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THE LIOUVILLE FUNCTION IN SHORT INTERVALS
[after Matomäki and Radziwiłł]

by Kannan SOUNDARARAJAN

Résumé: (1) (2) (3) La fonction de Liouville λ est une fonction complètement multiplica-
tive à valeur λ(n) = +1 [resp. −1] si n admet un nombre pair [resp. impair] de facteurs
premiers, comptés avec multiplicité. On s’attend à ce qu’elle se comporte comme une
collection «aléatoire» de signes, +1 et −1 étant équiprobables. Par exemple, une con-
jecture célèbre de Chowla dit que les valeurs λ(n) et λ(n + 1) (plus généralement en
arguments translatés par k entiers distincts fixes) ont corrélation nulle. Selon une autre
croyance répandue, presque tous les intervalles de longueur divergeant vers l’infini de-
vraient donner à peu près le même nombre de valeurs +1 et −1 de λ. Récemment
Matomäki et Radziwiłł ont établi que cette croyance était en effet vraie, et de plus
établi une variante d’un tel résultat pour une classe générale de fonctions multiplica-
tives. Leur collaboration ultérieure avec Tao a conduit ensuite à la démonstration des
versions moyennisées de la conjecture de Chowla, ainsi qu’à celle de l’existence de nou-
veaux comportements de signes de la fonction de Liouville. Enfin un dernier travail de
Tao vérifie une version logarithmique de ladite conjecture et, de là, résout la conjecture
de la discrépance d’Erdős. Dans ce Séminaire je vais exposer quelques-unes des idées
maîtresses sous-jacentes au travail de Matomäki et Radziwiłł.

1. INTRODUCTION

The Liouville function λ is defined by setting λ(n) = 1 if n is composed of an even
number of prime factors (counted with multiplicity) and −1 if n is composed of an
odd number of prime factors. Thus, it is a completely multiplicative function taking
the value −1 at all primes p. The Liouville function is closely related to the Möbius
function µ, which equals λ on square-free integers, and which equals 0 on integers that
are divisible by the square of a prime.

1. Je sais gré au Prof. Tokieda d’avoir bien voulu traduire ce résumé en français.
2. Je remercie Tokieda d’avoir traduit la note ci-dessus en français.
3. Je remercie Tokieda d’avoir traduit la note ci-dessus en français.



1119–02

The Liouville function takes the values 1 and −1 with about equal frequency: as
x→∞

(1)
∑
n≤x

λ(n) = o(x),

and this statement (or the closely related estimate
∑

n≤x µ(n) = o(x)) is equivalent to
the prime number theorem. Much more is expected to be true, and the sequence of
values of λ(n) should appear more or less like a random sequence of ±1. For example,
one expects that the sum in (1) has “square-root cancelation": for any ε > 0

(2)
∑
n≤x

λ(n) = O(x
1
2
+ε),

and this bound is equivalent to the Riemann Hypothesis (for a more precise version of
this equivalence see [33]). In particular, the Riemann Hypothesis implies that

(3)
∑

x<n≤x+h

λ(n) = o(h), provided h > x
1
2
+ε,

and a refinement of this, due to Maier and Montgomery [18], permits the range
h > x1/2(log x)A for a suitable constant A. Unconditionally, Motohashi [27] and Rama-
chandra [30] showed independently that

(4)
∑

x<n≤x+h

λ(n) = o(h), provided h > x
7
12

+ε.

The analogy with random ±1 sequences would suggest cancelation in every short inter-
val as soon as h > xε (perhaps even h ≥ (log x)1+δ is sufficient). Instead of asking for
cancelation in every short interval, if we are content with results that hold for almost
all short intervals, then more is known. Assuming the Riemann Hypothesis, Gao [4]
established that if h ≥ (logX)A for a suitable (large) constant A, then

(5)
∫ 2X

X

∣∣∣ ∑
x<n≤x+h

λ(n)
∣∣∣2dx = o(Xh2),

so that almost all intervals [x, x + h] with X ≤ x ≤ 2X exhibit cancelation in the
values of λ(n). Unconditionally one can use zero density results to show that almost
all intervals have substantial cancelation if h > X1/6+ε. To be precise, Gao’s result (as
well as the results in [33], [18], [27], [30]) was established for the Möbius function, but
only minor changes are needed to cover the Liouville function.

