̃a → Ca → C.

By Yun (2011, Lemma 2.3.3), P̃ := P ×A Ã acts fibrewise on Higgspar → Ã. The
Hitchin–Kostant section ϵ : A → Higgsreg combined with the Picard stack action deter-
mine a morphism τ : P → Higgs, which is an isomorphism over a dense open in the
Hitchin base. By base change, we get a section ϵ̃ : Ã → Higgsreg ×A Ã ≃ Higgspar,reg

and similarly a morphism τ̃ : P̃ → Higgspar, which is also an isomorphism over a dense
open.

Let us specify the dense open set that we will work with more carefully. As in Ngô
(2010, §4.7), assuming deg(ωC(D)) > 2g, there is a dense open locus A⋄ ⊂ A over which
the cameral curve C̃a is transversal to the discriminant divisor in tD (and thus is smooth
and connected). For an A-scheme Y , we denote its base change to A⋄ ⊂ A by Y ⋄. By
Ngô (2010, Proposition 4.7.7), Higgs⋄ is a torsor under P⋄ and by Yun (2011, Lemma
2.6.1)

Higgspar,⋄ ≃ Higgs⋄ ×A⋄ Ã⋄.

Before returning to the strong perversity statement, we need one further ingredient
from Yun’s global Springer theory: by Yun (2012, Lemma 4.13), there is a commutative
diagram

(8) P̃ ×Ã Higgspar

QT ×LT

��

act
// Higgspar

LT

��

BT ×BT mult
// BT

where the bottom arrow is induced by multiplication on T and the vertical arrows are
induced by universal T -torsors LT → Higgspar and QT → P̃ . More precisely, there is a
natural morphism j : P → PT (Ã/A)W to the stack of W -equivariant T -torsors on Ã/A
built from homomorphisms ja : q∗

aJa → T × C̃a constructed from the trivial T -torsor
on t, and QT is defined to be the pullback of the universal T -torsor on PT (Ã/A)W ×A Ã
via the base change to Ã of j; see Ngô (2010, §2.4) and Yun (2012, Construction 4.1.1)
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for details. For χ ∈ X∗(T ), we let Qχ := QT ×T,χ Gm be the associated line bundle,
which satisfies for N ∈ Z

(9) (IdÃ×[N ])∗Qχ
∼= QNχ

∼= Q⊗N
χ .

Having introduced the enhanced Hitchin fibration and associated Picard stacks, we
now turn to explaining the proof of Proposition 3.5. First, we note that it suffices to
show pHi

h̃
(c1(Lχ)) vanishes over a dense open, as

pHi
hpar(c1(Lχ)) = q∗

pHi
h̃(c1(Lχ)).

Hence we can restrict our attention to the enhanced parabolic Hitchin map h̃ over Ã⋄.
Since τ̃ is an isomorphism over Ã⋄, we can pull back Lχ via τ̃ = act ◦ (Id × ϵ̃), which
using the commutativity of Diagram (8) gives

(10) τ̃ ∗Lχ ≃ Qχ ⊗ g̃∗ϵ̃∗Lχ.

Since p : Ã → A has relative dimension 1 and is smooth over A⋄, by adjunction (Yun,
2012, Remark 4.4.2), the restricted morphism c1(Lχ)⋄ : Rh̃∗Q → Rh̃∗Q(1)[2] over Ã⋄

gives a morphism

c1(Lχ)⋄
♯ : p̃!p̃

!Q→ Rh∗Q(1)[2] ∪−→ End(Rh∗Q)(1)[2].

After pulling back along the isomorphism τ : P|A⋄ ∼= Higgs|A⋄ , Equation (10) gives a
decomposition in Db

c(A⋄,Q)

c1(τ̃ ∗Lχ)⋄
♯ = c1(Qχ)⋄

♯ ⊕ c1(g̃∗ϵ̃∗Lχ)⋄
♯ : p̃!p̃

!Q −→ Rg∗Q(1)[2]

and Yun’s proof of Proposition 3.5 then reduces to showing the following two claims:
(i) c1(g̃∗ϵ̃∗Lχ)⋄

♯ factors via R0g∗Q(1)[2],
(ii) c1(Qχ)⋄

♯ factors via R1g∗Q(1)[2].
The first claim follows as ϵ̃∗Lχ is fibrewise trivial over Ã. The second claim is where
the semisimplicity of G is needed. Let g0 : P0 → A⋄ denote the neutral component of
g : P⋄ → A⋄, then Rg0∗Q(1)[2] can be identified with a direct summand of Rg∗Q(1)[2]
where the group scheme π0(P) acts trivially; Yun refers to this as the stable summand.
By Yun (2012, Lemma 4.6.1), Qχ is the pullback of the Poincaré line bundle on Ã ×A

P(Ã/A) via the base change of a morphism

jχ : P
jP

−−−−→ PT (Ã/A)
(−)×T,χ Gm

−−−−−−→ P(Ã/A)

along p̃ : Ã → A. Since G is semisimple, for each a ∈ A⋄ we know that π0(Pa) is
finite, but π0(Pic(C̃a)) ∼= Z, and thus the morphism c1(Qχ)⋄

♯ must factor via the neutral
component P0 (i.e. via the direct summand Rg0∗Q(1)[2]). Furthermore, for any N ∈ Z,
Equation (9) implies we have a commutative diagram

p̃!p̃
!Q

c1(Qχ)⋄
♯
//

Nc1(Qχ)⋄
♯

33
Rg0∗Q(1)[2]

[N ]∗
// Rg0

∗Q(1)[2]



1213–41

and as [N ]∗ acts by multiplication by N i on Rig0
∗Q(1)[2] because g0 is an abelian scheme

over A⋄, we deduce the second claim. Combining these two claims with adjunction
(Yun, 2012, Remark 4.4.2), Yun deduces Proposition 3.5; in fact, he shows this holds
over an even larger subset by applying a support theorem on this larger open (see Yun,
2012, Theorem B).

Remark 3.6. — Yun uses the tautological line bundles Lχ for each χ ∈ X∗(T ) (or
strictly speaking the cup product with their first Chern classes) to define an action of
X∗(T ) on Rhpar

∗ Q. He further shows (Yun, 2011, Theorem A) that there is an action
of the extended affine Weyl group W̃ = X∗(T ) ⋊ W on Rhpar

∗ Q constructed using
cohomological parabolic Hecke correspondences. These Hecke correspondences give an
algebro-geometric construction of the (gauge theoretic) ’t Hooft operators appearing
in Kapustin and Witten (2007) and the geometric Langlands program, whereas the
operators given by Chern class cup-products indexed by characters χ ∈ X∗(T ) are
shadows of the Wilson operators (given by tensoring with tautological bundles). In
fact, these operators are predicted to be exchanged under a form of Langlands duality
expressed as a homological mirror symmetry between Higgs bundles for G and its
Langlands dual group. By combining these actions, Yun produces an action of the
graded double affine Hecke algebra H on Rhpar

∗ Q (see Yun, 2011, Theorem B). In §4,
we will see that analogous operators are used in the P = W proof of Hausel, Mellit,
Minets and Schiffmann (HMMS). Recall from the discussion towards the end of the
introduction that Fourier duality is also a central technique in Maulik, Shen, and Yin
(2023).

3.3. Step (C): Support theorems
Maulik and Shen’s parabolic support theorem is a key new ingredient in their P = W

proof. We begin by explaining the non-parabolic analogue for D-twisted GLn-Higgs
bundles, where first Ngô (2010) showed the Hitchin map restricted to the elliptic locus
has full supports (for any D ≥ 0) and then Chaudouard and Laumon (2016) proved for
D > 0 the whole Hitchin map has full supports by showing the generic point of each
support lies in the elliptic locus. In the parabolic case, the first part of this procedure is
completed by work of Yun (2012), who showed over the elliptic locus any strict support
is a component of the endoscopic loci. In particular, for G = PGLn or G = GLn, the
restriction of the parabolic Hitchin map to the elliptic locus has full supports for D of
sufficiently large degree. Then Maulik and Shen extend this to the full Hitchin base
using a relative dimension bound.

3.3.1. Review of support theorems for Higgs bundles (after Ngô, Chaudouard–Laumon).
— Let us outline the key ideas in the support theorems for twisted non-parabolic Hitchin
fibrations of Ngô (2006, 2010) (see also Hales, 2012) and Chaudouard and Laumon
(2016).

For an effective divisor D on C, let MD :=MD
n,d be the moduli space of semistable

D-twisted Higgs bundles (E, θ : E → E ⊗ ωC(D)) with Hitchin map hD : MD → AD
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and corresponding universal spectral curve CD/AD. We define open sets

AD,sm ⊂ AD,ell ⊂ AD

where a ∈ AD,sm (resp.AD,ell) if its corresponding spectral curve is smooth and connected
(resp. integral). Over the elliptic locus, the relative Jacobian P := P0(CD,ell/AD,ell)
acts on the Higgs moduli space by tensorisation using the spectral correspondence
MD,ell

n,d ≃ Pe(CD,ell/AD,ell) to identify the elliptic locus with a relative compactified
Jacobian.

Theorem 3.7 (Support theorems for D-twisted Hitchin maps)
Let D be an effective divisor on C and assume n and d are coprime.

(i) (Ngô) For D ≥ 0, the elliptic Hitchin map hD,ell : MD,ell → AD,ell has full supports.
(ii) (Chaudouard–Laumon) For D > 0, the Hitchin map hD : MD → AD has full

supports.

The proof of the first part due to Ngô applies a general result (Ngô, 2010, Théorème
7.2.1, Proposition 7.2.2) improving the Goresky–MacPherson inequality on the codi-
mensions of supports in the case of weak abelian fibrations (i.e. there is an action of
a smooth commutative group scheme with nice properties). For the Hitchin map, the
action of the relative Jacobian on the elliptic locus is used as follows.

For a ∈ AD,ell, as the spectral curve CD
a is integral with locally planar singularities,

Pa = Pic0(CD
a ) is a semi-abelian variety appearing as an extension

(11) 1→ Ra → Pa = Pic0(CD
a )→ Ba := Pic0(CD,ν

a )→ 1

where CD,ν
a → CD

a is the normalisation and thus Ba is an abelian variety, and the kernel
Ra is an affine group scheme. Associated to such a family of integral curves, there is a
δ-function

δ : AD,ell → N, a 7→ δ(a) = dimRa.

Ngô proves a δ-inequality for any support Z of hD,ell:

(12) codim(Z) ≤ δZ := min{δ(a) : a ∈ Z}.

