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SHELAH’S CONJECTURE AND JOHNSON’S THEOREM
[after Will Johnson]

by Sylvy Anscombe

Abstract. The “Shelah Conjecture” proposes a description of fields whose first-order
theories are without the Independence Property (IP): they are finite, separably closed,
real closed, or admit a non-trivial henselian valuation. One of the most prominent
dividing lines in the contemporary model-theoretic universe, IP holds in a theory if
there is a formula that can define arbitrary subsets of arbitrarily large finite sets. In
2020, Johnson gave a proof of the conjecture in an important case; namely, the case
of dp-finite (roughly: finite dimensional) theories of fields. Combined with a result of
Halevi–Hasson–Jahnke, Johnson’s theorem completely classifies the dp-finite theories of
fields.

We will explain this classification, describe some ingredients of the proof, and explore
how Johnson’s Theorem and the Shelah Conjecture fit into the bigger picture.
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1. INTRODUCTION

This talk is about Will Johnson’s proof of the “Shelah Conjecture” for the case of fields
of finite dp-rank, from the remarkable series of papers (Johnson, 2019a,b, 2020a,b,c,
2021a,b). The theorem is:

Theorem 1.1. — If a field K is dp-finite then K is finite, or algebraically closed, or
real-closed, or admits a non-trivial henselian valuation.

The first three cases (finite, algebraically closed, real-closed) are well-understood
model theoretically. Combining Johnson’s theorem with a result from Halevi, Hasson,
and Jahnke (2019), we obtain a classification of the first-order theories of dp-finite
fields, including an algebraic description of the complete theories of henselian valued
fields arising in the fourth case. A field (or rather its complete theory) is “dp-finite” if it
admits a certain notion of rank (or dimension), which takes finite values.

Here is a rough plan for this talk:
— to introduce the principal definitions, results, and conjectures in the subject;
— to explain the relationships between the conjectures, and to explain the reduction

to the ‘V -topology conjecture’;
— to describe the main ideas of Johnson’s proof, of course omitting many details; and
— to discuss the consequences of the theorem, namely the classification of dp-finite

fields.
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Remark 1.2 (Notational conventions). — Fields will often be denoted by letters like
K,F, L, usually suppressing the field structure (i.e. the addition, multiplication, etc.).
By K = (K, . . .) we denote an expansion of a field K. Usually an elementary extension or
an ultrapower of a field K will be denoted K∗, although a saturated elementary extension
(also known as a ‘monster model’) will be denoted K. The set of prime numbers will be
denoted P. Ordered abelian groups are understood to be totally ordered.

2. SOME MODEL THEORY OF FIELDS AND VALUED FIELDS

There are many excellent references for introductions to valuations, valued fields, and
the model theory of valued fields. For example: Engler and Prestel (2005), Jahnke
(2018), and van den Dries (2014).

Definition 2.1. — A valued field is a pair (K, v) of a field K and a valuation
v : K −� Γv ∪ {∞}, where the value group Γv is an ordered abelian group, written
additively, such that

(i) v(x) =∞⇐⇒ x = 0,
(ii) v(xy) = v(x) + v(y), and
(iii) v(x+ y) = min{v(x), v(y)}.

The valuation ring Ov = {x ∈ K | v(x) ≥ 0} and the valuation ideal mv = {x ∈
K | v(x) > 0} each determine the valuation, up to isomorphism of the value group
(commuting with the valuations), since:

v(x) ≤ v(y)⇐⇒ yx−1 ∈ Ov ⇐⇒ xy−1 /∈ mv,

for all x, y ∈ K×. There is also the residue field kv := Ov/mv. We say v is trivial if
Γv = {0}. We say (K, v) is equicharacteristic/equal characteristic if char(K) = char(kv),
otherwise we say it is mixed characteristic (0, p) if char(K) = 0 and char(kv) = p.

Remark 2.2. — Two valuations v, w are equivalent if Ov = Ow. As remarked above,
this holds if and only if there is an isomorphism ϕΓ : Γv −→ Γw such that w = ϕΓ ◦ v.
As an abuse of language and notation, we usually identify equivalent valuations.

Definition 2.3. — (K, v) is henselian if one (equivalently, all) of the following
hold(s):

(i) The valuation v has a unique extension to the algebraic closure of K.
(ii) The valuation v extends uniquely to each finite extension of K.
(iii) For all monic f ∈ Ov[X] and a ∈ Ov, if f(a) ∈ mv and f ′(a) /∈ mv, there exists

a unique a′ ∈ a+ mv with f(a′) = 0.
(iv) For all monic f ∈ Ov[X] and a ∈ Ov with v(f(a)) > 2v(f ′(a)), there exists

a′ ∈ Ov with f(a′) = 0 and v(a− a′) > v(f ′(a)).
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(v) All polynomials f ∈ Xn+1 +Xn + mv[X]<n have a root in K.

We also say that v itself is henselian. A field K is henselian if it admits a non-
trivial henselian valuation. A henselian valued field (K, v) (or the valuation v itself)
is (separably) defectless if [L : K] = (Γw : Γv) · [kw : kv] for every finite (separable)
extension (L,w)/(K, v).

Henselianity it related to completeness: if Γv ∼= Z and K is complete with respect to
the ultrametric induced by v, then (K, v) is henselian. Every henselian (K, v) of residue
characteristic zero is defectless.

Example 2.4. — Of course there are so many examples worth discussing at this point,
but let me introduce a few key ones.

(i) (K, vtriv): any field K can be equipped with the trivial valuation, i.e. such that
Ov = K. The value group is {0}, the residue field is K, and the valuation is
henselian.

(ii) (Q, vp): for any prime number p there is the p-adic valuation on Q, given by

vp(x) :=
{
` for x = p`m/n, p - m,n and `,m, n ∈ Z
∞ for x = 0.

The value group is Z, the residue field is Fp, and the valuation is not henselian.
The p-adic valuations and the trivial valuation are the only valuations on Q, by
a theorem of Ostrowski.

(iii) (C, v): C admits a large family of non-trivial valuations. Each of these valuations
has divisible value group, algebraically closed residue field (all characteristics are
possible), and these valuations are henselian and defectless.

(iv) Algebraic fields of positive characteristic (for example Fp and Falg
p ) admit only

the trivial valuation.
(v) (Qp, vp): the field of p-adic numbers is the completion of Q with respect to

vp (i.e. with respect to the absolute value associated to vp). This completion Qp

inherits a field structure, and it admits a unique valuation (also denoted vp) such
that Qp is complete with respect to vp. The value group is Z, the residue field is
Fp, and the valuation is henselian and defectless.

(vi) (F ((Γ)), vt): for each ordered abelian group Γ and each field F we may form the
generalized power series field/Hahn series field, which is

F ((Γ)) :=
{∑
γ∈Γ

aγt
γ

∣∣∣∣ aγ ∈ F and {γ | aγ 6= 0} is well-ordered
}
,

with both addition and multiplication ‘as you would expect’, that is:∑
γ∈Γ

aγt
γ +

∑
γ∈Γ

bγt
γ =

∑
γ∈Γ

(aγ + bγ)tγ,
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and ∑
γ∈Γ

aγt
γ ·
∑
γ∈Γ

bγt
γ =

∑
γ∈Γ

( ∑
α+β=γ

aαbβ
)
tγ.

We define the t-adic valuation

vt
(∑

γ

aγt
γ
)

:= min{γ | aγ 6= 0}

and vt(0) :=∞. The value group is Γ, the residue field is F , and the valuation
is henselian and defectless.

(vii) One very important family of examples is the family of local fields of positive
characteristic: (Fq((t)), vt) := (Fq((Z)), vt), for q a prime power.

Remark 2.5 (Coarsenings and refinements). — Let v, w be two valuations on a field
K. We say that v is a coarsening of w if Ov ⊇ Ow; in this case we also say that w
is a refinement of v. This defines a partial order on the set of valuations on K (up
to equivalence). In fact the valuations are directed, in that there is a join v ∨ w of
two valuations, which is the finest common coarsening. The valuation ring of v ∨ w is
Ov∨w = OvOw. Moreover the family of valuations coarser than a given one is totally
ordered (so, in this sense, the valuations form a tree). The coarsest valuation is vtriv.
Two valuations v, w are dependent if v ∨w is non-trivial, and independent otherwise.
This is an equivalence relation on the non-trivial valuations.

