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Norms and convex sets

The main objects of study in
this talk are finite-dimensional
normed spaces X = (Rd , ‖ · ‖),
where ‖ · ‖ : Rd → R+ satisfies:

• ‖x‖ = 0 ⇔ x = 0,

• ‖λx‖ = |λ|‖x‖ and

• ‖x + y‖ ≤ ‖x‖+ ‖y‖,
where x , y ∈ Rd and λ ∈ R.

Finite-dimensional normed spaces
X = (Rd , ‖ · ‖) are in 1-1
correspondance with symmetric
compact convex sets K in Rd with
non-empty interior via the bijection

X 7→ BX
def
= {x ∈ Rd : ‖x‖ ≤ 1},

whose inverse is

K 7→ ‖x‖K
def
= min{t ≥ 0 : x ∈ tK}.
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Norms and convex sets



How far is a general norm from being Hilbertian?

Theorem (F. John, 1948)

For any normed space X = (Rd , ‖ · ‖), there exists a linear operator
T : X → `d2 = (Rd , ‖ · ‖`d2 ) with ‖T‖op‖T−1‖op ≤

√
d , i.e.

∀ x ∈ Rd , ‖x‖ ≤ ‖Tx‖`d2 ≤
√
d‖x‖.

Equivalently, for any compact symmetric convex set K in Rd , there
exists an ellipsoid E satisfying E ⊆ K ⊆

√
dE.

Moreover, the factor
√
d is optimal (e.g. for the cube [−1, 1]d

which corresponds to the supremum norm on Rd).
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John’s theorem as an embedding result

A metric space (M, dM) embeds into a normed space (Y , ‖ · ‖Y )
with bi-Lipschitz distortion at most D ≥ 1 if there exists a
mapping f : M → Y such that

∀ x , y ∈M, dM(x , y) ≤ ‖f (x)− f (y)‖Y ≤ DdM(x , y).

Theorem (F. John, 1948)

Every d-dimensional normed space X embeds into `2 with
bi-Lipschitz distortion at most

√
d .

By classical differentiation principles, this is an equivalent
reformulation of John’s theorem.
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Average distortion and snowflakes

• A metric space (M, dM) embeds into a normed space (Y , ‖ · ‖Y )
with q-average distortion at most D ≥ 1 if for every Borel
probability measure µ on M, there exists a D-Lipschitz mapping
f = fµ : M → Y such that∫∫

M×M
‖f (x)−f (y)‖qY dµ(x)dµ(y) ≥

∫∫
M×M

dM(x , y)q dµ(x)dµ(y).

• If θ ∈ (0, 1], the θ-snowflake of a metric space (M, dM) is the
metric space (M, dθM).
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The average John theorem

Theorem (A. Naor, 2019)

The 1
2 -snowflake of any d-dimensional normed space admits an

embedding into `2 with quadratic average distortion O(
√

log d).

The average John theorem provides a sharp exponential
improvement of the classical John theorem in the following senses:

• If average distortion is replaced by bi-Lipschitz then the
resulting distortion may grow polynomially in d .

• 1
2 is the least amount of snowflaking for which the resulting
distortion depends subpolynomially on d .

• The bound O(
√

log d) is optimal for the quadratic average
distortion of a d-dimensional normed space.
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Application: expanders

Let G = (V ,E ) be an r -regular graph and let A(G ) be its
normalized adjacency matrix, whose entries are given by

∀ u, v ∈ V , A(G )u,v =
1{u,v}∈E

r
.

A(G ) is a symmetric stochastic matrix with real eigenvalues

1 = λ1(G ) ≥ λ2(G ) ≥ · · · ≥ λ|V |(G ) ≥ −1.

Denote by γ(G ) = 1
1−λ2(G) the reciprocal spectral gap of G .

A sequence of r -regular graphs {Gn = (Vn,En)}∞n=1 such that
|Vn| → ∞ as n→∞ is an expander graph sequence if there
exists C ∈ (0,∞) such that γ(Gn) ≤ C for all n ∈ N.
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Application: expanders are high-dimensional

Theorem (A. Naor, 2017)

Suppose that G = (V ,E ) is an n-vertex connected 4-regular
expander which admits a bi-Lipschitz embedding into a
d-dimensional normed space X = (Rd , ‖ · ‖) with distortion at
most D. Then d ≥ nc/D for some universal constant c ∈ (0,∞).