Suppose for each a ∈ Z, one can find a neighbourhood a ∈ U ⊂ AD,ell and a section
BU → PU of the map in Eq. (11), then BU acts onMD,ell

U via this section and we obtain
a factorisation

hD,ell
U : MD,ell

U → [MD,ell
U /BU ]→ U

where the first morphism is smooth and proper, so pushing forward along this map
does not change the supports. Then the second map is smooth and proper of relative
dimension δZ and thus we can use the Goresky–Macpherson inequality for the second
morphism to deduce the above δ-inequality. As the generic fibre of P is an irreducible
abelian variety, it is not possible to find such local sections BU → PU , but Ngô instead
imitates this proof on the level of homology to conclude the desired inequality.
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By the Severi inequality for the relative compactified Jacobian associated to the family
CD,ell/AD,ell of integral spectral curves, one obtains a so-called δ-regularity inequality

(13) codim(Z) ≥ δZ

and thus we must have an equality for any support Z of hD,ell. As in the case of
the Goresky–MacPherson inequality, this implies that any support Z is detected by
R2rDhD,ell

∗ Q where rD denotes the relative dimension of hD. Since the compactified
Jacobian of an integral spectral curve Ca is also integral (as the singularities are planar)
and R2rDhD,ell

∗ Q sees precisely the irreducible components of the fibres of hD,ell, it follows
that R2rDhD,ell

∗ Q is a rank 1 local system and so its only support is Z = AD,ell, which
completes the proof of the first statement.

For classical GLn-Higgs bundles (i.e. D = 0), the Hitchin map does not have full
supports: its supports on the locus of reduced spectral curves are described by work of
de Cataldo, Heinloth, and Migliorini (2021, Theorem 6.11).

For the second part of the support theorem, Chaudouard and Laumon (2016) show
the generic points of the supports Z of hD : MD → AD are contained in the elliptic
locus. If a general point a ∈ Z has corresponding spectral curve Ca with l irreducible
components which are non-reduced thickenings of order mi of a degree ni-cover Xi → C

(so ∑l
i=1 mini = n), the idea is to apply the Severi inequality to each integral curve Xi

to deduce that this forces l = 1 and n1 = n and m1 = 1 (i.e. a ∈ AD,ell). For this, we
use the dimension formulas

(14) ϕn := dimMD
n,d − dimAD

n = rD
n − dimAD

n =
{

0 if D = 0,
1− n deg(D) if D > 0.

Ngô’s δ-inequality (12) combined with the Severi inequalities (13) for each Xi give

δZ ≥ codim(Z) ≥
(

l∑
i=1

ϕni
− ϕn

)
+ δZ

and so we obtain 1− l ≥ (n−∑s
i=1 ni) deg(D) from the above dimension formulas (14)

if D > 0. Since the right hand side is non-negative, we must have l = 1 and thus n1 = n

and m1 = 1.
For D-twisted SLn-Higgs moduli spaces (with fixed determinant of coprime degree),

the supports over the elliptic locus were described by Ngô (2006, 2010): there are finitely
many non-full supports related to the (non-trivial) endoscopy of SLn. Recall that each
γ ∈ Γ = Jac(C)[n] determines a cyclic étale cover of C, then a ∈ Aell

SLn
lies in the

endoscopic locus Aell,γ
SLn

if the normalisation of the spectral curve factors via the étale
cover corresponding to γ (see Hausel and Pauly, 2012). In fact, for D > 0, there are no
new supports when passing to the full Hitchin base by a result of de Cataldo (2017a).

3.3.2. Maulik and Shen’s parabolic support theorem. — Recall the parabolic Hitchin
map

hpar
G : MD,par

G → AD
G × C
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on the ‘stable’ stack of parabolic D-twisted G-Higgs bundles from Diagram (7). For
G = PGLn, this stack is a smooth Deligne–Mumford stack (see MS, Proposition 3.1)
and the parabolic Hitchin map is proper; thus we can apply the decomposition theorem.

Theorem 3.8 (Parabolic Support Theorem, MS, Theorem 3.2)
For an effective divisor D on C with deg(D) > 2g, the parabolic Hitchin map

hpar
PGLn

: MD,par
PGLn,d → AD

PGLn
× C has full supports.

For a semisimple group G, Yun (2012) followed Ngô’s technique (Ngô, 2010) to
describe the supports of the parabolic Hitchin map over the elliptic locus AD,ell

G × C:
any non-full support is a component of the endoscopic loci. In particular, for G = PGLn

whose endoscopic theory is trivial, the restriction of the parabolic Hitchin map to the
elliptic locus has full supports. Consequently, similar to the proof of Chaudouard and
Laumon (2016), it suffices to show there is no support whose generic point lies outside
of the elliptic locus AD,ell

G × C by proving an analogous dimension formula.
Since parabolic bundles are easiest to understand for the groups GLn and SLn, where

the parabolic structure is given by a flag in a fibre of a vector bundle and stability is
given by verifying an inequality of slopes, Maulik and Shen prove the above theorem
by working with SLn-parabolic moduli spaces instead and then taking the Γ-invariant
piece to get back to PGLn. In this case, one can actually work with the moduli space
rather than the moduli stack. Fix a degree d line bundle L, then there is a diagram

MD,par
SLn,L

/Γ
//

πSLn

��

hpar
SLn

$$

MD,par
PGLn,d

πPGLn

��

hpar
PGLn

{{

MD
SLn,L × C

/Γ
//

��

MD
PGLn,d × C

��

AD
SLn
× C ∼

// AD
PGLn

× C

By work of de Cataldo (2017a), the SLn-Hitchin map hSLn : MD
SLn,L → AD

SLn
admits a

weak abelian fibration structure for the relative Prym variety Prym0(CD
SLn

/AD
SLn

) acting
by tensor product. Maulik and Shen show hpar

SLn
: MD,par

SLn,L → AD
SLn
× C admits a weak

abelian fibration for the pullback P of this relative Prym variety to AD
SLn
× C. Then

using δ-regularity for the relative Prym variety (de Cataldo, 2017a, Corollary 5.4.4) and
an adaption of the argument above in the non-parabolic case, it suffices to show each
closed fibre of the parabolic Hitchin map hpar

SLn
has dimension

d = dimMD,par
SLn,L − dim(AD

SLn
× C) = n(n− 1)

2 deg(D) + (n2 − 1)(g − 1).

Since hpar
SLn

is surjective and Gm-equivariant for the scaling action, by semicontinuity
it suffices to bound the dimension of the fibre over (0, x) for each x ∈ C by d. Fix
x ∈ C, then as deg(D) > 2g, we can write D = x0 + · · · + xr as a reduced effective
divisor containing x. Maulik and Shen prove their dimension formula using a dimension
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bound for the nilpotent cone of strongly parabolic D-twisted SLn-Higgs bundles, as the
strongly parabolic D-twisted SLn-Hitchin fibration is Lagrangian (Faltings, 1993), so
the dimension of its nilpotent cone is the dimension of its Hitchin base. Since a similar
method relating parabolic and strongly parabolic Higgs moduli spaces also appears in
(HMMS), we will explain this in §4.3.

3.3.3. Deductions on strong perversity. — By combining the above support theorem
with Yun’s result about the Chern classes of the universal line bundles on the parabolic
moduli space having strong perversity 1 over a dense open set (Proposition 3.5), we
obtain the following result.

Corollary 3.9. — For a divisor D of degree deg(D) > 2g, the kth Chern character
component chk(ED) of the universal family ED →MD

PGLn,d × C has strong perversity k
with respect to hPGLn × IdC.

Proof. — By construction, the pullback FD = π∗
PGLn
ED of ED to MD,par

PGLn,d admits a
reduction to a Borel B < PGLn; thus the Chern roots of FD are the first Chern classes
of the associated tautological line bundles Lχ for some χ ∈ X∗(T ). By Proposition 3.5,
we know that c1(Lχ) has strong perversity one with respect to hpar over a dense open
in the Hitchin base. By Theorem 3.8, as deg(D) > 2g, the parabolic Hitchin fibration
hpar

PGLn
has full supports and thus we can conclude c1(Lχ) has strong perversity one over

the whole Hitchin base by Proposition 3.1. Since c1(Lχ) are the Chern roots of FD, we
deduce that chk(FD) has strong perversity k with respect to hpar

PGLn
. Finally, we conclude

chk(ED) has strong perversity k with respect to hPGLn × IdC by Lemma 3.4.

3.4. Step (D): Vanishing cycles

Vanishing cycles were originally used to study the topology of hypersurface singu-
larities and degenerations of families of projective manifolds. In modern enumerative
geometry, vanishing cycles are frequently employed to study the topology of some ‘tricky’
moduli space which occurs as the critical locus of a regular function on some ‘easier’
moduli space, whose enumerative geometry can be more readily described. Often the
tricky moduli space is singular and the easier moduli space is smooth; however, for us
both will be smooth Higgs moduli spaces (or stacks), but the tricky space is for classical
Higgs bundles (D = 0), where the Hitchin map has many supports, and the easier space
is the one for D-twisted Higgs moduli space, where the Hitchin map has full supports.

3.4.1. Vanishing cycles and strong perversity. — For a morphism µ : X → A1 on a
smooth irreducible variety of dimension dX , there is a vanishing cycles functor

φµ : Db
c(X,Q)→ Db

c(X0,Q)

where X0 = µ−1(0); for details, see for example de Cataldo and Migliorini (2009, §5.5).
We assume that φµ is normalised by an appropriate shift so it respects the perverse
t-structures and induces a functor between categories of perverse sheaves on X and X0.
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The image of the intersection complex φµ(ICX) = φµ(QX [dX ]) is a perverse sheaf
supported on the critical locus of µ; we let X ′ denote the support of this perverse sheaf.

Proposition 3.10 (MS, Proposition 1.4). — Let f : X → Y be a proper morphism
between smooth irreducible varieties and suppose we have a commutative diagram

X ′ i
//

f ′

��

X

f
��

µ

  

Y ′ // Y
ν
// A1

where X ′ is the support of φµ(ICX) = φµ(QX [dX ]). Assume that X ′ is smooth and
φµ(ICX) ≃ ICX′ = QX′ [dX′ ]. If γ ∈ H l(X,Q) has strong perversity c with respect to f ,
then its restriction i∗γ ∈ H l(X ′,Q) has strong perversity c with respect to f ′.

The proof uses proper base change for φ, the fact that the vanishing cycles functor
respects the perverse truncations and the assumption that φµ(QX [dX ]) ≃ QX′ [dX′ ].

3.4.2. Vanishing cycles for Higgs moduli spaces. — In Maulik and Shen’s work on
endoscopic decompositions of the cohomology of moduli spaces of SLn-Higgs bundles
(Maulik and Shen, 2021), they relate D-twisted and classical Higgs bundles using van-
ishing cycles for functions constructed from evaluating at a point in D and using the
Killing form on sln.