Remark 2.6. — The coarsenings w of a valuation v on a field K (up to equivalence)
correspond bijectively to the convex subgroups of Γv:

{∆Econvex Γv} ←→ {w ⊇ v}
∆←→ [w : x 7−→ v(x) + ∆].

This is surjective because each coarsening w ⊇ v is equivalent to a valuation with value
group equal to a quotient of Γv by a convex subgroup.

Remark 2.7 (Valuation topology). — Let (K, v) be a valued field. We define a field
topology Tv on K by declaring a basis of neighbourhoods of 0 to be given by a · Ov, for
a ∈ K×. Of course, one must check that this really does give a field topology: we will
discuss this more later. In fact, two non-trivial valuations induce the same topology if
and only if they are dependent.

Remark 2.8. — Note that Tv is indiscrete if and only if v is trivial. Some prefer to
think of the topology induced by the trivial valuation as the discrete topology: this
corresponds to declaring instead the basis to be given by sets of the form a ·mv. For
non-trivial valuations, these two definitions coincide, but for vtriv one gets the indiscrete
topology or the discrete topology. The reason I prefer the indiscrete topology is that it
is the coarsest topology, and K = Ovtriv is the coarsest valuation ring.

Definition 2.9. — We introduce several first-order languages.
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— Loag = {+,−, 0,≤,∞} is the language of ordered abelian groups (written additively)
with an additional symbol ∞. Interpretations will be the disjoint union Γ t {∞},
where Γ is an ordered abelian group and∞ (the interpretation of ∞) is an additional
absorbing element ‘at infinity’, i.e. x+∞ =∞ and x ≤ ∞, for all x.

— Lring = {+,−, ·, 0, 1} (we will often suppress field structure from notation).
— Lvf = Lring ∪ {O} where O is a unary relation interpreted in a valued field (K, v)

by the valuation ring Ov.
— Ldiv = Lring ∪ {|}, where | is a binary relation interpreted in a valued field (K, v)

by writing x | y if and only if v(x) ≤ v(y).
— Lvf−3, which is a three-sorted language, with two sorts K,k equipped with Lring and

a sort Γ equipped with Loag. There are two unary function symbols val : K −→ Γ
and res : K −→ k. In a valued field (K, v) we interpret K by K, k by the residue
field kv, and Γ by the value group Γv (with an extra element ∞). The function
symbol val is interpreted by the valuation, and res is interpreted by the residue
map, extended to have the domain K by mapping each x /∈ Ov to 0.

— LPas = Lvf−3∪{ac} be the expansion of Lvf−3 by a unary function symbol ac : K −→
k, interpreted by an angular component map (which is a group homomorphism
ac : K× −→ k×, extending the residue map on Ov).

Remark 2.10. — The choice of language in which to study valued fields can be very
important, for example when considering properties like quantifier elimination. We will
mostly be interested in combinatorial properties of the class of definable sets, with no
regard specifically for the complexity of the definitions of those sets. Therefore, it will
not matter to us whether we think of valued fields as Lvf-structures, as Ldiv-structures,
or as Lvf−3-structures. The angular component map is not in general definable or
interpretable in a valued field, nor does every valued field admit such a map, thus for
our purposes the languages Lvf−3 and LPas are inequivalent.

For this talk, and for the sake of simplicity, we will study valued fields as Lvf−3-
structures, although we continue to denote them simply as the pair (K, v) of the field
and the valuation.

Example 2.11. — We can now introduce several important theories.

(i) ACF – the Lring-theory of algebraically closed fields – is axiomatised by the
theory of fields together with sentences expressing for each n and for a model
K that every non-constant monic polynomial over K of degree at most n has a
root. The completions are

— ACFp := ACF ∪ {χp}, for p ∈ P, where χp is the sentence

1 + . . .+ 1︸ ︷︷ ︸
p times

= 0,

and
— ACF0 := ACF ∪ {¬χp | p ∈ P}.
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(ii) SCF – the Lring-theory of separably closed fields – is axiomatised by the theory
of fields together with sentences expressing for each n and for a model K that
every non-constant monic separable polynomial over K of degree at most n has
a root. The completions are

— SCF0 := ACF0,
— SCFp,e := SCF ∪ {χp, εe,¬εe+1}, for p ∈ P and e ∈ N, where χp is as

above and εe is a sentence expressing for a model K that the imperfection
degree(1) of K is at least e.

— SCFp,∞ := SCF ∪ {χp, εe | e ∈ N}.
(iii) ACVF – the Lvf-theory of non-trivially valued algebraically closed fields The

completions are
— ACVFp,p := ACVF ∪ {χp}, for p ∈ P,
— ACVF0,p := ACVF ∪ {¬χl | l ∈ P} ∪ {χk

p}, for p ∈ P, where χk
p is the

sentence 1k + . . .+ 1k = 0k (i.e. the sentence χp interpreted in the sort k
for the residue field), and

— ACVF0,0 := ACVF ∪ {¬χk
l | l ∈ P}.

(iv) SCVF – the Lvf-theory of non-trivially valued separably closed fields. The
completions are

— SCVF0,0 := ACVF0,0
— SCVF0,p := ACVF0,p
— SCVFp,e := SCVF ∪ {χp, εe,¬εe+1}, for p ∈ P and e ∈ N, and
— SCVFp,∞ := SCVF ∪ {χp,¬εe | e ∈ N}, for p ∈ P.

(v) Th
p and Th

(0,p), the theories of henselian valued fields of equal characteristic
p ∈ P ∪ {0} and of mixed characteristic (0, p), for p ∈ P, respectively.

(vi) Th
p(k,Γ), for p ∈ P ∪ {0}, a field k of characteristic p, and an ordered abelian

group Γ, is the theory of henselian valued fields of equal characteristic p, with
residue field elementarily equivalent to k and value group elementarily equivalent
to Γ.

(vii) Th
(0,p)(k,Γ, γ), for p ∈ P, a field k of characteristic p, and a pointed ordered

abelian group (Γ, γ), is the theory of henselian valued fields of mixed characteristic
(0, p), with residue field elementarily equivalent to k and value group (with
distinguished element v(p)) elementarily equivalent to (Γ, γ).

Theorem 2.12 (Ax and Kochen, 1965a; Ershov, 1965)
For every field k of characteristic zero, and every ordered abelian group Γ, the

theory Th
0(k,Γ) is complete. Consequently, if (K, v) is henselian of equal characteristic

zero, its theory is axiomatised by requiring of a model (L,w) that it is

(1)For a field K of characteristic p ∈ P, a subset B ⊆ K is said to be p-independent if b /∈ K(p)(B\{b}),
for each b ∈ B. The cardinality of a maximal p-independent subset is called the imperfection degree
of K. For more information on p-independence, see (Mac Lane, 1939a,b; Teichmüller, 1936).
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— henselian,
— that the value group Γw is elementarily equivalent to Γv, and
— that its residue field kw is elementarily equivalent to kv.

Corollary 2.13. — If (K, v) is henselian of equal characteristic 0, then (K, v) ≡
(kv((Γv)), vt).

Theorem 2.14 (Ax and Kochen, 1965b; Prestel and Roquette, 1984)
For every prime number p ∈ P, the theory Th

(0,p)(Fp,Z, 1) is complete. This is the
complete theory of the valued field (Qp, vp).

In fact, the theory of each finite extension (K, v)/(Qp, vp) is axiomatised by axioms
that express the following, for a model (L,w):
— (L,w) is henselian,
— the pointed value groups (Γw, w(p)) and (Γv, v(p)) are elementarily equivalent,
— the minimal polynomial of a certain ‘uniformiser’ (element of minimum positive

value) of (K, v) has a root in L, and
— the residue fields kw and kv are isomorphic (note that kv is finite).