The results described above closely parallel results about the distribution of prime
numbers. We have already mentioned that (1) is equivalent to the prime number
theorem:

(6) ψ(x) =
∑
n≤x

Λ(n) = x+ o(x),
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where Λ(n), the von Mangoldt function, equals log p if n > 1 is a power of the prime
p, and 0 otherwise. Similarly, in analogy with (2), a classical equivalent formulation of
the Riemann Hypothesis states that

(7) ψ(x) = x+O
(
x

1
2 (log x)2

)
,

so that a more precise version of (3) holds

(8) ψ(x+ h)− ψ(x) =
∑

x<n≤x+h

Λ(n) = h+ o(h), provided h > x1/2(log x)2+ε.

Analogously to (4), Huxley [15] (building on a number of previous results) showed
unconditionally that

(9)
∑

x<n≤x+h

Λ(n) ∼ h, provided h > x
7
12

+ε.

Finally, Selberg [32] established that if the Riemann hypothesis holds, and h ≥
(logX)2+ε then

(10)
∫ 2X

X

∣∣∣ ∑
x<n≤x+h

Λ(n)− h
∣∣∣2dx = o(Xh2),

so that almost all such short intervals contain the right number of primes. Uncondi-
tionally one can use Huxley’s zero density estimates to show that almost all intervals
of length h > X1/6+ε contain the right number of primes.

The results on primes invariably preceded their analogues for the Liouville (or
Möbius) function, and often there were some extra complications in the latter case. For
example, the work of Gao is much more involved than Selberg’s estimate (10), and the
corresponding range in (5) is a little weaker. Although there has been dramatic recent
progress in sieve theory and understanding gaps between primes, the estimates (8), (9)
and (10) have not been substantially improved for a long time. So it came as a great
surprise when Matomäki and Radziwiłł established that the Liouville function exhibits
cancelation in almost all short intervals, as soon as the length of the interval tends to
infinity — that is, obtaining qualitatively a definitive version of (5) unconditionally!

Theorem 1.1 (Matomäki and Radziwiłł [20]). — For any ε > 0 there exists H(ε) such
that for all H(ε) < h ≤ X we have∫ 2X

X

∣∣∣ ∑
x<n≤x+h

λ(n)
∣∣∣2dx ≤ εXh2.

Consequently, for H(ε) < h ≤ X one has∣∣∣ ∑
x<n≤x+h

λ(n)
∣∣∣ ≤ ε

1
3h,

except for at most ε
1
3X integers x between X and 2X.



1119–04

As mentioned earlier, the sequence λ(n) is expected to resemble a random ±1 se-
quence, and the expected square-root cancelation in the interval [1, x] and cancelation
in short intervals [x, x + h] reflect the corresponding cancelations in random ±1 se-
quences. Another natural way to capture the apparent randomness of λ(n) is to fix a
pattern of consecutive signs ε1, . . ., εk (each εj being ±1) and ask for the number of n
such that λ(n+ j) = εj for each 1 ≤ j ≤ k. If the Liouville function behaved randomly,
then one would expect that the density of n with this sign pattern should be 1/2k.

Conjecture 1.2 (Chowla [2]). — Let k ≥ 1 be an integer, and let εj = ±1 for
1 ≤ j ≤ k. Then as N →∞

(11) |{n ≤ N : λ(n+ j) = εj for all 1 ≤ j ≤ k}| =
( 1

2k
+ o(1)

)
N.