We fix d coprime to n and L ∈ Picd(C) throughout this section. The D-twisted
SLn-Higgs moduli space MD

SLn,L is the closed subvariety of MD
n,d consisting of Higgs

bundles with determinant isomorphic to L and trace-free Higgs field. There is a Hitchin
map hD

SLn
: MD

SLn,L → AD
SLn

:= ⊕n
i=2H

0(C, ωC(D)⊗i).
Maulik and Shen show that if p is a point in the support of the effective divisor D,

then moduli spaces (and stacks) of D-twisted and (D − p)-twisted SLn-Higgs bundles
fit into a commutative diagram

(15)

MD−p
SLn,L

� � ιM
//

δD−p
L

��

MD
SLn,L

evp
//

δD
L

��

µM

��

MSLn(p) ≃ [sln/SLn]
µ̂

))
��

MD−p
SLn,L

� � ιM
//

hD−p
L

��

MD
SLn,L

//

hD
L

��

µM

33MSLn(p) ≃ sln � SLn

≀
��

µ
// A1

AD−p
SLn

� � ιA
// AD

SLn
//

µA

??

ASLn(p) ≃ t � Sn

with the following properties.
(i) The function µ is induced by the Killing form

sln → A1, g 7→ tr(g2).
(ii) The closed embedding ιM is the critical locus of µM by Maulik and Shen (2021,

Theorem 4.5(a)).
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(iii) The evaluation at p morphism evp on the stack is smooth by a deformation theory
argument (Maulik and Shen, 2021, Proposition 4.1). Hence, using the elementary
computation of the vanishing cycles functor for the Killing quadratic form sln → A1

together with smooth and proper base change, one obtains

µM(ICMD
SLn,L

) ≃ ICMD−p
SLn,L

.

(iv) The closed embedding ιM is equivariant for the natural action of Γ := Jac(C)[n],
whose quotients give the PGLn-moduli stacks. Moreover, the PGLn- and SLn-
Hitchin maps have isomorphic bases; thus there is a commutative diagram

MD−p
PGLn,d

ιMPGLn
//

hD−p
PGLn

��

MD
PGLn,d

hD
PGLn

��

µMPGLn

$$

AD−p
PGLn

// AD−p
PGLn

µA
// A1

and consequently (see MS, Proposition 2.5)

µMPGLn
(ICMD

PGLn,L
) ≃ ICMD−p

PGLn,L
.

By Proposition 3.10, they can relate strong perversity of the Chern character compo-
nents of the universal families ED

PGLn
→MD

PGLn,d × C for D and D − p as follows.

Proposition 3.11 (MS, §2.3). — If p is in the support of D and chk(ED
PGLn

) has strong
perversity k with respect to hD

PGLn
× IdC, then chk(ED−p

PGLn
) has strong perversity k with

respect to hD−p
PGLn

× IdC.

By inductively combining this proposition with Corollary 3.9 and then applying
Lemma 3.2 and Proposition 2.3, one immediately obtains the following result.

Corollary 3.12. — For all D ≥ 0 (and in particular D = 0), the class chk(ED
PGLn

)
has strong perversity k with respect to hD

PGLn
× IdC. In particular, the P = W conjecture

holds for PGLn and coprime degree d (and thus also GLn and coprime degree).

4. THE PROOF OF HAUSEL, MELLIT, MINETS & SCHIFFMANN

4.1. Overview of the proof
Although the proof in (HMMS) grew from the study of cohomological Hall algebras

(CoHAs) of surfaces in Mellit, Minets, Schiffmann, and Vasserot (2023), one starting
point for understanding this proof is to consider sl2-triples coming from ample classes via
the cohomological Relative Hard Lefschetz Theorem. Recall from Remark 1.12 that a
relatively ample tautological class ω ∈ H2(Mn,d) determines an sl2-triple ⟨e, f ,h⟩ acting
on GrP

h H
∗(Mn,d), where e is induced by the cup product with ω and the perverse graded

pieces are the h-graded pieces. The idea is to lift this to an sl2-triple ⟨e, f ,h⟩ acting on
H∗(Mn,d) such that h behaves with respect to appropriate tautological generators as
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predicted by P = W ; that is, we would like to find an sl2-triple ⟨e, f ,h⟩ and tautological
generators ψk(γ) such that

(i) W2kH
∗(MB

n,d) is the span of products ∏s
i=1 ψki

(γi) such that ∑s
i=1 ki ≤ k, and

(ii) we have [h, ψk(γ)] = kψk(γ) as operators on the cohomology H∗(MDol
n,d ).

Here we view the tautological classes as tautological operators via their cup products.
Statement (i) gives the equality W = C, where C is the Chern filtration for these
tautological generators (see §2.4.1), which follows from work of Shende (2017) and
Markman (2002) (see Theorems 2.1 and 2.2). From Statement (ii), one inductively
deduces that PkH

∗(MDol
n,d ) is spanned by products ∏s

i=1 ψki
(γi) with ∑s

i=1 ki ≤ k, which
implies P = C. Together these statements imply the equality P = W . In particular,
unlike the proof in (MS) (see Proposition 2.3), this does not use Curious Hard Lefschetz
but rather provides a new proof.

The key question is: how can we construct such a lift of the sl2-triple coming from
Relative Hard Lefschetz? For this, we need to choose the ample class defining e and find
a suitable f . A key idea of (HMMS) is to construct f using Hecke correspondences, which
are natural cohomological correspondences on moduli of Higgs bundles. More generally,
for certain moduli stacks of objects in an abelian category, Hecke correspondences are
used in the construction of CoHAs. The goal is then to describe the interaction of
the tautological classes with the perverse filtration, by instead understanding their
interaction with Hecke correspondences.

In fact, the tautological and Hecke operations can be used to produce an action of a
much larger Lie algebra. Hausel, Mellit, Minets and Schiffmann show the Lie algebra
H2 of polynomial Hamiltonian vector fields on the plane acts on H∗(MDol

n,d )[x, y] ≃
H∗(MDol

n,d )[x]. The main work involves computing the relations between the generators;
this goes much beyond the simple commutator relations needed for the sl2-triple. In
(HMMS), the authors explain that the expectation for such an action of H2 arose from
similarities with the homology of links. For simplicity, we will focus our discussion on
the sl2-triples inside H2 that are needed for the proof of the P = W conjecture, as these
act on H∗(MDol

n,d ) without needing to add the extra variables x and y.
Let us point out a few subtleties concerning Hecke correspondences:
(i) Hecke modifications do not preserve (semi)stability in general.
(ii) Hecke modifications shift the invariants (e.g. Chern character) and so do not

naturally act on a single moduli space, but rather on all moduli spaces together.
(iii) Hecke correspondences are naturally defined at the stack level.
The first point is overcome in (HMMS) by instead working with elliptic loci, which are
preserved by Hecke correspondences. In order to relate the (tautological) cohomology of
the whole moduli space with an elliptic locus, moduli spaces of parabolic Higgs bundles
are used. The second issue is handled by noting that Higgs moduli spaces are periodic:
tensoring by a degree one line bundle produces an isomorphism Mn,d → Mn,d+n.
Hence a specific Hecke operator is used to identify the cohomology of moduli spaces for
different Chern characters and thus prove a cohomological χ-independence statement
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for the tautological cohomology of elliptic (parabolic) Higgs moduli spaces. The final
point is dealt with by first defining Hecke operators at the stack level and then defining
reduced operators which act on the cohomology of the moduli spaces.

Since the tautological and Hecke operators do not quite have the correct symmetry
properties required to obtain an sl2-triple, the periodicity of the cohomology is combined
with a degeneration procedure to obtain suitable operators that satisfy the correct
relations for an sl2-triple.

We should point out that many results in (HMMS) and Mellit, Minets, Schiffmann,
and Vasserot (2023) concern a much more general set-up and study operators on the
cohomology of moduli spaces of sheaves on surfaces. Higgs bundles are a special case,
as by the spectral correspondence we can realise Higgs moduli spaces as moduli space
of pure 1-dimensional sheaves on the (open) surface T ∗C as in Remark 1.3.

4.1.1. Key steps in the proof. — We will divide the proof as follows.
(A) Define Hecke and tautological operators on the cohomology of elliptic loci. Then

relate the cohomology of the whole Higgs moduli space with the cohomology of
elliptic parabolic moduli spaces, so it suffices to prove P = C on the latter.

(B) Compute the commutator relations between the Hecke operators and tautological
operators on the cohomology of moduli spaces of sheaves on surfaces.

(C) Prove cohomological χ-independence for the pure cohomology of elliptic parabolic
Higgs moduli stacks, to view the Hecke operators as acting on the cohomology of a
fixed stack. By degeneration, produce operators with better symmetry properties.

(D) Pass from the cohomology of the stack to its good moduli space by defining reduced
operators that act on the elliptic (parabolic) Higgs moduli spaces.

(E) Construct an sl2-triple from certain (reduced) tautological and Hecke operators,
then appropriately modify this triple to get a suitable sl2-triple to prove P = C.

4.1.2. Notation. — Throughout this section, we let S denote a smooth complex surface,
which may be compact or non-compact. We let t1 and t2 denote the Chern roots of TS
and write (c1, c2) = (t1 + t2, t1t2) and (s1, s2) = (c1, c

2
1 − c2).

The stack of coherent sheaves on S decomposes as

CohS =
⊔
α

CohS,α

where α = (α0, α1, α2) ∈ H0(S) ⊕ H2(S) ⊕ H4(S) denotes the Chern character. For
each α, fix a smooth open substack MS,α ⊂ Cohss

S,α of the stack of semistable sheaves (for
some notion of semistability) with universal sheaf Fα →MS,α × S. For δ = (0, 0, [s]),
we have that CohS,δ

∼= S ×BGm is the stack of length 1 sheaves.
In (HMMS), the authors use cohomology with C-coefficients, although it seems suffi-

cient to work with Q-coefficients. We suppress the coefficients and let H := H∗
pure(S).

4.2. Natural operators on cohomology

We introduce two natural operators on the cohomology of the moduli stacks MS,α:
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(i) Tautological operators given by cup products with tautological cohomology classes
constructed from the universal family.

(ii) Hecke operators constructed as a cohomological Hecke correspondence given by a
length 1 modification of a sheaf at a single point.

The first operators act on the cohomology of a moduli space of sheaves with fixed Chern
character, whereas the second operators change the Chern character.

We first define the operators when S is compact (see §4.2.3 for the open case).

4.2.1. Hecke operators. — We will only need 0-dimensional Hecke modifications, which
are modifications of a sheaf by a length 1 torsion sheaf supported at a single point; these
sheaves are parametrised by the stack MS,δ = CohS,δ ≃ S × BGm. There is a stack of
extensions which we view as a correspondence

Extα
π1×π2

ww

π3

##

E ↪→ F ↠ T1

xx

�

%%

CohS,δ × CohS,α−δ CohS,α (T , E) F .

We will assume:

(i) Hecke correspondences respect the substacks MS,α ⊂ CohS,α: if F ∈MS,α appears
as an extension E ↪→ F ↠ T for a length 1 sheaf T , then E ∈MS,α−δ.

(ii) The open substacks MS,α are sufficiently nice that their universal sheaf Fα can be
resolved by a two term complex of vector bundles E1 → E0.