Note that Theorem 2.12 does not extend straightforwardly to equal positive charac-
teristic: if k is of characteristic p > 0 and Γ is an ordered abelian group, it does not
follow that Th

p(k,Γ) is complete.

Example 2.15. — We introduce several more theories, based on the properties ‘henselian
and defectless’ or ‘henselian and separable defectlessness’.

(viii) Td
p and Td

(0,p), the theories of henselian and defectless valued fields of equal char-
acteristic p ∈ P ∪ {0} and of mixed characteristic (0, p), for p ∈ P, respectively.

(ix) Tsd
p,e the theory of henselian and separably defectless valued fields of equal char-

acteristic p ∈ P and imperfection degree e ∈ N ∪ {∞}.
(x) Td

p(k,Γ), Td
(0,p)(k,Γ, γ), and Tsd

p,e(k,Γ), are defined similarly, for appropriate
p, e, k,Γ, γ.

Defectlessness and separable defectlessness in certain circumstances are strong enough
to provide an Ax–Kochen/Ershov Principle in positive characteristic, as we will see in
Theorem 2.18.

Remark 2.16. — In (viii), note that Td
0 ≡ Th

0. In (ix) we allowed e = 0 in which case
‘separably defectless’ coincides with ‘defectless’, and so Tsd

p,0 ≡ Td
p.

Remark 2.17. — Suppose that k is a perfect field of characteristic p ∈ P ∪ {0}, that Γ
is p-divisible (in the case p > 0), and that γ ∈ Γ is any distinguished positive element.
Then Td

p(k,Γ) is a theory of tame valued fields of equal characteristic, Td
(0,p)(k,Γ, γ)

is a theory of tame valued fields of mixed characteristic, and Tsd
p,e(k,Γ) is a theory of

separably tame valued fields. The preceding sentence can be taken as the definition
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of ‘tame’; alternatively see Kuhlmann (2016). In particular, Td
p(k,Γ) is the complete

theory of (k((Γ)), vt).

Theorem 2.18 (Kuhlmann, 2016; Kuhlmann and Pal, 2016)
Let k be perfect of characteristic p ∈ P, let Γ be p-divisible, and let e ∈ N ∪ {∞}.

Then Td
p(k,Γ) and Tsd

p,e(k,Γ) are complete.

Example 2.19. — One further slightly more subtle family of examples. For p ∈ P, let
k be a field of characteristic p, and let (Γ, γ) be a pointed ordered abelian group. Let Γγ−
denote the largest convex subgroup of Γ not containing γ, and let Γγ+ denote the smallest
convex subgroup of Γ containing γ. Thus, for a valued field (K, v) of mixed characteristic
with value group Γ, (Γv)v(p)− is the largest convex subgroup of Γ not containing v(p),
and (Γv)v(p)+ is the smallest convex subgroup of Γ containing v(p). We denote by vp the
coarsening of v corresponding to (Γv)v(p)−, and by v0 the coarsening of v corresponding
to (Γv)v(p)−. Then vp is the finest coarsening of v that is still of mixed characteristic.

Now, suppose that Γ/Γγ− is discrete with only finitely many elements between 0 and
γ + Γγ− (i.e. the image of γ in the quotient). We define the theories

(xi) Tsd
(0,p),e(k,Γ, γ) to be the theory Th

(0,p)(k,Γ, γ) together with axioms that express
of a model (K, v) that the valued residue field (kvp , v̄) is a model of Tsd

p,e(k,Γγ−).

If k is perfect and Γγ− is p-divisible, then this theory expresses that (kvp , v̄) is a separably
tame valued field.

2.1. NIP and Dp-rank
For background on elementary model theory, see Marker (2002), and for a thorough

introduction to the subject of NIP theories, see Simon (2015).
Let T be an L-theory.

Definition 2.20 (NIP). — An L-formula ϕ(x̄, ȳ) has IP (the independence prop-
erty) if there is a model M |= T and sequences (āi)i∈N in M x̄ and (b̄J)J∈P(N) in M ȳ

such that

M |= ϕ(āi, b̄J)⇐⇒ i ∈ J.

We say that T has IP if some formula has IP. Otherwise we say that T has NIP.

A sequence B = (bn)n<ω of elements of a model is indiscernible over a set A if
whenever n1 < . . . < nk and n′1 < . . . < n′k then tp(bn1 , . . . , bnk

/A) = tp(bn′
1
, . . . , bn′

k
/A).

That is, the type of a tuple from the sequence only depends on the order-type of the
indices.

Next, for NIP theories, we introduce dp-rank. In fact, this is a notion of rank on
partial types in the theory T . Recall that a partial type π(x̄) in the theory T is a set of
L-formulas in the free-variables x̄ that is consistent with T . Such a partial type π(x̄) is
said to be defined over a subset A of a saturated model of T if all the formulas in π(x̄)
have parameters coming only from A.
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Definition 2.21 (Dp-rank). — Let A be a subset of a saturated model of T and let
π(x̄) be a partial type defined over A. The dp-rank of π(x̄), denoted dp-rk(π(x̄)), is
the supremum of cardinal numbers κ such that

(*) for some set of mutually indiscernible sequences {Ij | j < κ} of tuples from a
saturated model of T , there exists an x̄-tuple c̄ which realises π(x̄) such that Ij is
not indiscernible over A ∪ c̄, for all j < κ.

The dp-rank of T , denoted dp-rk(T ), is defined to be the dp-rank of the partial 1-type
x = x.

We say that T is strongly dependent if dp-rk(T ) ≤ ℵ0 but (∗) doesn’t hold for
ℵ0. We say that T is dp-minimal if dp-rk(T ) = 1; and we say that T is dp-finite if
dp-rk(T ) < ℵ0. Thus

dp-minimal =⇒ dp-finite =⇒ strongly dependent =⇒ NIP.

Example 2.22. —

(i) (Q,<), where Q is simply the set of rational numbers without its field structure,
equipped with the usual ordering, under which it is a totally ordered set. This
is the theory of the ‘dense linear order (without endpoints)’. It is o-minimal:
definable subsets of Q are finite unions of intervals. This property implies
dp-minimality and NIP.

(ii) Z, the ring of integers. Consider the formula ϕ(x, y) defined to be ∃z xz = y,
and consider an ℵ1-saturated elementary extension Z∗ � Z. For i ∈ N, let ai be
the i-th prime number, and for each subset J of N, define bJ := ∏

i∈J ai (which
makes sense as an element of Z∗). Then ϕ(ai, bJ) if and only if i ∈ J ; so the
theory of Z has IP.

(iii) Q, the field of rational numbers. Since Z is definable in Q by a theorem of
Robinson, Q also has IP.

(iv) C and Falg
p , the field of complex numbers and the algebraic closure of Fp. These

are both strongly minimal (thus stable and dp-minimal, thus NIP), this can be
seen directly from quantifier elimination.

(v) (R, <), the ordered field of real numbers. This admits a quantifier elimination in
the language of ordered fields. In particular, it is o-minimal, therefore dp-minimal
and NIP.

When it comes to ordered abelian groups, the situation of NIP, dp-finite, and dp-
minimal theories are completely understood, by the following three theorems.

Theorem 2.23 (Gurevich and Schmitt, 1984). — The theory of ordered abelian
groups is NIP. Thus all Loag-theories of ordered abelian groups are NIP.
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Theorem 2.24 (Dolich and Goodrick, 2018; Farré, 2017; Halevi and Palacín,
2019)

Characterization of dp-finite ordered abelian groups: Γ is dp-finite if and only if
— for cofinitely many prime numbers p we have (Γ : pΓ) <∞, and
— for every prime number p such that (Γ : pΓ) = ∞, there are only finitely many

equivalence classes in the equivalence relation ∼p defined by:

γ1 ∼p γ2 ⇐⇒ H(γ1) = H(γ2),

where H(γ) is the largest convex subgroup such that γ /∈ H + pΓ (or H(γ) = ∅ if
γ ∈ pΓ).