Moreover, if h1, . . ., hk are any k distinct integers then, as N →∞,

(12)
∑
n≤N

λ(n+ h1)λ(n+ h2) · · ·λ(n+ hk) = o(N).

Observe that
∏k

j=1(1 + εjλ(n+ j)) = 2k if λ(n+ j) = εj, and 0 otherwise. Expanding
this product out, and summing over n, it follows that (12) implies (11). It is also clear
that (12) follows if (11) holds for all k.

The Chowla conjectures resemble the Hardy-Littlewood conjectures on prime k-
tuples, and little is known in their direction. The prime number theorem, in its equiv-
alent form (1), shows that λ(n) = 1 and −1 about equally often, so that (11) holds for
k = 1. When k = 2, there are four possible patterns of signs for λ(n+ 1) and λ(n+ 2),
and as a consequence of Theorem 1.1 it follows that each of these patterns appears a
positive proportion of the time. For k = 3, Hildebrand [13] was able to show that all
eight patterns of three consecutive signs occur infinitely often. By combining Hilde-
brand’s ideas with the work in [20], Matomäki, Radziwiłł, and Tao [23] have shown
that all eight patterns appear a positive proportion of the time. It is still unknown
whether all sixteen four term patterns of signs appear infinitely often (see [1] for some
related work).

Theorem 1.3 (Matomäki, Radziwiłł, and Tao [23]). — For any of the eight choices
of ε1, ε2, ε3 all ±1 we have

lim inf
N→∞

1

N
|{n ≤ N : λ(n+ j) = εj, j = 1, 2, 3}| > 0.

We turn now to (12), which is currently open even in the simplest case of showing∑
n≤N λ(n)λ(n + 1) = o(N). By refining the ideas in [20], Matomäki, Radziwiłł and

Tao [22] showed that a version of Chowla’s conjecture (12) holds if we permit a small
averaging over the parameters h1, . . ., hk.
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Theorem 1.4 (Matomäki, Radziwiłł, and Tao [22]). — Let k be a natural number,
and let ε > 0 be given. There exists h(ε, k) such that for all x ≥ h ≥ h(ε, k) we have∑

1≤h1,...,hk≤h

∣∣∣∑
n≤x

λ(n+ h1) · · ·λ(n+ hk)
∣∣∣ ≤ εhkx.

Building on the ideas in [20] and [23], and introducing further new ideas, Tao [35]
has established a logarithmic version of Chowla’s conjecture (12) in the case k = 2. A
lovely and easily stated consequence of Tao’s work is

(13)
∑
n≤x

λ(n)λ(n+ 1)

n
= o(log x).

Results such as (13), together with their extensions to general multiplicative functions
bounded by 1, form a crucial part of Tao’s remarkable resolution of the Erdős discrep-
ancy problem [36]: If f is any function from the positive integers to {−1,+1} then

sup
d,n

∣∣∣ n∑
j=1

f(jd)
∣∣∣ =∞.

While we have so far confined ourselves to the Liouville function, the work of
Matomäki and Radziwiłł applies more broadly to general classes of multiplicative
functions. For example, Theorem 1.1 holds in the following more general form. Let f
be a multiplicative function with −1 ≤ f(n) ≤ 1 for all n. For any ε > 0 there exists
H(ε) such that if H(ε) < h ≤ X then

(14)
∣∣∣ ∑
x<n≤x+h

f(n)− h

X

∑
X≤n≤2X

f(n)
∣∣∣ ≤ εh,

for all but εX integers x between X and 2X. In other words, for almost all intervals
of length h, the local average of f in the short interval [x, x + h] is close to the global
average of f between X and 2X. We should point out that this result holds uniformly
for all multiplicative functions f with −1 ≤ f(n) ≤ 1 — that is, the quantity H(ε)

depends only on ε and is independent of f . A still more general formulation (needed
for Theorem 1.4) may be found in Appendix 1 of [22].