B. Johnson, J. Lindenstrauss and G. Schechtman (1987): For
any n ∈ N and D ≥ 1, every n-point metric space embeds with
bi-Lipschitz distortion D in some d-dimensional normed space,
where d ≤ nC/D for some universal constant C ∈ (0,∞).

The sharpness of the JLS theorem had previously been established
in important work of J. Matoušek (1996) via an ingenious
construction of random metric spaces which relied on input from
real algebraic geometry.
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Proof using the average John theorem

Let G = (V ,E ) be an n-vertex 4-regular connected graph and
denote γ(G ) = γ. Suppose that there exists a d-dimensional
normed space X = (Rd , ‖ · ‖) and a map f : V → X satisfying

∀ u, v ∈ V , dG (u, v) ≤ ‖f (u)− f (v)‖ ≤ DdG (u, v).

By the average John theorem for the measure 1
n

∑
u∈V δf (u), there

exists a O(
√

log d)-Lipschitz map g : (X , ‖ · ‖1/2)→ `2 with

1

n2

∑
u,v∈V

‖g(f (u))− g(f (v))‖2
`2
≥ 1

n2

∑
u,v∈V

‖f (u)− f (v)‖.

Remark. γ is the best constant such that any h : V → `2 satisfies

1

n2

∑
u,v∈V

‖h(u)− h(v)‖2
`2
≤ γ

|E |
∑
{a,b}∈E

‖h(a)− h(b)‖2
`2
.
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Proof using the average John theorem

Applying this to g ◦ f along with the upper and lower bounds,

1

n2

∑
u,v∈V

dG (u, v) ≤ 1

n2

∑
u,v∈V

‖g(f (u))− g(f (v))‖2
`2

≤ γ

|E |
∑
{a,b}∈E

‖g(f (a))− g(f (b))‖2
`2
. γD log d .

Finally, as the graph G is 4-regular, for any fixed u ∈ V , at least
log4(bn/2c) satisfy dG (u, v) ≥ n

2 . Therefore

log n

100
≤ 1

n2

∑
u,v∈V

dG (u, v) . γD log d ,

which completes the proof. 2
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Nonlinear spectral gap inequalities

Let π = (π1, . . . , πn) be a probability measure on {1, . . . , n}. A
stochastic matrix A ∈ Mn(R) is π-reversible if πiaij = πjaji . We
think of A as the transition matrix of a Markov chain {Xt}t≥0, i.e.

∀ t ≥ 0, P{Xt+1 = j | Xt = i} = aij .

If A is π-reversible, then π is a stationary measure for {Xt}t≥0,

X0 ∼ π =⇒ Xt ∼ π for all t ≥ 1.

Moreover, A defines a self-adjoint operator on L2(π) whose norm is

‖x‖L2(π)
def
=
( n∑

i=1

πix
2
i

) 1
2

and therefore has real eigenvalues

1 = λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) ≥ −1.
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Nonlinear spectral gap inequalities

As in the case of regular graphs, γ(A)
def
= 1

1−λ2(A) is the least
constant such that for any x1, . . . , xn ∈ `2, we have

n∑
i ,j=1

πiπj‖xi − xj‖2
`2
≤ γ(A)

n∑
i ,j=1

πiaij‖xi − xj‖2
`2
.

Definition. Let (M, dM) be a metric space and p ∈ (0,∞). If A is
a π-reversible stochastic matrix, denote by γ(A, dp

M) the least
constant such that for any n ∈ N and x1, . . . , xn ∈M, we have

n∑
i ,j=1

πiπjdM(xi , xj)
p ≤ γ(A, dp

M)
n∑

i ,j=1

πiaijdM(xi , xj)
p.

Major open problem. For which metric spaces M do we have

γ(A; dp
M) ≤ Ψ

( 1

1− λ2(A)

)
for some function Ψ and all reversible stochastic matrices A?



Nonlinear spectral gap inequalities

As in the case of regular graphs, γ(A)
def
= 1

1−λ2(A) is the least
constant such that for any x1, . . . , xn ∈ `2, we have

n∑
i ,j=1

πiπj‖xi − xj‖2
`2
≤ γ(A)

n∑
i ,j=1

πiaij‖xi − xj‖2
`2
.