Theorem 2.25 (Jahnke, Simon, and Walsberg, 2017). — Characterization of
dp-minimal ordered abelian groups: Γ is dp-minimal if and only if Γ/pΓ is finite for all
prime numbers p.

For the purposes of classifying NIP fields and valued fields, a useful and powerful
result is the following:

Theorem 2.26 (Kaplan, Scanlon, and Wagner, 2011)
If K is NIP and of characteristic p > 0, then K admits no Galois extensions of

degree divisible by p.

Example 2.27. —

(i) Let (K, v) be a henselian valued field of equicharacteristic 0. Then (K, v) is NIP
in Lvf−3 if and only if kv is NIP in Lring, by Delon (1981) and Gurevich and
Schmitt (1984).

(ii) Consider (Qp, vp): this is NIP by Bélair (1999), and dp-minimal by Dolich,
Goodrick, and Lippel (2011).

(iii) Consider (Fp((t)), vt) is not NIP — see Kaplan, Scanlon, and Wagner
(2011).

(iv) Consider (F ((Γ)), vt): if char(F ) = 0 then we can apply (i); otherwise, Γ is
p-divisible and F is perfect, and this is a prototypical tame valued field of equal
positive characteristic. Such tame valued fields are NIP if and only if the residue
field is NIP, and this is proved in detail by Jahnke and Simon (2020).

(v) Separably tame valued fields are also discussed by Jahnke and Simon (2020)
as well as by Anscombe and Jahnke (2019). We will state this in more detail
in the final section of the talk.

We will now state three technical and very useful theorems that we will make use of a
number of times. We denote by T eq the theory T expanded by all interpretable sets,
and byMsh the structureM expanded by all externally definable sets, i.e. those sets
definable using parameters from an elementary extension.
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Theorem 2.28 (Shelah, 2009). — T is NIP (resp. strongly dependent) if and only if
T eq is NIP (resp. strongly dependent).

Theorem 2.29 (Shelah, 2014). — IfM is NIP (resp. strongly dependent, resp. dp-
minimal) thenMsh is NIP (resp. strongly dependent, resp. dp-minimal).

Theorem 2.30 (Jahnke and Koenigsmann, 2015). — For each p ∈ P there is a
formula ϕp(x) in the language of rings that defines the valuation ring of the canonical
p-henselian valuation vpK in every field.

I won’t say any more about the canonical p-henselian valuation, except that vpK is
always a refinement of the canonical henselian valuation vK , and so if K is henselian
then vpK is non-trivial and defines the henselian topology.

Finally, Jahnke has proved the ‘henselian expansion theorem’:

Theorem 2.31 (Jahnke, 2016). — If (K, v) is henselian and K is NIP then (K, v)
NIP.

2.2. The conjectures and theorems

An early result in the direction of classifying the theories of fields satisfying one of
the model theoretic dividing lines, is the following.

Theorem 2.32 (Macintyre, 1971). — If K is an infinite field of finite Morley rank
then K is algebraically closed.

The conjecture that motivates this whole subject is —roughly speaking— that every
NIP field has a non-trivial henselian valuation, unless there is a silly reason why not.
A little more precisely, unless the field is an algebraic extension of Fp, or it is an
archimedean real closed field. Note that a real-closed field admits a non-trivial henselian
valuation if and only if its ordering is non-archimedean. The usual formulation is the
following:

Conjecture 2.33 (Shelah’s Conjecture, (SC)). — If K is NIP then K is either

(i) finite, or
(ii) algebraically closed, or
(iii) real closed, or
(iv) henselian.

Closely related to Shelah’s Conjecture, is the following:

Conjecture 2.34 (Henselianity Conjecture, (HC)). — Let (K, v) be NIP. Then v is
henselian.
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In Halevi, Hasson, and Jahnke (2020) it is proved that (HC) is a consequence
of (SC). Denote by (SC)<ω and (HC)<ω the specialisations of the above conjectures
to the case of dp-finite fields. We are now in a position to precisely state Johnson’s
theorem.

Theorem 2.35 (Johnson’s Theorem). — (SC)<ω holds: if K is dp-finite then K is
either

(i) finite, or
(ii) algebraically closed, or
(iii) real closed, or
(iv) henselian.

Halevi, Hasson, and Jahnke (2019) gave a conjectural characterization of the
strongly dependent fields, based on the assumption of Shelah’s Conjecture for strongly
dependent fields. Specialising to the case of dp-finite fields, by combining Johnson’s
Theorem and Theorem 3.4 of Halevi, Hasson, and Jahnke (2019), we have the
following:

Corollary 2.36 (Characterization of dp-finite fields). — A field K is dp-finite if and
only if there is a henselian defectless valuation v on K such that

(i) kv is algebraically closed, real closed, or p-adically closed (including finite exten-
sions),

(ii) Γv is dp-finite (as an ordered abelian group), and
(iii) if (K, v) has residue characteristic p then [−v(p), v(p)] ⊆ p · Γv.

Furthermore, there is an Ax–Kochen/Ershov Principle for dp-finite valued fields: the
theory of a dp-finite valued field (K, v) is determined by the theory of kv and the theory
of Γv (in the mixed characteristic case we name the constant v(p) in Γv).

Theorem 3.13 of Halevi, Hasson, and Jahnke (2019) rephrases the characterization
into a classification of the complete theories of dp-finite fields:

Corollary 2.37 (Classification of complete theories of dp-finite fields)
Let K be an infinite dp-finite field and let vK be the (possibly trivial) canonical

henselian valuation on K. Assuming Shelah’s conjecture, one the following holds:

(i) (K, vK) |= Th
0(C,Γ),

(ii) (K, vK) |= Th
0(R,Γ),

(iii) (K, vK) |= Td
p(Falg

p ,Γ),
(iv) (K, vK) is elementarily equivalent to a finite extension of a model of

Th
(0,p)(Fp,Γ, γ), where γ is the minimum positive element of Γ,

(v) (K, vK) |= Td
(0,p)(Falg

p ,Γ, γ), where Γγ+ is p-divisible,
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and where in all cases Γ is strongly dependent.

All these theories are complete (in case (iv) the complete theories can also be de-
scribed).

Returning to the case of strongly dependent fields, since all the fields occuring in the
characterization above are dp-finite, these result show that if Shelah’s Conjecture holds
for strongly dependent fields, then in fact all strongly dependent fields are dp-finite, and
so the above would also classify the complete theories of strongly dependent fields. This
idea of conjecturally classifying complete theories was later extended to the case of NIP
fields in Anscombe and Jahnke (2019).

2.3. Reduction

I want to discuss the reduction of Shelah’s Conjecture to the apparently weaker
problem of finding a ‘unique definable V -topology’ on every infinite unstable dp-finite
field. For the present, a ‘V -topology’ is simply a field topology induced by a valuation
or absolute value, and a topology is ‘definable’ if there is a definable family of sets that
form a base for the filter of neighbourhoods of 0. We will discuss these notions more
carefully later.

Conjecture 2.38 (V-topology conjecture, (VC)). — If (K, . . .) is NIP then either

(i) K is finite, or
(ii) K is separably closed, or
(iii) K admits a unique definable V-topology.

Remark 2.39 (It’s easy to define the henselian topology!) — If (K, v) is henselian, and
K is not separably closed, then Tv is definable: let f ∈ Ov[X] be monic, non-linear,
separable, and irreducible; then

mv ⊆
1

f(K) −
1

f(K) ⊆ Ov.

This uses henselianity together with some simple calculations of valuations. The moral
is: if the henselian topology exists, it’s easy to define it; but if we don’t know the
henselian topology exists, we don’t know we have defined anything useful.

Conjecture 2.40 (V-topological henselianity conjecture, (VHC))
If K = (K, . . .) is NIP then K admits at most one definable V-topology.