The first assumption is essential for us to have Hecke correspondence diagrams between
the substacks MS,α of the form

(16) Zα

π1×π2

xx

π3

""

MS,δ ×MS,α−δ MS,α.

The second assumption is imposed in order to describe length one Hecke correspondences
as the projectivisation of a complex: more precisely: Zα can be realised as the zero set
of a canonical section on π∗E∨

1 (1)→ P(E0) for π : P(E0)→ S ×MS,α and thus one can
define a virtual fundamental class [Zα]vir (see Mellit, Minets, Schiffmann, and Vasserot,
2023, §2.4 and Neguţ, 2019, §2.4). We then define a Hecke operator

T : H∗(MS,δ)⊗H∗(MS,α−δ) → H∗(MS,α)
ξun ⊗ η 7→ T (ξun)(η) := π3∗(π∗

1(ξun) ∪ π∗
2(η) ∪ [Zα]vir),

where we identify H∗(MS,δ) ∼= H∗(S) ⊗ H∗(BGm) ∼= H∗(S)[u] and consider elements
ξun for ξ ∈ H∗(S). Note that the morphism π3 is proper, as it is a base change of a
proper map. We will write Tn(ξ) := T (ξun) : H∗(MS,α−δ)→ H∗(MS,α).
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4.2.2. Tautological operators. — The construction of tautological classes in §2.2.2 can
be generalised to associate to any symmetric function f and any class γ ∈ H∗(S), a
tautological class fα(γ) ∈ H∗(MS,α) using the universal sheaf Fα as follows.

Let Λ be the ring of symmetric functions in infinitely many variables z1, z2, . . . , which
we can write as a polynomial ring in different generators:

Λ = Q[p1, p2, . . . ] = Q[e1, e2, . . . ] = Q[h1, h2, . . . ]

where pk = zk
1 +zk

2 + · · · are the power sums, ek = z1z2...zk + · · · are the elementary sym-
metric functions, and hk = zk

1 + zk−1
1 z2 + · · · are the complete homogeneous symmetric

functions. We define pk(Fα) ∈ H2k(MS,α × S) by the following generating series:

ch(Fα) = rkFα +
∞∑

k=1

pk(Fa)
k!

and set p0(Fα) := rkFα. The assignment pk 7→ pk(Fα) determines a ring homomorphism

Λ = k[p1, p2, . . . ]→ H∗(MS,α × S), f 7→ f(Fα).

For any γ ∈ Hk(S) and f ∈ Λ, we define an associated tautological class

fα(γ) := πM∗(f(Fα) ∪ π∗
S(γ)) ∈ H i+2k−4(MS,α).

Together these classes generate a tautological subring H∗
taut(MS,α) ⊂ H∗(MS,α). We use

the same notation for the corresponding tautological operators

fα(γ) : Hj(MS,α) ∪fα(γ)−→ Hj+i+2k−4(MS,α).

Let us introduce the tautological ψ-classes which are used as tautological generators
in (HMMS) due to their simplified commutator relations with Tn(ξ), as described in
Equations (20) and (22) below. The ψ-classes are defined by inserting the Todd class,
which was also used by Li, Qin, and Wang (2002). Recall that t1 and t2 denote the
Chern roots of TS and thus TdS = t1t2/(1− e−t1)(1− e−t2). For each γ ∈ H∗(S) and
n ≥ 0, we define ψα

n(γ) by the generating series

∑
n≥0

xnψn

n! =
∑

n≥0

xnpn

n!

 t1t2x

(1− e−t1x)(1− e−t2x) .

More precisely, if TdS,k ∈ H2k(S) denote the Todd class components, then

(17) ψα
n(γ) :=

∑
1≤m≤n+1

n!
m!p

α
m(TdS,n+1−m γ).

4.2.3. The case of an open surface. — If S0 ⊂ S is an open surface, then as explained
in (HMMS, §3.5), the above applies to stacksMS,α which consist of sheaves supported in
S0. One difference is that one should replace H∗(S) with H∗

pure(S0), since the tautological
class fα(γ) only depends on the image of γ in H∗

pure(S0).
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For D-twisted Higgs bundles, we consider the open subset S0 := Tot(ωC(D)) of
S := P(OC ⊕ ωC(D)∗). Then H∗

pure(S0) = H∗(C). Let π : Tot(ωC(D))→ C denote the
projection; then the Todd class of S0 is given by

TdS0 = π∗(TdC) · π∗(TdC(ωC(D))) = π∗(1 + c1(TC))π∗(1 + c1(ωC(D)))

whose Chern roots are t1 = π∗c1(TC) and t2 = π∗c1(ωC(D)). In particular, t1 + t2 =
deg(D)π∗[x], where [x] is the class of a point on C. In the classical Higgs case (D = 0),
we have t1 + t2 = 0 and TdS0 = 1.

Henceforth S denotes a possibly open smooth surface and H := H∗
pure(S) ⊂ H∗(S).

4.3. Step (A): Operators on elliptic loci and parabolic Higgs moduli spaces

The spectral correspondence describes D-twisted Higgs bundles on C as pure 1-
dimensional sheaves on the open surface S = Tot(ωC(D)). Unfortunately, Hecke modi-
fications do not preserve semistability, but they do preserve the spectral curve (which
is the support of the pure 1-dimensional sheaf on S). Indeed, for a Hecke modification
E ↪→ F → T where E and F are pure 1-dimensional sheaves on S and T is a length 1
sheaf, this sequence cannot split as F is pure. It follows that E and F have the same
support and thus the same spectral curve.

Over the elliptic locus, where the spectral curve is integral, all Higgs bundles are
stable, thus we have Hecke correspondences

Zn,d

ww ##

(S ×BGm)×MD,ell
n,d−1 MD,ell

n,d .

The universal bundle can be locally resolved by a 2-term complex of vector bundles (for
example, see Faltings, 1993, §1). Hence as in §4.2, we can define Hecke operators Tn(ξ)
and tautological operators ψk(γ) on H∗

taut(M
D,ell
n,d ).

Moreover, Markman’s argument (Markman, 2002) for tautological generation should
generalise to show that the Künneth components of the diagonal can be expressed in
terms of the tautological classes and thus for n and d coprime, we have

H∗
taut(M

D,ell
n,d ) = H∗

pure(M
D,ell
n,d )

as in the end of §1.3.1.
In the next subsections, we will see that general results about Hecke actions on moduli

spaces of sheaves on surfaces (following Mellit, Minets, Schiffmann, and Vasserot, 2023)
will produce an action of the Lie algebra H2 on H∗

taut(M
D,ell
n,d )[x] ∼= H∗

taut(M
D,ell
n,d )[x, y]

and eventually find an sl2-triple to prove P = W .
The rest of this subsection is devoted to describing how to go from the cohomology of

the elliptic locus to the cohomology of the moduli space of all semistable Higgs bundles.
In (HMMS), this is achieved using certain parabolic Higgs moduli spaces (and stacks).
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Remark 4.1. — Using deep results about CoHAs, the authors of (HMMS) hope to
eventually be able to remove the need to pass via parabolic Higgs bundles, which should
streamline the argument. However, one advantage to the current argument is that it
provides an approach to proving the P = W conjecture for parabolic Higgs bundles.
Furthermore, it involves a nice geometric argument relating elliptic loci with (parabolic)
moduli spaces, which might be of future interest (e.g. Maulik, Shen, and Yin, 2023 use
this in the third P = W proof).

The parabolic Higgs bundle moduli spaces appearing in (HMMS) are slightly different
from the universal one appearing in (MS) and §3.2, which came from Yun’s global
Springer theory. Recall that Yun considered parabolic Higgs bundles consisting of a
Higgs bundle together with a point on C and a flag over that point which was preserved
by the Higgs field. In particular, the point where we have the flag structure can move
freely in C. It is more standard for parabolic bundles to have flags at a fixed number of
parabolic points xi which are encoded by a reduced effective divisor D = x1 + · · ·+ xr.
These are the parabolic Higgs bundles considered in (HMMS) and we will refer to them
as D-parabolic Higgs bundles (to distinguish from the parabolic D-twisted Higgs bundles
used in §3.2). To prove the (non-parabolic) P = W conjecture, it suffices to take D = x.

The stack HiggsD-par
n,d of all D-parabolic Higgs bundles parametrises tuples (E, θ : E →

E ⊗ ωC(D), E•
xi

), where (E, θ) ∈ MD
n,d is a D-twisted Higgs bundle and E•

xi
is an

(increasing) full flag in the fibre of each xi ∈ D that is preserved by the Higgs field (that
is, resxi

(θ)(Ej
xi

) ⊂ Ej
xi

for all j). If resxi
(θ)(Ej

xi
) ⊂ Ej−1

xi
for all j and all xi, the Higgs

field is called strongly parabolic and we let HiggsD-spar
n,d denote the substack of strongly

D-parabolic Higgs bundles.
There are different notions of stability for D-parabolic Higgs bundles (arising from

different choices in their GIT construction, see Mehta and Seshadri, 1980), but we will
consider an open elliptic locus that is contained in all stable loci. Let MD-par,ell

n,d be the
substack of D-parabolic Higgs bundles whose spectral curve is integral and such that
resxi

(θ) has distinct eigenvalues for each xi ∈ D. In particular, the parabolic structure
is just given by an ordering of the eigenvalues, and so there is a forgetful map

MD-par,ell
n,d →MD,ell

n,d

which is a S|D|
n -torsor over its image. For any notion of stability arising from a choice

of parabolic stability parameters (as in Mehta and Seshadri, 1980), all D-parabolic
Higgs bundles in MD-par,ell

n,d are stable. Hence, we fix one generic stability parameter (i.e.
semistability and stability coincide) and let MD-par

n,d denote the corresponding stack of
(semi)stable D-parabolic Higgs bundles. Then MD-par,ell

n,d ⊂MD-par
n,d and we also have an

inclusion MD-par,ell
n,d ⊂MD-par

n,d of the corresponding moduli spaces.
We will relate the cohomology of the Higgs moduli space with elliptic loci (for D-

twisted Higgs bundles) using D-parabolic Higgs bundles and different fibres of the
map

χD : MD-par
n,d → AD,n := An|D|−1
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which records the ordered eigenvalues µi,j of resxi
(θ) for all xi ∈ D. Note that the sum

of all these eigenvalues is zero by the residue theorem: ∑i resxi
tr(θ) = 0. Furthermore,

AD,n is a direct summand in the Hitchin base for MD-par
n,d and χD is the composition of

the Hitchin fibration with the projection onto AD,n.

Lemma 4.2 (HMMS, Proposition 8.16). — For µ ∈ AD,n generic, χ−1
D (µ) ⊂MD-par,ell

n,d .