The work of Matomäki and Radziwiłł permits a number of elegant corollaries, and
we highlight two such results; see Section 8 for a brief discussion of their proofs.

Corollary 1.5 (Matomäki and Radziwiłł [20]). — For every ε > 0, there exists a
constant C(ε) such that for all large N , the interval [N,N + C(ε)

√
N ] contains an

integer all of whose prime factors are below N ε.

Integers without large prime factors (called smooth or friable integers) have been
extensively studied, and the existence of smooth numbers in short intervals is of interest
in understanding the complexity of factoring algorithms. Previously Corollary 1.5 was
only known conditionally on the Riemann hypothesis (see [34]). Further, (14) shows
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that almost all intervals with length tending to infinity contain the right density of
smooth numbers (see Corollary 6 of [20]).

Corollary 1.6 (Matomäki and Radziwiłł [20]). — Let f be a real valued multiplicative
function such that (i) f(p) < 0 for some prime p, and (ii) f(n) 6= 0 for a positive
proportion of integers n. Then for all large N the non-zero values of f(n) with n ≤ N

exhibit a positive proportion of sign changes: precisely, for some δ > 0 and all large N ,
there are K ≥ δN integers 1 ≤ n1 < n2 < . . . < nK ≤ N such that f(nj)f(nj+1) < 0

for all 1 ≤ j ≤ K − 1.

The conditions (i) and (ii) imposed in Corollary 1.6 are plainly necessary for f to
have a positive proportion of sign changes. For the Liouville function, which is never
zero, Corollary 1.6 says that λ(n) = −λ(n + 1) for a positive proportion of values n;
of course this fact is also a special case of Theorem 1.3. Even for the Möbius function,
Corollary 1.6 is new, and improves upon the earlier work of Harman, Pintz and Wolke
[11]; for general multiplicative functions, it improves upon the earlier work of Hildebrand
[14] and Croot [3]. Corollary 1.6 also applies to the Hecke eigenvalues of holomorphic
newforms, where Matomäki and Radziwiłł [19] had recently established such a result
by different means. The sign changes of Hecke eigenvalues are related to the location
of “real zeros" of the newform f(z) (see [5]), and this link formed the initial impetus
for the work of Matomäki and Radziwiłł.

The rest of this article will give a sketch of some of the ideas behind Theorem 1.1;
the reader may also find it useful to consult [21, 37]. For ease of exposition, in our
description of the results of Matomäki and Radziwiłł we have chosen to give a qualitative
sense of their work. In fact Matomäki and Radziwiłł establish Theorem 1.1 in the
stronger quantitative form (for any 2 ≤ h ≤ X)∣∣∣ ∑

x<n≤x+h

λ(n)
∣∣∣� h

(log h)δ

except for at most X(log h)−δ integers x ∈ [X, 2X] – here δ is a small positive con-
stant, which may be taken as 1/200 for example. The limit of their technique would
be a saving of about 1/ log h. In this context, the Riemann hypothesis arguments
would permit better quantifications: for example, Selberg estimates the quantity in
(10) as O(Xh(logX)2), and similarly Gao’s work shows that the variance in (5) is
O(Xh(logX)A) for a suitable constant A. Thus for a restricted range of h, the con-
ditional results exhibit almost a square-root cancelation. As h tends to infinity, one
expects that the sum of the Liouville function in a randomly chosen interval of length
h should be distributed approximately like a normal random variable with mean zero
and variance h; see [6], and [28] in the nearly identical context of the Möbius function,
and [26] for analogous conjectures on primes in short intervals. Finally we point out
the recent work of Goudout [7] and Teräväinen [39] who build on the ideas of Matomäki
and Radziwiłł to study the distribution of almost primes in (almost all) short intervals.
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2. PRELIMINARIES

2.1. General Plancherel bounds

Qualitatively there is no difference between the L2-estimate stated in Theorem 1.1
and the L1-estimate ∫ 2X

X

∣∣∣ ∑
x<n≤x+h

λ(n)
∣∣∣dx ≤ εXh.