Proposition 2.41 (Reductions). —

(i) (SC) =⇒ (HC) (Halevi, Hasson, and Jahnke, 2020)
(ii) (HC) =⇒ (VHC)

(iii) (HC) ⇐= (VHC)

(iv) (SC) =⇒ (VC)
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(v) (SC) ⇐= (VC)

Proof sketch. —

(i) (Omitted.)
(ii) Suppose (HC). Let K = (K, . . .) be NIP. Suppose that Tτ and Tσ are two

definable V -topologies on K. Passing to an elementary extension if necessary,
we may suppose that both topologies are valuation topologies, corresponding to
valuations u, v say. These valuations are externally definable, thus NIP. Thus
they are both henselian, by (HC). Either u, v are dependent, in which case
Tu = Tv and we are done, or u, v, are independent, in which case K is separably
closed, by the theorem of F.K. Schmidt. If K is separably closed, it admits no
definable non-trivial topology.

(iii) Suppose (VHC). Let K = (K, v, . . .) be a NIP expansion of a valued field. If
v is not henselian, then there is a finite extension L/K to which v admits two
distinct prolongations, w1, w2 say. All of this is interpretable in the theory of K,
so (L,w1, w2) is a NIP bi-valued field. Moreover, w1 and w2 are incomparable.
Let M := L(w1 ∨ w2) be the residue field of L with respect to the join of w1
and w2. Each wi induces a valuation w̄i on M ; and w̄1 and w̄2 are independent.
Again, by interpretability, the bi-valued field (M, w̄1, w̄2) is NIP. This contradicts
(VHC).

(iv) Suppose (SC). Let K = (K, . . .) be NIP. By (i) and (ii), (HC) and (VHC)
hold, so K admits at most one definable V -topology. Applying (SC) we have
four cases. If K is finite or separable closed then we are done. If K is real
closed then the topology is definable: [−1, 1] is definable. Otherwise, if K is
henselian then there is a definable non-trivial p-henselian valuation vp, by a
theorem of Jahnke and Koenigsmann (Theorem 2.30), and moreover vp induces
the henselian topology. There is only one such topology on a non-separably
closed field, thus (VC) holds.

(v) Suppose (VC). Let K be NIP and neither finite, nor algebraically closed, nor
real closed. If K is separably closed then (since it’s not algebraically closed) it
admits a non-trivial henselian valuation. Therefore, by (VC), we may assume
that K is not separably closed, and admits a unique definable V -topology T .
Let (K∗, T ∗) � (K,T ) be ℵ1-saturated. Then T ∗ is a definable V -topology on
K∗. Note also that K∗ is neither finite, nor separably closed, nor real closed.
By (Halevi, Hasson, and Jahnke, 2020), there is a valuation ring O on
K∗ that is externally definable and which induces T ∗. By Shelah’s expansion
theorem, (K∗,O) is NIP. By (ii), (HC) holds, and so O is henselian. By
Jahnke–Koenigsmann (Theorem 2.30), there is a definable non-trivial p-henselian
valuation vp that induces T ∗. Since it is definable, also in K there is a non-trivial
definable valuation v on K that induces T . By (HC) again, v is henselian.



1186–16

(SC)

2.41(i)

��

2.41(iv)

#+

ck

2.41(v)

(VC)

��
(HC)

2.41(ii)

3;

s{

2.41(iii)

(VHC)

Figure 1. Illustration of Proposition 2.41

Remark 2.42. — These equivalences also hold for the dp-finite conjectures.

2.4. Strategy of the proof of (VC)<ω
(i) Reduce (SC)<ω to (VC)<ω (done!).
(ii) Introduce the notion of a heavy set, using dp-rank.
(iii) Form the ‘canonical topology’ from these big sets, and show that it is a group

topology on the additive group.
(iv) Introduce W -rings and W -topologies.
(v) Define another topology, defined by a lattice of subgroups, show this topology is

a W -topology.
(vi) Show that these two topologies coincide, and so the canonical topology is a

W -topology.
(vii) Show there is a unique definable V -topology.

Remark 2.43. — Johnson’s PhD thesis (Johnson, 2016) contained the proof of Shelah’s
Conjecture in the case of dp-minimal fields, i.e. for K of dp-rank equal to 1. There are
several notable simplifications. For example, the required notion of ‘heavy’ is simply
’infinite’.

3. FIELD TOPOLOGIES AND V -TOPOLOGIES

We consider topologies T on abelian groups, rings, and fields. For simplicity we
usually work in a field K, or in its additive group. For more details see the books of
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Warner (1989, 1993). Johnson’s approach to field topologies builds on Prestel and
Ziegler (1978).

Definition 3.1. — A topology on an abelian group (G,+,−, 0) is a group topology
if + and − are continuous. A topology on a ring (R,+, ·,−, 0, 1) is a ring topology if
it is a group topology on the additive group (R,+,−, 0) and multiplication · is continuous.
A topology on a field (K,+, ·,−, −1, 0, 1) is field topology if it is a ring topology on
(K,+, ·,−, 0, 1) and multiplicative inversion −1 : K× −→ K× is continuous (with respect
to the topology induced on K×).

3.1. Filters and filter bases

Given a topology T on a set X, and x ∈ X, denote by NT (x) the filter of neighbour-
hoods of x. For an abelian group G (written additively), the map

Ψ : {group topologies on G} −→ {filters on G}
T 7−→ NT (0)

is injective; i.e. the filter of neighbourhoods of zero determines the topology, since U ⊆ G

is T -open if and only if for each a ∈ U , we have U − a ∈ NT (0). In the other direction,
a filter τ on G is equal to NT (0) for a group topology T on G if and only if both of the
following hold:

(i) For every U ∈ τ , 0 ∈ τ .
(ii) For every U ∈ τ there exists V ∈ τ such that V − V ⊆ U .

This characterizes the image of Ψ. Denote by Tτ the group topology determined by a
filter τ satisfying (i) and (ii). Then, by changing the codomain of Ψ, we get a bijection:

Ψ : {group topologies on G} −→ {filters on G satisfying (i,ii)}
T 7−→ NT (0)
Tτ ←− [ τ.

In other words, (i) and (ii) axiomatize the set of filters equal to NT (0), for a group
topology T on G, within the set of filters on G. However, following (Prestel and
Ziegler, 1978), Johnson works with filter bases instead of filters (see the discussion
later in 3.3). Thus we suppose from now on that τ is a filter base, and not a priori
a filter. Every filter base τ generates a filter 〈τ〉 := {U | ∃V ∈ τ : V ⊆ U}. Then τ

satisfies (i,ii) if and only if 〈τ〉 satisfies (i,ii) (with 〈τ〉 replacing τ). For a filter base
τ satisfying (i) and (ii), denote by Tτ = T〈τ〉 the group topology it generates. The
composition Φ := Ψ−1 ◦ [τ 7→ 〈τ〉] is a map

{group topologies on G}�− {filter bases on G satisfying (i,ii)} : Φ
Tτ ←− [ τ.
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We are interested now in the pre-image under Φ of various classes of topologies. For
example, if we are working with a field K instead of simply a group G, we want to
understand the preimage under Φ of the field topologies on K.

Consider the following conditions on a filter base τ :

(iii) For any x ∈ K× there exists U ∈ τ such that x /∈ U .
(iv) For every U ∈ τ there exists a ∈ U \ {0}.
(v) For every x ∈ K and U ∈ τ , there exists V ∈ τ such that x · U ⊆ V .
(vi) For every U ∈ τ there exists V ∈ τ such that V · V ⊆ U .
(vii) For every U ∈ τ there exists V ∈ τ such that (1 + V )−1 ⊆ 1 + U .

For example (where in each case I mean to indicate that the set on the right is the
preimage under Φ of the set on the left):

{Hausdorff group topologies on G}�− {filter bases on G satisfying (i–iii)}
{non-discrete group topologies on G}�− {filter bases on G satisfying (i,ii,iv)}

{ring topologies on R}�− {filter bases on R satisfying (i,ii,v,vi)}
{field topologies on K}�− {filter bases on K satisfying (i,ii,v–vii)}.

Note that the axioms are interpreted in a group G, ring R, or field K as appropriate.
For example, axiom (iii) is interpreted in a group G by replacing K with G.