Proof. — Let µ = (µi,j) ∈ AD,n be chosen so that the µi,j are all distinct and their sum
is zero, but no proper subset sums to zero. Then any parabolic Higgs bundle in the
fibre χ−1

D (µ) is simple: if it had a subbundle, then the sum of the residues of the trace of
the Higgs field on this subbundle would be zero, which would force some subset of the
µi,j’s to sum to zero. Hence, any parabolic Higgs bundle in χ−1

D (µ) has integral spectral
curve and the eigenvalues µi,j of resxi

(θ) are distinct, which proves the claim.

In particular, we have the following commutative diagram

χ−1
D (µ) � �

ιµ
//

� _

��

MD-par
n,d

χD

��

χ−1
D (0) =MD-spar

n,d
? _

ι0
oo

MD-par,ell
n,d

* 


j
77

��

An|D|−1 = AD,n M̃n,d

?�
i

OO

��

π (GLn/B)|D|−bundle
��

MD,ell
n,d Mn,d,

where M̃n,d is the subspace of (E, θ, E•
xi

) ∈ χ−1
D (0) such that resxi

(θ) = 0 for all xi ∈ D;
in particular, such θ : E → E ⊗ ωC(D) factor as θ : E → E ⊗ ωC and forgetting the flag
gives the morphism π : M̃n,d →Mn,d which is an iterated flag bundle.

The following proposition collects various results concerning the cohomology of the
moduli spaces appearing in this diagram.

Proposition 4.3. — For n and d coprime, the following statements hold.
i) The cohomology of MD-par

n,d is pure,
ii) The restriction maps ι∗0 and ι∗µ on cohomology are isomorphisms,
iii) The restriction map ι∗0 respects the perverse filtrations,
iv) The restriction map j∗ is injective and thus H∗

pure(M
D-par,ell
n,d ) = H∗(MD-par

n,d ). More-
over j∗ respects the perverse filtrations.

Proof. — For i), one shows there is a semi-projective Gm-action scaling the Higgs field
analogously to Proposition 1.7. For ii), one uses that χD is smooth and equivariant for
the scaling Gm-action (see HMMS, Proposition 8.14 and the proof of HMMS, Propo-
sition 8.18) and thus restricting to a fibre is a cohomological equivalence as in Hausel,
Letellier, and Rodriguez-Villegas (2011, Theorem 7.2.1). For iii), the projectivisation
of MD-par

n,d with respect to the scaling Gm-action is used and the D-parabolic Hitchin
map is extended to a map to a weighted projective space as in Hausel (1998). Since
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MD-par
n,d has pure cohomology groups, its cohomology can be described as a quotient

of the cohomology of its compactification by the image of a class L pulled back from
a hyperplane class on the weighted projective space. By (HMMS, Theorem 8.5), on
the cohomology of the compactifified moduli space, the perverse filtration is given (up
to a shift depending on the cohomological degree) by the canonical weight filtration
induced by the nilpotent operator L, which is computed using kernels and images of
powers of L. The interaction of the kernels of powers of L with the extension of ι0 to the
compactification is then described in order to prove ι∗0 (or strictly speaking its inverse)
respects the perverse filtrations (see HMMS, Proposition 8.18 for details).

For iv), we know the isomorphism ι∗µ factors as

ι∗µ : H∗(MD-par
n,d ) j∗

−→ H∗(MD-par,ell
n,d ) −→ H∗(χ−1

D (µ))

and thus j∗ is injective. The last part of iv) follows by (HMMS, Theorem 8.5).

In the parabolic setting, there are additional tautological classes coming from the
flags. Let Li,j →MD-par

n,d be the line bundle whose fibre is the j-th subquotient in the
flag over Exi

and let

(18) yi,j = c1(Li,j) ∈ H2(MD-par
n,d ).

We let H∗
taut(M

D-par
n,d ) denote the subring generated by the usual tautological classes f(γ)

for a symmetric function f and class γ ∈ H∗(C), and the additional parabolic tautolog-
ical classes yi,j. By a variant of Markman’s argument (Markman, 2002), one should be
able to prove that the Künneth components of the diagonal in MD-par,ell

n,d ×MD-par
n,d are

generated by tautological classes and thus the pure cohomology is tautological:

H∗
taut(M

D-par,ell
n,d ) = H∗

pure(M
D-par,ell
n,d ).

In the parabolic case, one can define Hecke modifications at parabolic points as
actual morphisms between semistable D-parabolic moduli spaces (for different choices
of parabolic stability parameters). Since the elliptic locus consists of D-parabolic Higgs
bundles which are stable for all stability parameters, we get Hecke morphisms between
them. More precisely, for each parabolic point xi and 1 ≤ j ≤ n, we have a Hecke
morphism

Hi,j : MD-par,ell
n,d →MD-par,ell

n,d−1 , (E, θ, E•
xi

) 7→ (E ′, θ′, E
′ •
xi

)
where E ′ ⊂ E is the kernel of the projection E → Exi

→ Li,j = Oxi
onto the j-th

eigenspace of resxi
(θ). Thinking of the parabolic structure as a filtration of sheaves, this

operation cyclically permutes the filtration as described by Boden and Yokogawa (1999,
§5). We denote the corresponding parabolic Hecke operator on cohomology by

(19) Xi,j = H∗
i,j : H∗(MD-par,ell

n,d−1 )→ H∗(MD-par,ell
n,d ).

Theorem 4.4. — Assume n and d are coprime and D is an effective reduced divisor.
Consider the following statements.
(1)D P = C holds for H∗

taut(M
D-par,ell
n,d ).



1213–56

(2)D P = C holds for H∗
taut(M

D-par
n,d ).

(3)D P = C holds for H∗
taut(M

D-spar
n,d ).

(4) P = C holds for H∗
taut(Mn,d) = H∗(Mn,d).

Then (1)D =⇒ (2)D =⇒ (3)D and for D = x, we have (3)x =⇒ (4).

Proof. — The first three implications follow from Proposition 4.3.
If D = x, we sketch the final implication following (HMMS, Theorem 8.20). The

relative dimension of π is the dimension of the flag variety GLn/B, which is
(

n
2

)
and

coincides with the codimension of the closed immersion i. Moreover, (up to sign) the
Euler classes of the relative tangent bundle of M̃n,d →Mn,d and the normal bundle for
i : M̃n,d ↪→Mx-spar

n,d are
∆ :=

∏
1≤j<k≤n

(yj − yk)

where yj := c1(Lj) are the first Chern classes of the tautological line bundles coming
from the flag at x as in Eq. (18). For the maps

A := π∗i
∗ : H∗(Mx-spar

n,d ) ⇄ H∗−2(n
2)(Mn,d) : B := i∗π

∗

which both respect the perverse filtrations, we have

AB = π∗i
∗i∗π

∗ = ±π∗∆π∗ = ±n!

from which we deduce B is injective and the claim follows.

Remark 4.5. — A similar reduction is performed in the third P = W proof (Maulik,
Shen, and Yin, 2023, §5.4.3), where they work with the stronger statement C ⊂ P on
the full cohomology as opposed to the tautological (or pure) cohomology.

Hence it suffices to show P = C on the elliptic parabolic moduli space Mx-par,ell
n,d .

4.4. Step (B): Lie algebra actions on cohomology

Let S be a smooth surface and assume we have substacks MS,α ⊂ CohS,α satisfying the
assumptions of §4.2.1 in order to define Hecke operators Tn(ξ) and tautological operators
ψk(γ) indexed by classes ξ, γ ∈ H = H∗

pure(S). In this section, we will describe the key
results of Mellit, Minets, Schiffmann, and Vasserot (2023), which are also proved in
(HMMS).

4.4.1. Action of the Hecke operators on the tautological cohomology. — From the defi-
nition of Hecke correspondence given in Diagram (16), we see that over Zα × S there is
a tautological exact sequence

0→ π∗
2,SFα−δ → π∗

3,SFα → π∗
1,SFδ → 0
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where πi,S := πi × IdS. By combining this with the projection formula, they compute
the commutator of the Hecke operator Tn(ξ) := T (ξun) for ξun ∈ H∗(MS,δ) ∼= H∗(S)[u]
with the tautological operator pk(γ) for γ ∈ H∗(S) to be

(20) [pk(γ), Tn(ξ)] = T

(
uk − (u− t1)k − (u− t2)k + (u− t1 + t2)k

t1t2
γξun

)
,

where [pk(γ), Tn(ξ)] := pα
k (γ)Tn(ξ)−(−1)deg(γ) deg(ξ)Tn(ξ)pα−δ

k (γ) is viewed as an operator
from H∗(MS,α−δ) to H∗(MS,α), and t1 and t2 denote the Chern roots of TS.

By induction, to describe the Hecke action on ⊕α H
∗
taut(MS,α) it suffices to compute

Tn(ξ)(1). This is achieved via classical intersection theory: by (HMMS, Eq. (3.2)), we
have

(21) Tn(ξ)(1) = hn+1−rk Fα(ξ),

where hk is the complete homogeneous symmetric function of degree k.

4.4.2. Lifting to the Fock space. — In (HMMS), the authors study the action of Tn(ξ)
by lifting it to a universal model ΛS for the tautological cohomology. The Fock space ΛS

is a polynomial ring (over C) generated by pk(γ) for γ ∈ H modulo the relations

pk(γ + γ′) = pk(γ) + pk(γ′) and pk(λγ) = λpk(γ) for λ ∈ C.

This is a graded super-commutative ring where pk(γ) has degree 2k − 4 + i for γ ∈ H i.
For any f ∈ ΛS of positive degree, one can define f(γ) by expressing f in terms of the
pk’s. To lift the Hecke operator to ΛS, we need two homomorphisms

R : ΛS
−→←− ΛS ⊗H[u] : Q

where in view of Eq. (21), Q(f ⊗ ξun) := fhn(ξ) and, in view of Eq. (20),

R(pk(γ)) := pk(γ)− uk − (u− t1)k − (u− t2)k + (u− t1 + t2)k

t1t2
γ.

Proposition 4.6 (HMMS, Eq. (3.3)). — For ξ ∈ H and n ≥ 0, the operator Tn(ξ) :
H∗(MS,α−δ)→ H∗(MS,α) lifts to the Fock space in the sense that we have a commutative
diagram

ΛS ⊗H[u]
ξun−rk Fα+1

// ΛS ⊗H[u]
Q

��

ΛS
//

����

R

OO

ΛS

����

H∗(MS,α−δ)
Tn(ξ)

// H∗(MS,α).

Proof. — This follows from Eq. (20) and (21) and the construction of R and Q.
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To deal with the shift appearing in the top arrow of the above commutative diagram
and in Eq. (21), the authors in (HMMS) define Hecke operators Tn(ξ) : ΛS → ΛS to
induce Tn−rk Fα+1(ξ) on the cohomology groups of the stacks MS,α (see HMMS, Remark
5.3). They similarly define tautological operators ψk(γ) : ΛS → ΛS as in Eq. (17).