However, the L2 formulation has the advantage that we can use the Plancherel for-
mula to transform the problem to understanding Dirichlet polynomials. We begin by
formulating this generally.

Lemma 2.1. — Let a(n) (for n = 1, 2, 3 . . .) denote a sequence of complex numbers and
we suppose that a(n) = 0 for large enough n. Define the associated Dirichlet polynomial

A(y) =
∑
n

a(n)niy.

Let T ≥ 1 be a real number. Then∫ ∞
0

∣∣∣ ∑
xe−1/T<n≤xe1/T

a(n)
∣∣∣2dx
x

=
2

π

∫ ∞
−∞
|A(y)|2

(sin(y/T )

y

)2
dy.

Proof. — For any real number x put

f(x) =
∑

ex−1/T≤n≤ex+1/T

a(n),

so that its Fourier transform f̂(ξ) is given by

f̂(ξ) =

∫ ∞
−∞

f(x)e−ixξdx =
∑
n

a(n)

∫ logn+1/T

logn−1/T
e−ixξdx = A(−ξ)

(2 sin(ξ/T )

ξ

)
.

The left side of the identity of the lemma is
∫∞
−∞ |f(x)|2dx, and the right side is

1
2π

∫∞
−∞ |f̂(ξ)|2dξ, so that by Plancherel the stated identity holds.

In Lemma 2.1 we have considered the sequence a(n) in “multiplicatively” short inter-
vals [xe−1/T , xe1/T ] which is best suited for applying Plancherel, whereas in Theorem
1.1 we are interested in “additively” short intervals [x, x+h]. A simple technical device
(introduced by Saffari and Vaughan [31]) allows one to pass from the multiplicative
situation to the additive one.
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Lemma 2.2. — Let X be large, and let a(n) and A(y) be as in Lemma 2.1, and suppose
that a(n) = 0 unless c1X ≤ n ≤ c2X for some positive constants c1 and c2. Let h be a
real number with 1 ≤ h ≤ c1X/10. Then∫ ∞

0

∣∣∣ ∑
x<n≤x+h

a(n)
∣∣∣2dx� c22

c1
X

∫ ∞
−∞
|A(y)|2 min

( h2

c21X
2
,

1

y2

)
dy.

Proof. — Temporarily define A(x) =
∑

n≤x a(n). Note that for any ν ∈ [2h, 3h]∫ ∞
0

|A(x+ h)−A(x)|2dx ≤ 2

∫ ∞
0

(|A(x+ ν)−A(x)|2 + |A(x+ h)−A(x+ ν)|2)dx.

Integrate this over all 2h ≤ ν ≤ 3h, obtaining that h times the left side above is

�
∫ 3h

2h

∫ ∞
0

|A(x+ ν)−A(x)|2dx dν +

∫ 3h

2h

∫ ∞
0

|A(x+ ν − h)−A(x)|2dx dν

�
∫ c2X

c1X/2

∫ 3h

h

|A(x+ ν)−A(x)|2dν dx.(15)

Now in the inner integral over ν we substitute ν = δx, so that δ lies between h/(c2X)

and 6h/(c1X). It follows that the quantity in (15) is

�
∫ c2X

c1X/2

∫ 6h/(c1X)

h/(c2X)

|A(x(1 + δ))−A(x)|2xdδ dx

=

∫ 6h/(c1X)

h/(c2X)

∫ c2X

c1X/2

|A(x(1 + δ))−A(x)|2xdx dδ

� c22hX

c1
max

h/(c2X)≤δ≤6h/(c1X)

∫ c2X

c1X/2

|A(x(1 + δ))−A(x)|2dx
x
,

and now, appealing to Lemma 2.1 (with T = 2/ log(1 + δ) and noting that
(sin(y/T )/y)2 � min(1/T 2, 1/y2)), the stated result follows.