3.2. Bounded sets, locally bounded topologies, and V -topologies

Definition 3.2. — Suppose T = Tτ is a non-discrete Hausdorff ring topology on a field
K. A set B ⊆ K is bounded if for any U ∈ τ there exists a ∈ K× with a ·B ⊆ U . We
denote by 〈τ〉⊥ the set of bounded sets. The topology T = Tτ is called locally bounded
if 〈τ〉 ∩ 〈τ〉⊥ 6= ∅.

Note that the notions of ‘bounded’ and ‘locally bounded’ do not depend on our choice
of τ , as long as it generates the given topology. Note also that a locally bounded topology
is by definition a non-discrete Hausdorff ring topology.

Remark 3.3. — Tτ 7−→ 〈τ〉⊥ is injective, i.e. 〈τ〉⊥ determines Tτ .

Definition 3.4. — T = Tτ is a V-topology if it is a locally bounded field topology
and for all B ⊆ K× we have B ∈ 〈τ〉⊥ if and only if K \B−1 ∈ 〈τ〉.

Consider two more axioms for filter bases:

(viii) There exists U ∈ τ such that for every V ∈ τ there is some a ∈ K× with
a · U ⊆ V .

(ix) For every U ∈ τ there exists V ∈ τ such that (K \ U) · (K \ U) ⊆ K \ V .
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Then we have:

{locally bounded topologies on R}�− {filter bases on R satisfying (i–vi,viii)}
{V -topologies on K}�− {filter bases on K satisfying (i–ix)}.

Remark 3.5. — Valuations, absolute values, and orderings all induce V -topologies. If
≤ is a non-archimedean ordering, then the topology T≤ coincides with Tv where v is
the valuation with corresponding valuation ring equal to the ≤-convex hull of Q. Apart
from the trivial topology, distinct V -topologies are incomparable.

K Tindiscrete coarser
OO

��

Ou∨v O|·| Tu∨v T|·|

Ou Ov Ow Tu Tv Tw

[−1, 1]≤ T≤ finer

Figure 2. Valuations, orderings, absolute values, and V -topologies

Theorem 3.6 (Fleischer, 1953; Kowalsky and Dürbaum, 1953)
T is a V -topology if and only if T is induced by a valuation or an absolute value.

Remark 3.7. — The moral of this theorem is that the map from valuation rings Ov to
V -topologies Tv is nearly surjective. If we begin with a V -topology T , then (K,T ) is
locally equivalent to a topological field (K∗, Tv) where Tv is a valuation topology.

3.3. Local equivalence
What is the right framework in which to study a topological field (K,T )? Of course

we could simply view (K,T ) as a two-sorted first-order structure, with K given the
language of rings, and T as a pure set, as well as the membership relation ∈ between
the two sorts. But this is simply too strong a language, and in any case it will be
more suitable to study ‘filtered fields’, which are pairs (K, τ) of a field and a filter base.
We consider the fragment of the two-sorted language consisting of those sentences in
which universal quantifiers over a variable U from the sort τ may only be followed by
positive occurrences of U ; and in which existential quantifiers over a variable U from τ

may only be followed by negative occurrences of U . Sentences of this form are called
local sentences. Two filtered fields (K, τ) and (K ′, τ ′) are locally equivalent if they
satisfy the same local sentences. In fact, if τ and τ ′ are two bases for the filter of
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neighbourhoods of 0 in the same topology (i.e. Tτ = Tτ ′), then (K, τ) and (K, τ ′) are
locally equivalent.

3.4. Definable topologies

What does it mean for a topology to be definable? We say a group topology T

is definable it there is a definable family τ of sets which is a base for the filter of
neighbourhoods of 0 in T , i.e. T = Tτ . We say sets X, Y are co-embeddable if there are
a, b 6= 0 such that aX ⊆ Y and bY ⊆ X.

Proposition 3.8. — Let T be a topology. Then T is definable if and only if there is a
definable family forming a base for the filter of open neighbourhoods of 0 in T .

If Tτ is a locally bounded topology, then 〈τ〉∩〈τ〉⊥ is a co-embeddability class. Further-
more, in this case Tτ is definable if and only if there is a definable bounded neighbourhood
of 0.

3.5. Dr Johnson’s Dictionary: from topologies to rings and back

Let K∗ = (K∗, . . .) � (K, . . .) = K be an elementary extension of an expansion of a
field.

Definition 3.9. — Let T = Tτ be a group topology on the additive group of K. Define

Iτ :=
⋂
{U∗ | U ∈ τ}.

This is a subgroup of the additive group of K∗, called the group of (additive) K-
infinitesimals with respect to τ .

Definition 3.10. — Let T = Tτ be a locally bounded topology on K. Define

Rτ :=
⋃
{U∗ | U ∈ 〈τ〉⊥}.

This is a subring of K∗, called the ring of bounded elements.

Remark 3.11. — — These definitions do not depend on the choice of filter base τ .
— The subgroup Iτ is type-definable over K. The map Tτ 7−→ Iτ is a bijection from

group topologies on K to additive subgroups of K∗ that are type-definable over K.
(One needs to check that all such subgroups really induce a group topology on K.)

— The subring Rτ is ∨-definable over K (i.e. a union of sets definable over K). The
map Tτ 7−→ Rτ is an injection from locally bounded topologies on K to subrings
of K∗ that are ∨-definable over K.

— The subrings coming from locally bounded topologies can be characterized: the
proper subrings R of K∗ with K ⊆ R ⊂ Frac(R) = K∗, that are ∨-definable over
K, and moreover that are co-embeddable with a definable set.

— Since this construction is the same one as in Theorem 3.6, the subrings coming
from V -topologies are certainly non-trivial valuation rings containing K that are
also ∨-definable over K. This is a characterization.
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4. WN -RINGS, WN -TOPOLOGIES, AND BACK TO V -TOPOLOGIES

For a type-definable subgroup G, G00 denotes the smallest type-definable subgroup of
G of bounded (i.e. small) index in G. In NIP theories G00 always exists.

4.1. Wn-rings

Let R be an integral domain. Consider the set of R-submodules of R. Equipped with
join (given by sum: M ∨ N := M + N) and meet (given by M ∧ N := (M ∩ N)00),
this is a modular lattice. The breadth(2) of such a lattice is the largest n such that
it admits an embedding from the powerset of {1, . . . , n}, construed as a lattice. The
breadth of the lattice of R-submodules of R is called the weight of R, denoted wt(R).
A ring R is said to be a Wn-ring if wt(R) ≤ n; and R is said to be a W -ring if it is a
Wn-ring for some n ∈ N.

Theorem 4.1. — Suppose that R is an algebra over an infinite field, or more generally
that R/m is infinite for every maximal ideal mCR. Then wt(R) ≤ dp-rk(R).

4.2. Wn-topologies

Let R be Wn-ring, i.e. an integral domain R with weight(R) ≤ n. Then R is non-
trivial if R 6= Frac(R). A Wn-ring R induces a topology TR := TτR

on Frac(R), where
τR = {aR | a ∈ K×} is the set of principal fractional ideals of R.

Definition 4.2. — A Wn-topological field is a topological field (K,T ) that is locally
equivalent to (Frac(R), TR), for some non-trivial Wn-ring R. A topological field is
W -topological if it is Wn-topological for some n ∈ N.

Remark 4.3. — Let R be a non-trivialWn-ring. Then TR is a Hausdorff non-discrete ring
topology on K = Frac(R). Both the following are bases for the filter of neighbourhoods
of 0 in TR:

— τR (by definition), and
— the set {I ER | I 6= {0}} of non-zero ideals of R.

Since R is a proper subset of K := Frac(R), the maximal ideals of R are non-zero.
Because R is a Wn-ring, there are only finitely many maximal ideals. Therefore their
intersection is non-zero; so the Jacobson radical of R is non-zero. Therefore TR is a field
topology (not just a ring topology).

(2)Breadth is called ‘cube rank’ in Johnson’s preprints.
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4.3. Dictionary: from W -topologies to W -rings

Again, let K∗ = (K∗, . . .) � (K, . . .) = K be an elementary extension of an expansion
of a field. The next proposition answers the question: which subrings of K∗ come from
W -topologies on K?