One of the central ingredients due to Mellit, Minets, Schiffmann, and Vasserot (2023),
whose proof is also sketched in (HMMS, §4), is the commutator relations between the
Hecke and tautological operators on ΛS, as well as quadratic and cubic relations given
in (HMMS, Theorem 4.1). Let us just state the commutator relation which, after
comparing with the much more complicated commutator relation in Eq. (20), explains
why replacing the tautological classes pk(γ) with the tautological ψ-classes ψk(γ) is
desirable: we have

(22) [ψk(γ), Tn(ξ)] = kTn+k−1(γξ).

In (HMMS, §5), the authors fix a basis Π of H and define a surface W -algebra which
is generated by operators Tn(π) and ψn(π) for π ∈ Π and n ≥ 0 modulo the relations in
(HMMS, Theorem 4.1) and the additional relation [ψm(ξ), ψn(γ)] = 0. As an immediate
corollary, they obtain a representation of this surface W -algebra on the cohomology
⊕i∈ZH

∗(MS,α+iδ) (see HMMS, Corollary 5.2). These results culminate in the following
theorem.

Theorem 4.7 (Mellit, Minets, Schiffmann, and Vasserot, 2023; (HMMS, Theorem 5.5))
Assume both s2 = 0 ∈ H4(S) and s1∆ = 0 ∈ H6(S×S). Then the surface W -algebra

is isomorphic to the universal enveloping algebra of the Lie algebra with basis Dm,n(π)
where m,n ∈ N and π is an element of a fixed basis Π of H and Lie bracket

[Dm,n(ξ), Dm′,n′(ξ′)] = (nm′ −mn′)Dm+m′,n+n′−1(ξξ′).

The relation between the generators of this algebra and the previous operators is given by
D0,n(ξ) = ψn(ξ) and D1,n(ξ) = Tn(ξ). Moreover, there is a representation of this algebra
on ⊕i∈ZH

∗(MS,α+iδ) extending the given action of the tautological operators ψn(ξ) and
Hecke operators Tn(ξ).

The first index m records the shift in the δ direction: Dm,n(ξ) : H∗(MS,α) →
H∗(MS,α+mδ) and the second index corresponds to a shift in cohomological degrees.
We see that the shift in these indices under the commutator is not quite symmetric:
the m-index is the sum of the m-indices, but the n-index is the sum of the n-indices
minus 1. This will be dealt with by a degeneration procedure in the next section that
also reduces the m-index by 1.

In the Higgs case (see §4.2.3), the classes s2 and s1∆ vanish for degree reasons. More
generally, without these vanishing assumptions, analogous relations are proved modulo
a filtration in (HMMS, §5.2).



1213–59

4.5. Step (C): Periodicity, cohomological χ-independence and degeneration

Whilst the tautological operators act on the cohomology of individual moduli stacks,
the Hecke operators increase the Chern character by δ. However, by twisting by a line
bundle, these moduli stacks are periodic (for example, in the Higgs case, Mn,d up to
isomorphism only depends on d modulo n, as tensoring by a degree one line bundle
induces Mn,d ≃ Mn,d+n). To consider the cohomology of just one moduli stack (or
space) at a time, we will identify the cohomology of different moduli stacks (to give a
cohomological χ-independence result) using a specific Hecke correspondence.

Proposition 4.8. — Fix α = (α0, α1, α2) and assume that there is a line bundle L
on S such that − ⊗ L : MS,α → MS,α ch(L) is an isomorphism and c1(L)α1 > 0. Then
T0(c1(L)) induces an isomorphism H∗

taut(MS,α) ∼= H∗
taut(MS,α+δ).

Proof. — Let us outline the proof and refer to (HMMS, Proposition 6.2) for details.
First one shows T0(c1(L)) is surjective inductively using the fact that c1(L)α1 ̸= 0 and
the description of the action of Hecke operators provided by (HMMS, Theorem 5.8). By
iterating the surjection T0(c1(L)), one obtains

dimH i
taut(MS,α) ≥ dimH i

taut(MS,α+δ) ≥ · · · ≥ dimH i
taut(MS,α+δc1(L)α1);

however the first and last dimensions are equal via the isomorphism coming from tensor-
ing with L. Hence, these inequalities are equalities and T0(c1(L)) is an isomorphism.

In the D-twisted Higgs case, we have S = Tot(ωC(D)) and we take MS,α to be the
elliptic loci in the stack of Higgs bundles (viewed as sheaves on S via the spectral
correspondence).

Let us write η := c1(L), so T0(η) can be used to identify the tautological cohomology of
different stacks. If X := T0(η)/ηα1, then the operators X−mDm,n act on the cohomology
of MS,α. Moreover the sequence of operators X−mDm,n depends polynomially on m

and the non-zero coefficients are nilpotent if n = 0 (HMMS, Proposition 6.3).
At this point a degeneration is used to obtain new operators D̃m,n, which also depend

polynomially on m, with better symmetry properties (in particular they will enable
us to find the desired actions of H2 and sl2). The authors view this degeneration as
analogous to degenerating a spherical trigonometric Cherednik algebra to a rational
Cherednik algebra. The operators D̃m,n are defined via the following generating series:

Dm,n(ξ) := X̃m
∑

i

mi

i! D̃i,n(ξ),

where X̃ := Xeθ/ηα1 and θ is the linear term in the polynomial expansion of X−kDk,0(η),
which is nilpotent and so e±kθ are polynomials in k. The operators D̃m,n depend
polynomially on m and, by construction, the linear term in the polynomial expansion
of X̃−kDk,0(η) vanishes. The commutator of these operators is computed in (HMMS,
Proposition 6.4) and now exhibits more natural symmetry between m and n. If one
assumes s2 and s1∆ vanish as in Theorem 4.7, then these identities hold on the nose
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rather than modulo a certain filtration and in the Higgs case they simplify further as
we will see below. Consequently, the algebra W̃ generated by the operators D̃m,n turns
out to be generated by ψ2(1) and D̃k,0(ξ) (see HMMS, Corollary 6.5).

4.6. Step (D): Reduced operators on the cohomology of moduli spaces

In the situations we are interested in (e.g. the Higgs case), the moduli stacks MS,α

will be trivial Gm-gerbes over their good moduli spaces MS,α. Consequently

H∗(MS,α) ≃ H∗(MS,α)⊗H∗(BGm) ≃ H∗(MS,α)[u].

We would like to remove this tensor factor of H∗(BGm) to pass from the stack to the
moduli space in a canonical way. To do this we express the cohomology of MS,α as a
polynomial ring over a so-called reduced cohomology ring with variable y given by a
normalised tautological operator.

As above, we continue to let η := c1(L) and we write n := ηα1 > 0 (which will equal
the rank in the Higgs case). From the above commutator computations, one obtains

[D̃0,1(η), D̃1,0(1)] = n

where D̃0,1(η) = ψ1(η). Hence for y := ψ1(η)/n and ∂y := −D̃1,0(1), we have [∂y, y] = 1.
Since ∂y has cohomological degree −2, it is locally nilpotent and moreover, y provides a
slice of the associated Ga-action. Thus if H∗(MS,α)red := ker(∂y), we obtain a canonical
decomposition

H∗(MS,α) ∼= H∗(MS,α)red[y].
Note that we can view H∗(MS,α)red as a subspace given by ker(∂y) and as a quotient
space given by the cokernel of y, just as we can view a slice of a Ga-action as a subset
or a quotient.

Since Ad∂y acts locally nilpotently on W̃ , repeating this argument we can write

W̃ = W̃ ′[y]

and then check that Ady acts locally nilpotently on W̃ ′, so that

W̃ = W̃ ′[y] = Wred[y, ∂y],

where Wred consists of operators commuting with y and ∂y. In particular, the action
of the algebra Wred preserves H∗(MS,α)red. For f ∈ H∗(MS,α) (resp. f ∈ W̃ ), we let
fred ∈ H∗(MS,α)red (resp. fred ∈ Wred) denote the constant term in its polynomial expan-
sion. Consequently we get operators D̃m,n(ξ)red on H∗

taut(MS,α)red, whose commmutator
relations are similar to, but more complicated than, those in Theorem 4.7 due to the
appearance of additional terms; see (HMMS, Proposition 7.3).

A first candidate for the sl2-triple ⟨e, f ,h⟩ is obtained from these operators, where e
comes from a tautological operator and f comes from a Hecke transformation. We next
explain this in further detail in the Higgs case, where the relations simplify.
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4.7. Step (E): Finding an sl2-triple in the Higgs setting to prove P = W

As in §4.3, we will now consider elliptic loci in moduli stacks (and spaces) of D-twisted
Higgs bundles on C, which we denote by MD,ell

n,d (and MD,ell
n,d ). We have

H∗
taut(M

D,ell
n,d )red ≃ H∗

taut(M
D,ell
n,d )

as the reduced tautological cohomology of the stack consists of polynomials in the tau-
tological classes which are invariant under twisting the universal sheaf by a line bundle
on C. Under this identification the classes ψk(ξ)red = D̃0,k(ξ)red(1) generate the tauto-
logical cohomology of the moduli spaceMD,ell

n,d . We fix a basis Π = {1, γ1, . . . , γ2g, ω} of
H = H∗(C) and we take η := ω so that ηα1 = n.

Before we turn our attention to the sl2-triples needed for the proof of the P = W

conjecture, let us quickly explain how to produce the H2-action in the title of (HMMS).
To simplify the relations, the idea is to introduce a formal variable x and ‘undo’ the
operation of reduction. This gives operators D̃m,n(ξ)unred which act on

H∗
taut(M

D,ell
n,d )[x] ≃ H∗

taut(M
D,ell
n,d )[x, y]

and by restricting to the subalgebra formed by elements D̃m,n(1)unred one obtains an
action of H2 as described by (HMMS, Corollary 7.4).

The commutator relations in (HMMS, Proposition 7.3) have two important conse-
quences for the proof of P = W provided one chooses d appropriately as mentioned
in (HMMS, §7.3) so that D̃0,2(1)red vanishes: first one obtains an original sl2-triple
⟨eorig, forig,horig⟩ acting on H∗(MD,ell

n,d ), and second the tautological classes ψk(ξ)red are
eigenvectors of weight k with respect to horig. This sl2-triple is defined by

eorig := 1
2D̃0,2(1)red and forig := 1

2D̃2,0(1)red and horig := −D̃1,1(1)red

where eorig is constructed from the tautological operator ψ2(1)red = D̃0,2(1)red and forig
is constructed from a Hecke operator. Then the tautological classes satisfy

(23) [horig, ψk(ξ)red] = kψk(ξ)red.

The following result combines the general result (HMMS, Theorem 6.9) with the
Higgs-specific result (HMMS, Proposition 7.7).

Proposition 4.9. — The original sl2-triple ⟨eorig, forig,horig⟩ acts on H∗
taut(M

D,ell
n,d ).