Definition. Let (M, dM) be a metric space and p ∈ (0,∞). If A is
a π-reversible stochastic matrix, denote by γ(A, dp

M) the least
constant such that for any n ∈ N and x1, . . . , xn ∈M, we have

n∑
i ,j=1

πiπjdM(xi , xj)
p ≤ γ(A, dp

M)
n∑

i ,j=1

πiaijdM(xi , xj)
p.

Major open problem. For which metric spaces M do we have

γ(A; dp
M) ≤ Ψ

( 1

1− λ2(A)

)
for some function Ψ and all reversible stochastic matrices A?



Nonlinear spectral gap inequalities

As in the case of regular graphs, γ(A)
def
= 1

1−λ2(A) is the least
constant such that for any x1, . . . , xn ∈ `2, we have

n∑
i ,j=1

πiπj‖xi − xj‖2
`2
≤ γ(A)

n∑
i ,j=1

πiaij‖xi − xj‖2
`2
.

Definition. Let (M, dM) be a metric space and p ∈ (0,∞). If A is
a π-reversible stochastic matrix, denote by γ(A, dp

M) the least
constant such that for any n ∈ N and x1, . . . , xn ∈M, we have

n∑
i ,j=1

πiπjdM(xi , xj)
p ≤ γ(A, dp

M)
n∑

i ,j=1

πiaijdM(xi , xj)
p.

Major open problem. For which metric spaces M do we have

γ(A; dp
M) ≤ Ψ

( 1

1− λ2(A)

)
for some function Ψ and all reversible stochastic matrices A?



Extrapolation

We shall need the following vector-valued version of Matoušek’s
extrapolation principle for Poincaré inequalities (1997) due to
T. de Laat and M. de la Salle (2017).

Proposition

For every normed space (X , ‖ · ‖), every π-reversible matrix B and
every 1 ≤ p ≤ q,

γ(B, ‖ · ‖q)
p
q .p,q γ(B, ‖ · ‖p) .p,q γ(B, ‖ · ‖q).
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T. de Laat and M. de la Salle (2017).

Proposition

For every normed space (X , ‖ · ‖), every π-reversible matrix B and
every 1 ≤ p ≤ q,

γ(B, ‖ · ‖q)
p
q .p,q γ(B, ‖ · ‖p) .p,q γ(B, ‖ · ‖q).



Nonlinear spectral gaps and average distortion

Suppose that (M, dM) embeds into (Y , ‖ · ‖Y ) with q-average
distortion D and let A be a π-reversible stochastic matrix. Then,
given x1, . . . , xn ∈M there exist y1, . . . , yn ∈ Y satisfying
‖yi − yj‖Y ≤ DdM(xi , xj) for all i , j ∈ {1, . . . , n} and

n∑
i ,j=1

πiπj‖yi − yj‖q ≥
n∑

i ,j=1

πiπjdM(xi , xj)
q.

Therefore,
n∑

i ,j=1

πiπjdM(xi , xj)
q ≤ γ(A,‖ · ‖qY )

n∑
i ,j=1

πiaij‖yi − yj‖qY

≤ Dqγ(A, ‖ · ‖qY )
n∑

i ,j=1

πiaijdM(xi , xj)
q,

which implies that γ(A, dq
M) ≤ Dqγ(A, ‖ · ‖qY ).
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Naor’s duality principle

The pertinence of nonlinear spectral gaps to the study of average
distortion embeddings stems from the following striking converse.

Theorem (A. Naor, 2014)

Suppose that q,D ∈ [1,∞). Let (M, dM) be a metric space and
(Y , ‖ · ‖Y ) be a Banach space such that for every n ∈ N, every
reversible stochastic matrix A ∈ Mn(R) satisfies

γ(A, dq
M) ≤ Dqγ(A, ‖ · ‖qY ).

Then, for any ε > 0, M embeds into some ultrapower of `q(Y )
with q-average distortion at most D + ε.

The proof is a clever Hahn–Banach separation argument.
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Average John as a spectral gap estimate

In view of the duality principle, the average John theorem is
equivalent to the following statement.

Theorem
Let (X , ‖ · ‖) be a finite-dimensional normed space. Then, for every
n ∈ N, every π-reversible stochastic matrix A ∈ Mn(R) satisfies

γ(A, ‖ · ‖X ) ≤ C log(dim(X ) + 1)

1− λ2(A)
,

where C ∈ (0,∞) is a universal constant.
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Thank you!