Proposition 4.4. — Let R ⊆ K∗ be ∨-definable over K with K ⊆ R ⊂ Frac(R) = K∗.

(i) R = Rτ for a locally bounded topology Tτ on K if and only if R is co-embeddable
with a definable set.

(ii) R = Rτ for some Wn-topology Tτ if and only if R is a Wn-ring.
(iii) R = Rτ for some V -topology Tτ if and only if R is a valuation ring.

Parts (i) and (iiii) were already stated above.

Definition 4.5. — Let Tτ be a W -topology on K. The integral closure of Tτ is the
topology T̃τ on K corresponding to the subring of K∗ that is the integral closure of Rτ

in K∗. The local components of Tτ are the topologies Ti on K corresponding to the
subrings of K∗ that are the localizations of Rτ at maximal ideals.

Remark 4.6. — These notions are well-defined: for example, if Tσ is a W -topology, for
some filter base σ, then the integral closure of Rσ in K∗ is in the image of the dictionary
Tτ 7−→ Rτ .

Remark 4.7. — Note also that a W -topology Tτ has exactly one local component if and
only if Rτ is a local ring.

Proposition 4.8. — Let Tτ be a W -topology on K with integral closure T̃τ and local
components T1, . . . , Tn.

(i) Indeed there are finitely many local components Ti.

(ii) The integral closure (̃Ti) of each local component Ti coincides with the corre-
sponding local component (T̃ )i of the integral closure.

(iii) The topologies T̃i are exactly the V -topologies coarsening Tτ .
(iv) Tτ is an ‘independent sum’ of the Ti, i.e. (K,T ) −→ ∏

i(K,Ti) is an embedding
with dense image.

Lemma 4.9 (Sufficient condition for unique V -topological coarsening)
Let Tτ be a W -topology on K. Suppose one of the following holds:

(i) The characteristic of K is not 2 and the squaring map X2 : K× −→ K× is open.
(ii) The characteristic of K is p > 0 and the Artin–Schreier map P : K −→ K is

open.

Then Tτ has a unique V -topological coarsening.
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T̃1 T̃n

T1 Tn T̃τ

Tτ

Figure 3. W -topologies and local components

5. FINDING THE CANONICAL TOPOLOGY

The first attempt to generalise the definition of the topology from the dp-minimal
setting (where it was introduced in Johnson, 2016) to the dp-finite setting appeared in
Sinclair (2018).

5.1. Broad and narrow sets

Let K = (K, . . .) be NIP and ‘eliminating ∃∞’. This latter condition is: for every
formula ϕ(x̄, ȳ) there exists n ∈ N such that, for all ā, ϕ(ā, ȳ) defines either a set of
order ≤ n or an infinite set.

Definition 5.1. — Let X1, . . . , Xn be infinite definable subsets of K. A subset Y ⊆∏
iXi is broad as a subset of ∏iXi if for all m ∈ N there exist sets Si ⊆ Xi, for

i = 1, . . . , n, such that

(i) |Si| = m, for each i, and
(ii) ∏i Si ⊆ Y .

If Y is not broad, it is called narrow.

Lemma 5.2. —

(i) Narrow subsets of ∏iXi form an ideal.
(ii) Broadness and narrowness are definable in families.

Suppose that K is dp-finite (and eliminates ∃∞).

Definition 5.3. — We say that X ⊆ K is rank-minimal if X is infinite, and for
every infinite definable subset Y ⊆ X we have dp-rk(Y ) = dp-rk(X).
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Any dp-minimal set is rank-minimal, and any infinite definable set contains a rank-
minimal subset.

Lemma 5.4. — Let X1, . . . , Xn ⊆ K be rank-minimal. Then a definable subset Y ⊆∏
iXi is broad if and only if dp-rk(Y ) = dp-rk(∏iXi).

Given a definable set X, we say that there is definability of full rank for X if
the condition dp-rk(X) = dp-rk(Y ) is definable as Y ranges over definable families of
subsets of X. Johnson proves definability of full rank for products ∏iXi of rank-minimal
sets Xi.

5.2. Heavy and light sets
Let K be dp-finite. A coordinate configuration is a tuple (X1, . . . , Xn, P, Y ) where

(i) each Xi is a rank-minimal definable subset of K,
(ii) P ⊆ X1 × . . .×Xn is a broad (= full-rank) definable set, and
(iii) the map P −→ K, (x1, . . . , xn) 7−→ ∑

i xi has finite fibres, and image Y .

Note and define:

rank(X1, . . . , Xn, P, Y ) := dp-rk(Y ) = dp-rk(P ) = dp-rk(
∏
i

Xi) =
∑
i

dp-rk(Xi).

Moreover, definability of full rank on ∏iXi implies definability of full rank on P ,
which in turns implies definability of full rank on Y . Define the critical rank ρ of
K to be the maximum rank of any coordinate configuration. A critical coordinate
configuration is a coordinate configuration of rank ρ.

Definition 5.5. — Fix a critical coordinate configuration (X1, . . . , Xn, P, Y ) on K. A
definable subset S ⊆ K is heavy if there is δ ∈ K such that dp-rk(Y ∩(S+δ)) = dp-rk(Y ).
Otherwise S is light.

In the end, it turns out that ‘heavy’ is the same as ‘full rank’.

Proposition 5.6 (Properties of heavy and light sets). — Let X, Y be definable subsets
of K.

(i) If X is finite, then X is light.
(ii) If X, Y are light, then X ∪ Y is light.
(iii) If Y is light and X ⊆ Y , then X is light.
(iv) If {Db}b is a definable family of subsets of K, then {b | Db is light} is definable.
(v) If X is heavy, then α ·X is heavy, for all α ∈ K×.
(vi) If X is heavy, then α +X is heavy, for all α ∈ K.
(vii) If dp-rk(X) = dp-rk(K), then X is heavy.
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(viii) If X, Y are heavy, then so is X 	 Y := {δ ∈ K | X ∩ (Y + δ) is heavy}.

5.3. Finding a definable filter base

Remark 5.7. — Let X, Y ⊆ K. We have the following implications:

— X, Y definable =⇒ X 	 Y definable.
— X, Y heavy =⇒ X 	 Y heavy.

Definition 5.8. — The family of canonical basic neighbourhoods is:

B := {X 	X | X is heavy}.

Lemma 5.9 (Properties of B, cf subsection 3.1). — B is a filter base, i.e.

— ∅ /∈ B,
— for all U, V ∈ B there exists W ∈ B with W ⊆ U ∩ V ;

and

(i) for every U ∈ B, 0 ∈ U ,
(ii) for every U ∈ B there exists V ∈ B with V − V ⊆ U ,
(iv) for every U ∈ B there exists a ∈ U \ {0},
(v) for every x ∈ K and U ∈ B, there exists V ∈ B such that x · U ⊆ V .

If K is not of finite Morley rank, then

(iii) For any x ∈ K× there exists U ∈ B such that x /∈ U .

To conclude: TB is a non-discrete group topology on the additive group of K, and scalar
multiplication is continuous. If K is not of finite Morley rank, then TB is Hausdorff.

Proof sketch. — Let us address just the last point: that if K is not of finite Morley
rank then TB is Hausdorff. It suffices to find a heavy set X such that X 	X is a proper
subset of K. Using Morley rank > 1 find infinitely many pairwise distinct broad global
types. Using the summation map, find two disjoint heavy sets X, Y ⊆ K. Note that
X 	 Y 6= ∅, so let δ ∈ X 	 Y . Observe that δ /∈ (X ∩ (Y + δ))	 (X ∩ (Y + δ)), so the
latter is an element of B that is a proper subset of K.

Definition 5.10. — TB is the canonical topology.

Define IK := IB to be the group of (additive) K-infinitesimals for the canonical
topology TB. Then IK is a K-linear subspace of K that is type-definable over K.



1186–26

5.4. Lattice of additive subgroups
Consider a monster model (K, . . .) of a complete theory of unstable dp-finite fields.