Let Qi denote the sum of the horig-eigenspaces with eigenvalues ≤ i; then the following
statements hold.

i) The tautological classes satisfy ψk(ξ)redQi ⊂ Qi+k.
ii) The Hecke operators satisfy D̃k,0(ξ)redQi ⊂ Qi.
iii) On GrQ H∗(MD,ell

n,d ) the operator eorig coincides with 1
2ψ2(1)red and satisfies the

Lefschetz property: 1
2ψ2(1)i

red : Q−i/Q−i−1 → Qi/Qi−1 is an isomorphism for all i.
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We would like to conclude that the eigenspace filtration Qi is (up to a shift in indices)
the perverse filtration for the Hitchin fibration; this would be the case if eorig came from
a relatively ample class as in the Relative Hard Lefschetz Theorem (see Remark 1.12).
To prove this is the case, we need to modify our sl2-triple as follows.

Theorem 4.10 (HMMS, Propositions 8.11 - 8.13). — There is an sl2-triple ⟨e, f ,h⟩
acting on H∗

taut(M
D,ell
n,d ) where e comes from a relatively ample class and h induces the

same filtration as horig. In particular, this filtration coincides with the perverse filtration
for the Hitchin map (modulo a shift appearing in the definition of the perverse filtration).
Moreover, P h

k H
∗
taut(M

D,ell
n,d ) is the span of products of tautological classes ∏i ψki

(ξi)red

where ∑i ki ≤ k and thus P = C = W holds on H∗
taut(M

D,ell
n,d ).

Proof. — If α ∈ H2
taut(M

D,ell
n,d ) is a relatively ample class (with respect to the Hitchin

map), then a small perturbation e := α + λψ2(1)red remains ample and this is part of
an sl2-triple ⟨e, f ,h⟩ acting on H∗

taut(M
D,ell
n,d ) such that the h-filtration coincides with

the horig-filtration Q provided λ is chosen appropriately (see HMMS, Corollary 7.10).
Moreover, the operators e, f and h change the perversity by 2,−2 and 0 respectively
by (HMMS, Proposition 8.11), which guarantees that they induce an sl2-triple on the
associated graded vector space for the perverse filtration.

By the Relative Hard Lefschetz Theorem, the ample class e is part of an sl2-triple
⟨e, f ′,h′⟩ such that on the associated graded vector space for the perverse filtration, the
h′-graded pieces are the graded pieces for the perverse filtration (see Remark 1.12). On
this associated graded object, one can show that h and h′ coincide by showing they
commute and any eigenvalue of their difference is zero (HMMS, Proposition 8.12).

To conclude on the (ungraded) cohomology that the canonical eigenspace filtration
Q coming from h (or equivalently horig) coincides with the perverse filtration P (up to
a shift in indices by the relative dimension rh of the Hitchin fibration), it suffices to
show that one filtration is contained in the other. Indeed, as the Lefschetz operator
satisfies the Lefschetz property with respect to both filtrations, a containment suffices
to conclude equality as in the proof of Proposition 2.3 (v). For this, one can inductively
show Pk−rh

⊂ Qk by noting that h preserves the perversity and for β ∈ Pk−rh
, the

operator h acts by multiplication by k on the class of β in the associated graded object
for the perverse filtration, so we must have h(β) = kβ + β′ for some β′ ∈ Pk−rh−1.

Finally, Eq. (23) describes the horig-weights on the ψ-classes and from this one deduces
that P h

k H
∗
taut(M

D,ell
n,d ) is the span of products ∏i ψki

(ξi)red where ∑i ki ≤ k.

This does not quite suffice to prove the P = W conjecture, as one needs a version of
this result for the tautological cohomology of the elliptic locus in the moduli space of
D-parabolic Higgs bundles, where D = x is a single point (see Theorem 4.4). Fortunately
this is possible, but requires extending the ring H := H∗(C) to a ring HD

n by introducing
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additional generators pi,j of degree 2 for each xi ∈ D and 1 ≤ j ≤ n modulo the relations
n∑

j=1
pi,j = ω, pi,jpi′,j′ = 0 and pi,jH

>0 = 0.

Since D-parabolic Higgs bundles on C can also be considered as Higgs bundles on the
stacky curve given by taking the n-th root stack of C along D, we can view HD

n as the
orbifold cohomology of this stacky curve. We define additional tautological operators
and Hecke operators by

ψk(pi,j) = yn
i,j and Tn(pi,j) := yn

i,jXi,j,

where yi,j and Xi,j are defined in Equations (18) and (19). As in the non-parabolic
case, the action of the Hecke transformation T on the tautological cohomology can be
described by the commutator relations between ψ and T and the values of T on 1. The
previous result can be upgraded to the moduli space MD-par,ell

n,d where H is replaced
by HD

n (see HMMS, Theorem 7.6). In particular, Theorem 4.10 holds when Mell
n,d

is replaced by MD-par,ell
n,d and H = H∗(C) is replaced by HD

n . Consequently, we can
conclude the P = W conjecture holds using Theorem 4.4.
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Alexander A. Bĕılinson, Joseph Bernstein, and Pierre Deligne (1982). “Faisceaux per-
vers”, in: Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque,
vol. 100, Soc. Math. France, Paris, pp. 5–171.

Andrzej Białynicki-Birula (1973). “Some theorems on actions of algebraic groups”, Ann.
of Math. (2) 98, pp. 480–497.

Olivier Biquard (1997). “Fibrés de Higgs et connexions intégrables: le cas logarithmique
(diviseur lisse)”, Ann. Sci. École Norm. Sup. (4) 30 (1), pp. 41–96.

Olivier Biquard and Philip Boalch (2004). “Wild non-abelian Hodge theory on curves”,
Compos. Math. 140 (1), pp. 179–204.



1213–64

Hans U. Boden and Kôji Yokogawa (1999). “Rationality of moduli spaces of parabolic
bundles”, J. London Math. Soc. (2) 59 (2), pp. 461–478.

Barbara Bolognese, Alex Küronya, and Martin Ulirsch (2023). “P = W phenomena on
abelian varieties”, arXiv: 2303.03734.

Pierre-Henri Chaudouard and Gérard Laumon (2016). “Un théorème du support pour
la fibration de Hitchin”, Ann. Inst. Fourier (Grenoble) 66 (2), pp. 711–727.

Kevin Corlette (1988). “Flat G-bundles with canonical metrics”, J. Differential Geom.
28 (3), pp. 361–382.

Ben Davison (2023). “Nonabelian Hodge theory for stacks and a stacky P = W conjec-
ture”, Adv. Math. 415, Paper No. 108889, 61.

Ben Davison, Lucien Hennecart, and Sebastian Schlegel Mejia (2023). “BPS Lie algebras
for totally negative 2-Calabi-Yau categories and nonabelian Hodge theory for stacks”,
arXiv: 2212.07668.

Mark A. de Cataldo (2017a). “A support theorem for the Hitchin fibration: the case of
SLn”, Compos. Math. 153 (6), pp. 1316–1347.

(2017b). “Perverse sheaves and the topology of algebraic varieties”, in: Geometry
of moduli spaces and representation theory, IAS/Park City Math. Ser. vol. 24, Amer.
Math. Soc., Providence, RI, pp. 1–58.

Mark A. de Cataldo, Tamás Hausel, and Luca Migliorini (2012). “Topology of Hitchin
systems and Hodge theory of character varieties: the case A1”, Ann. of Math. (2) 175
(3), pp. 1329–1407.

Mark A. de Cataldo, Jochen Heinloth, and Luca Migliorini (2021). “A support theorem
for the Hitchin fibration: the case of GLn and KC”, J. Reine Angew. Math. 780,
pp. 41–77.

Mark A. de Cataldo and Davesh Maulik (2020). “The perverse filtration for the Hitchin
fibration is locally constant”, Pure Appl. Math. Q. 16 (5), pp. 1441–1464.

Mark A. de Cataldo, Davesh Maulik, and Junliang Shen (2022a). “Hitchin fibrations,
abelian surfaces, and the P = W conjecture”, J. Amer. Math. Soc. 35 (3), pp. 911–
953.

(2022b). “On the P = W conjecture for SLn”, Selecta Math. (N.S.) 28 (5), Paper
No. 90, 21 pp.

Mark A. de Cataldo, Davesh Maulik, Junliang Shen, and Siqing Zhang (2021). “Coho-
mology of the moduli of Higgs bundles via positive characteristic”, arXiv: 2105.03043.

Mark A. de Cataldo and Luca Migliorini (2009). “The decomposition theorem, perverse
sheaves and the topology of algebraic maps”, Bull. Amer. Math. Soc. (N.S.) 46 (4),
pp. 535–633.

(2010). “The perverse filtration and the Lefschetz hyperplane theorem”, Ann.
of Math. (2) 171 (3), pp. 2089–2113.

Ron Donagi and Tony Pantev (2012). “Langlands duality for Hitchin systems”, Invent.
Math. 189 (3), pp. 653–735.

https://arxiv.org/abs/2303.03734
https://arxiv.org/abs/2212.07668
https://arxiv.org/abs/2105.03043


1213–65

Simon K. Donaldson (1983). “A new proof of a theorem of Narasimhan and Seshadri”,
J. Differential Geom. 18 (2), pp. 269–277.

(1987). “Twisted harmonic maps and the self-duality equations”, Proc. London
Math. Soc. (3) 55 (1), pp. 127–131.

Geir Ellingsrud and Arild Strømme (1993). “Towards the Chow ring of the Hilbert
scheme of P2”, J. Reine Angew. Math. 441, pp. 33–44.

Gerd Faltings (1993). “Stable G-bundles and projective connections”, J. Algebraic Geom.
2 (3), pp. 507–568.

(2005). “A p-adic Simpson correspondence”, Adv. Math. 198 (2), pp. 847–862.
Camilla Felisetti and Mirko Mauri (2022). “P = W conjectures for character varieties

with symplectic resolution”, J. Éc. polytech. Math. 9, pp. 853–905.
John Fogarty (1973). “Fixed point schemes”, Amer. J. Math. 95, pp. 35–51.
William M. Goldman and Eugene Z. Xia (2008). “Rank one Higgs bundles and repre-

sentations of fundamental groups of Riemann surfaces”, Mem. Amer. Math. Soc. 193
(904), pp. viii+69.

Michael Groechenig (2014). “Hilbert schemes as moduli of Higgs bundles and local
systems”, Int. Math. Res. Not. IMRN (23), pp. 6523–6575.

Michael Groechenig, Dimitri Wyss, and Paul Ziegler (2020). “Mirror symmetry for
moduli spaces of Higgs bundles via p-adic integration”, Invent. Math. 221 (2), pp. 505–
596.

Ian Grojnowski (1996). “Instantons and affine algebras. I. The Hilbert scheme and vertex
operators”, Math. Res. Lett. 3 (2), pp. 275–291.

Thomas C. Hales (2012). “The fundamental lemma and the Hitchin fibration [after Ngô
Bao Châu]”, Séminaire Bourbaki, Exposé No. 1035, vol. 2010/2011; in: Astérisque
348, pp. 233–263.

Andrew Harder, Zhiyuan Li, Junliang Shen, and Qizheng Yin (2021). “P = W for
Lagrangian fibrations and degenerations of hyper-Kähler manifolds”, Forum Math.
Sigma 9, Paper No. e50, 6 pp.

Tamás Hausel (1998). “Compactification of moduli of Higgs bundles”, J. Reine Angew.
Math. 503, pp. 169–192.

Tamás Hausel, Emmanuel Letellier, and Fernando Rodriguez-Villegas (2011). “Arith-
metic harmonic analysis on character and quiver varieties”, Duke Math. J. 160 (2),
pp. 323–400.

Tamás Hausel, Anton Mellit, Alexandre Minets, and Olivier Schiffmann (2022). “P = W

via H2”, arXiv: 2209.05429 (heretofore cited as: HMMS).
Tamás Hausel and C. Pauly (2012). “Prym varieties of spectral covers”, Geom. Topol.

16 (3), pp. 1609–1638.
Tamás Hausel and Fernando Rodriguez-Villegas (2008). “Mixed Hodge polynomials

of character varieties”, Invent. Math. 174 (3). With an appendix by N. M. Katz,
pp. 555–624.

https://arxiv.org/abs/2209.05429


1213–66

Tamás Hausel and Michael Thaddeus (2003). “Mirror symmetry, Langlands duality, and
the Hitchin system”, Invent. Math. 153 (1), pp. 197–229.

(2004). “Generators for the cohomology ring of the moduli space of rank 2 Higgs
bundles”, Proc. London Math. Soc. (3) 88 (3), pp. 632–658.

Jochen Heinloth (2010). “Lectures on the moduli stack of vector bundles on a curve”,
in: Affine flag manifolds and principal bundles. Trends Math. Birkhäuser/Springer
Basel AG, Basel, pp. 123–153.

Nigel Hitchin (1987a). “Stable bundles and integrable systems”, Duke Math. J. 54 (1),
pp. 91–114.

Nigel J. Hitchin (1987b). “The self-duality equations on a Riemann surface”, Proc.
London Math. Soc. (3) 55 (1), pp. 59–126.

Anton Kapustin and Edward Witten (2007). “Electric-magnetic duality and the geo-
metric Langlands program”, Commun. Number Theory Phys. 1 (1), pp. 1–236.

Ludmil Katzarkov, Alexander Noll, Pranav Pandit, and Carlos Simpson (2015). “Har-
monic maps to buildings and singular perturbation theory”, Comm. Math. Phys. 336
(2), pp. 853–903.

Shun-ichi Kimura and Angelo Vistoli (1996). “Chow rings of infinite symmetric prod-
ucts”, Duke Math. J. 85 (2), pp. 411–430.

Tasuki Kinjo and Naoki Koseki (2021). “Cohomological χ-independence for Higgs bun-
dles and Gopakumar-Vafa invariants”, arXiv: 2112.10053.

Guitang Lan, Mao Sheng, and Kang Zuo (2019). “Semistable Higgs bundles, periodic
Higgs bundles and representations of algebraic fundamental groups”, J. Eur. Math.
Soc. (JEMS) 21 (10), pp. 3053–3112.

Stacy G. Langton (1975). “Valuative criteria for families of vector bundles on algebraic
varieties”, Ann. of Math. (2) 101, pp. 88–110.

Sean Lawton and Adam S. Sikora (2017). “Varieties of characters”, Algebr. Represent.
Theory 20 (5), pp. 1133–1141.

Joseph Le Potier (1991). “Fibrés de Higgs et systèmes locaux”, Séminaire Bourbaki,
Exposé No. 737, Vol. 1990/91; in: Astérisque 201-203, pp. 221–268.

Wei-Ping Li, Zhenbo Qin, and Weiqiang Wang (2002). “Vertex algebras and the coho-
mology ring structure of Hilbert schemes of points on surfaces”, Math. Ann. 324 (1),
pp. 105–133.

Alexander Lubotzky and Andy R. Magid (1985). “Varieties of representations of finitely
generated groups”, Mem. Amer. Math. Soc. 58 (336), pp. xi+117.

Eyal Markman (2002). “Generators of the cohomology ring of moduli spaces of sheaves
on symplectic surfaces”, J. Reine Angew. Math. 544, pp. 61–82.

Davesh Maulik and Junliang Shen (2021). “Endoscopic decompositions and the Hausel-
Thaddeus conjecture”, Forum Math. Pi 9, Paper No. e8, 49 pp.

(2022). “The P = W conjecture for GLn”, arXiv: 2209.02568 (heretofore cited
as: MS).

https://arxiv.org/abs/2112.10053
https://arxiv.org/abs/2209.02568


1213–67

Davesh Maulik, Junliang Shen, and Qizheng Yin (2023). “Perverse filtrations and Fourier
transforms”, arXiv: 2308.13160.

Mirko Mauri, Enrica Mazzon, and Matthew Stevenson (2022). “On the geometric P = W
conjecture”, Selecta Math. (N.S.) 28 (3), Paper No. 65, 45 pp.

Vikram Bhagvandas Mehta and Conjeeveram Srirangachari Seshadri (1980). “Moduli of
vector bundles on curves with parabolic structures”, Math. Ann. 248 (3), pp. 205–239.

Anton Mellit (2019). “Cell decompositions of character varieties”, arXiv: 1905.10685.
Anton Mellit, Alexandre Minets, Olivier Schiffmann, and Éric Vasserot (2023). “Coher-

ent sheaves on surfaces, COHAs and deformed W1+∞-algebras”. arXiv: 2311.13415.
Takuro Mochizuki (2009). “Kobayashi–Hitchin correspondence for tame harmonic bun-

dles. II”, Geom. Topol. 13 (1), pp. 359–455.
(2011). “Wild harmonic bundles and wild pure twistor D-modules”, Astérisque

(340), x+607 pp.
David Mumford, John Fogarty, and Frances Kirwan (1994). Geometric invariant the-

ory. Third Edition. Ergebnisse der Mathematik und ihrer Grenzgebiete (2), vol. 34;
Springer-Verlag, Berlin; xiv+292 pp.

Hiraku Nakajima (1997). “Heisenberg algebra and Hilbert schemes of points on projective
surfaces”, Ann. of Math. (2) 145 (2), pp. 379–388.

Mudumbai Seshachalu Narasimhan and Conjeeveram Srirangachari Seshadri (1965).
“Stable and unitary vector bundles on a compact Riemann surface”, Ann. of Math.
(2) 82, pp. 540–567.

Andrei Neguţ (2019). “Shuffle algebras associated to surfaces”, Selecta Math. (N.S.) 25
(3), Paper No. 36, 57 pp.

Peter E. Newstead (1978). Introduction to moduli problems and orbit spaces. Tata
Institute of Fundamental Research Lectures on Mathematics and Physics, Vol. 51,
Narosa Publishing House, New Delhi, vi+183 pp.

Bao Châu Ngô (2006). “Fibration de Hitchin et endoscopie”, Invent. Math. 164 (2),
pp. 399–453.

(2010). “Le lemme fondamental pour les algèbres de Lie”, Publ. Math. Inst.
Hautes Études Sci. (111), pp. 1–169.

Nitin Nitsure (1991). “Moduli space of semistable pairs on a curve”, Proc. London Math.
Soc. (3) 62 (2), pp. 275–300.

Arthur Ogus and Vitaly Vologodsky (2007). “Nonabelian Hodge theory in characteristic
p”, Publ. Math. Inst. Hautes Études Sci. (106), pp. 1–138.

Alexander Polishchuk (2007). “Lie symmetries of the Chow group of a Jacobian and
the tautological subring”, J. Algebraic Geom. 16 (3), pp. 459–476.

Sundararaman Ramanan (1973). “The moduli spaces of vector bundles over an algebraic
curve”, Math. Ann. 200, pp. 69–84.

Daniel Schaub (1998). “Courbes spectrales et compactifications de Jacobiennes”, Math.
Z. 227 (2), pp. 295–312.

https://arxiv.org/abs/2308.13160
https://arxiv.org/abs/1905.10685
https://arxiv.org/abs/2311.13415


1213–68

Conjeeveram Srirangachari Seshadri (1967). “Space of unitary vector bundles on a
compact Riemann surface”, Ann. of Math. (2) 85, pp. 303–336.

Junliang Shen and Qizheng Yin (2022). “Topology of Lagrangian fibrations and Hodge
theory of hyper-Kähler manifolds”, Duke Math. J. 171 (1). With Appendix B by C.
Voisin, pp. 209–241.

Junliang Shen and Zili Zhang (2021). “Perverse filtrations, Hilbert schemes, and the
P = W conjecture for parabolic Higgs bundles”, Algebr. Geom. 8 (4), pp. 465–489.

Vivek Shende (2017). “The weights of the tautological classes of character varieties”,
Int. Math. Res. Not. IMRN (22), pp. 6832–6840.

Carlos Simpson (1988). “Constructing variations of Hodge structure using Yang-Mills
theory and applications to uniformization”, J. Amer. Math. Soc. 1 (4), pp. 867–918.

(1990). “Harmonic bundles on noncompact curves”, J. Amer. Math. Soc. 3 (3),
pp. 713–770.

(1992). “Higgs bundles and local systems”, Inst. Hautes Études Sci. Publ. Math.
(75), pp. 5–95.

(1994a). “Moduli of representations of the fundamental group of a smooth
projective variety. I”, Inst. Hautes Études Sci. Publ. Math. (79), pp. 47–129.

(1994b). “Moduli of representations of the fundamental group of a smooth
projective variety. II”, Inst. Hautes Études Sci. Publ. Math. (80), pp. 5–79.

(1997). “The Hodge filtration on nonabelian cohomology”, in: Algebraic
geometry—Santa Cruz 1995. Proc. Sympos. Pure Math. Vol. 62, Amer. Math. Soc.,
Providence, RI, pp. 217–281.

Geordie Williamson (2017). “The Hodge theory of the decomposition theorem”, Sémi-
naire Bourbaki, Exposé No. 1115, Vol. 2015/2016; in: Astérisque 390, pp. 335–367.

Zhiwei Yun (2011). “Global Springer theory”, Adv. Math. 228 (1), pp. 266–328.
(2012). “Langlands duality and global Springer theory”, Compos. Math. 148 (3),

pp. 835–867.
Zili Zhang (2021). “The P = W identity for cluster varieties”, Math. Res. Lett. 28 (3),

pp. 925–944.

Victoria Hoskins
Radboud University
Nijmegen,
The Netherlands
E-mail : v.hoskins@math.ru.nl


	Introduction
	1. Moduli spaces and the P = W conjecture
	2. Tautological classes
	3. The proof of Maulik and Shen
	4. The proof of Hausel, Mellit, Minets & Schiffmann
	References