Let Λ be a lattice of (additive) subgroups of K. Recall that in such a lattice the meet
operation is given by G ∧ H = (G ∩ H)00. We write (∗) for the conjunction of the
following properties of Λ:
— {0} /∈ Λ (doesn’t contain the trivial subgroup),
— Λ \ {K} 6= ∅ (contains a proper subgroup),
— K× · Λ = Λ, i.e. if G ∈ Λ and a ∈ K× then aG ∈ Λ,
— Λ has finite breadth.

Proposition 5.11. — Let Λ be a lattice of additive subgroups of K of rank ≤ n

satisfying (∗). Then Λ is a basis for the filter of neighbourhoods of 0 in a Wn-topology
TΛ on K.

Proposition 5.12. — Let κ be such that |G/G00| < κ for any type-definable additive
subgroup G of K. Let K � K be a small model with |K| > κ. Let ΛK be the lattice of
non-zero K-linear subspaces of K that are type-definable over K. Then ΛK satisfies (∗).

Proof sketch. — There are two subtleties:
— Why is the intersection of two elements of ΛK a non-trivial subgroup?
— Why is there any element of ΛK besides K?

The first point is a calculation of dp-rank: any two elements of ΛK have dp-rank equal
to dp-rk(K), and their direct sum has dp-rank twice that. The second point is answered
by IK : this is a non-trivial K-linear subspace of K that is type-definable over K. Since
K is not stable, TB is Hausdorff, and thus IK is non-trivial.

Therefore, ΛK defines a Wn-topology TΛK
on K.

5.5. Conclusion: the topologies coincide
We continue to work with a dp-finite field K which is not of finite Morley rank, and a

monster model K � K. So far we have two topologies on K: (i) the canonical topology
TB coming from heavy sets, and which we know to be a non-discrete Hausdorff group
topology on the additive group of K (with continuous scalar multiplication); and (ii) the
topology TΛK

coming from the lattice of additive subgroups of K that are type-definable
over K, and which we know to be a Wn-topology. Really this latter topology is not one,
but several, depending on the subfield K.

Theorem 5.13 (The topologies coincide). —
(i) The canonical topology TB coincides with the topology TΛK

for a small model
K ≺ K.

(ii) The canonical topology TB on K is a definable field topology.
(iii) The canonical topology TB on any small field K ≺ K is a definable W -topology,

locally equivalent to the canonical topology TB on K.
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(iv) The canonical topology TB is uniformly definable across all models.

Proof sketch. — (i) Let K ≺ K be a small model as in Proposition 5.12. Let TΛK
be

theW -topology on K defined by the lattice ΛK , as above. Note that TΛK
is aWn-

topology, where n ≤ dp-rk(K). Let G ∈ 〈ΛK〉 ∩ 〈ΛK〉⊥. Let K ′ ≺ K be another
small model, with K � K ′, such that {0} ⊂ IK′ ⊆ G. Certainly IK′ ∈ 〈ΛK〉.
A little more work shows that IK′ is co-embeddable with a K ′-definable set D.
Therefore {a ·D | a 6= 0} is a base for the filter of neighbourhoods of TΛK

, i.e. D
defines TΛK

. Since IK′ and D are co-embeddable, we can reduce to the case that
D is already in B, in which case TΛK

is a coarsening of TB. Finally, let V ∈ B
and find a 6= 0 such that a ·D ⊆ V . Therefore D also defines TB.

(ii) We now know that TB coincides with TΛK
, which is aWn-topology, so in particular

a field topology. The definability is as in (i).

Proposition 5.14. — The V-topological coarsenings of the canonical topology on K
are precisely the definable V-topologies on K.

Proof sketch. — Suppose that Tτ is a definable V -topology, let B ∈ 〈τ〉 ∩ 〈τ〉⊥ be
a bounded neighbourhood of 0. Show that B is heavy. So B − B is a bounded
neighbourhood of 0 in Tτ , and it contains the basic neighbourhood B	B of the topology
TB. Therefore Tτ is a coarsening of TB. Finally one shows that each V -topological
coarsening of TB is definable.

Let K = (K, . . .) be an expansion of a field K, which is allowed to be the trivial
expansion.

Theorem 5.15 (Concluding arguments). —
(i) If K is unstable and dp-finite, then it admits a unique definable V -topology —

(VC)<ω.
(ii) If (K, v) is a dp-finite valued field, then v is henselian — (HC)<ω.
(iii) If K is dp-finite, and neither finite nor algebraically closed nor real closed, then

K admits a non-trivial definable henselian valuation — (SC)<ω + definability.
(iv) The conjectural classification of dp-finite fields holds!

Proof sketch. —
(i) Let TB be canonical topology on K. Let Tτ be a definable topology. We have

seen that Tτ is a Wn-topology, where dp-rk(K) = n. Next, verify the conditions
of Lemma 4.9, so that Tτ is local and has a unique V -topological coarsening.

(ii) As in Proposition 2.41(iii). In fact, the definable V -topologies are exactly the
V -topological coarsenings of τ .

(iii) As in Proposition 2.41(v).
(iv) As in Corollary 2.37.
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Remark 5.16. — We conclude that K has a unique definable V -topology. That is,
(VC)<ω (the dp-finite V -topology conjecture) holds. As discussed above, this implies
(SC)<ω (the dp-finite Shelah conjecture). In turn (using Halevi–Hasson–Jahnke) this
gives the classification of dp-finite fields.

6. FURTHER RESULTS AND QUESTIONS

Of course, the big open problem is (SC). We can’t say much in the general NIP
setting, for a field K or for a valued field (K, v), but we do have the following theorem,
which is derived from a theorem about NIP henselian valued fields.

Theorem 6.1 (Anscombe and Jahnke, 2019). — Suppose that (SC) holds. If a
field K is NIP then it is finite or admits a henselian valuation v, such that one of the
following holds:

(i) (K, v) |= Th
0(C,Γ), or equivalently, (K, v) ≡ (C((Γ)), vt),

(ii) (K, v) |= Th
0(R,Γ), or equivalently, (K, v) ≡ (R((Γ)), vt),

(iii) (K, v) |= Tsd
p,e(Falg

p ,Γ), for p ∈ P, e ∈ N ∪ {∞}, and Γ p-divisible,
(iv) (K, v) is elementarily equivalent to a finite extension of a model of Th

(0,p)(Fp,Γ, γ),
where γ is the minimum positive element of Γ, or equivalently, (K, v) ≡
(L((∆)), w ◦ vt) where ∆ = Γ/Γγ+ and (L,w) is a finite extension of (Qp, w),

(v) (K, v) is elementarily equivalent to a finite extension of a model of Tsd
(0,p),e(Falg

p ,Γ, γ),
where the image of γ is the minimum positive element of Γ/Γγ−, and Γγ− is
p-divisible,

(vi) (K, v) |= Td
(0,p)(Falg

p ,Γ, γ), where Γγ+ is p-divisible.

Note that (iii) includes the case that K is perfect, in which case (K, v) ≡ (Falg
p ((Γ)), vt),

Proof sketch. — In fact we seek a classification of NIP theories of henselian valued fields
(K, v), in terms of a given NIP residue field theory. That is, one finds a list of algebraic
conditions A such that an henselian valued field (K, v) field is NIP if and only if A
holds and the residue field kv is NIP. To prove such a theorem, identify A principally
by repeated application of Kaplan–Scanlon–Wagner (Theorem 2.26). Then prove that
under assumptions A there is a ‘transfer principle’ for NIP: if kv is NIP then (K, v) is
NIP. This requires adapting arguments from Jahnke and Simon (2020), in particular
proving stable embeddedness of the value group and residue field under assumptions
A.

Corollary 6.2. — (SC) implies the stable fields conjecture: a stable field is finite
or separably closed.

Proof. — This can be read off the classification.
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Finally, in positive characteristic, Johnson resolved the Henselianity Conjecture for
NIP fields.

Theorem 6.3 (Johnson’s Henselianity Theorem). — Let (K, v) be NIP of positive
characteristic. Then v is henselian.
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