2.2. The Vinogradov-Korobov zero-free region

The Vinogradov-Korobov zero-free region establishes that ζ(σ+ it) 6= 0 in the region

σ ≥ 1− C(log(3 + |t|))−2/3(log log(3 + |t|))−1/3,

for a suitable positive constant C. Moreover, one can obtain good bounds for 1/ζ(s) in
this region; see Theorem 8.29 of [16].

Lemma 2.3. — For any δ > 0, uniformly in t we have∑
n≤x

λ(n)nit � x exp
(
− log x

(log(x+ |t|)) 2
3
+δ

)
,

and ∑
p≤x

pit � π(x)

1 + |t|
+ x exp

(
− log x

(log(x+ |t|)) 2
3
+δ

)
.
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Proof. — Perron’s formula shows that, with c = 1 + 1/ log x,∑
n≤x

λ(n)nit =
1

2πi

∫ c+ix

c−ix

ζ(2w − 2it)

ζ(w − it)
xw

w
dw +O(xε).

Move the line of integration to Re(w) = 1− (log(x+ |t|))−2/3−δ, staying within the zero-
free region for ζ(w− it). Using the bounds in Theorem 8.29 of [16], the first statement
of the lemma follows. The second is similar.

For reference, let us note that the Riemann hypothesis gives uniformly

(16)
∑
p≤x

pit � π(x)

1 + |t|
+ x1/2 log(x+ |t|).

2.3. Mean values of Dirichlet polynomials

Lemma 2.4. — For any complex numbers a(n) we have∫ T

−T

∣∣∣∑
n≤N

a(n)nit
∣∣∣2dt� (T +N)

∑
n≤N

|a(n)|2.

Proof. — This mean value theorem for Dirichlet polynomials can be readily derived
from the Plancherel bound Lemma 2.1, or see Theorem 9.1 of [16].

We shall draw upon Lemma 2.4 many times; one important way in which it is useful
is to bound the measure of the set on which a Dirichlet polynomial over the primes can
be large.

Lemma 2.5. — Let T be large, and 2 ≤ P ≤ T . Let a(p) be any sequence of complex
numbers, defined on primes p, with |a(p)| ≤ 1. Let V ≥ 3 be a real number and let E
denote the set of values |t| ≤ T such that |

∑
p≤P a(p)pit| ≥ π(P )/V . Then

|E| � (V 2 log T )1+(log T )/(logP ).

Proof. — Let k = d(log T )/(logP )e so that P k ≥ T . Write(∑
p≤P

a(p)pit
)k

=
∑
n≤Pk

ak(n)nit.

Note that |ak(n)| ≤ k! and that∑
n≤Pk

|ak(n)| ≤
(∑
p≤P

|a(p)|
)k
≤ π(P )k.

Therefore, using Lemma 2.4, we obtain

|E|
(π(P )

V

)2k
≤
∫ T

−T

∣∣∣∑
p≤P

a(p)pit
∣∣∣2kdt� (T + P k)

∑
n≤Pk

|ak(n)|2 � k!P kπ(P )k.

The lemma follows from the prime number theorem and Stirling’s formula.
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2.4. The Halász-Montgomery bound

The mean value theorem of Lemma 2.4 gives a satisfactory bound when averaging
over all |t| ≤ T . We shall encounter averages of Dirichlet polynomials restricted to
certain small exceptional sets of values t ∈ [−T, T ]. In such situations, an idea going
back to Halász and Montgomery, developed in connection with zero-density results, is
extremely useful (see Theorem 7.8 of [24], or Theorem 9.6 of [16]).

Lemma 2.6. — Let T be large, and E be a measurable subset of [−T, T ]. Then for any
complex numbers a(n)∫

E

∣∣∣∑
n≤N

a(n)nit
∣∣∣2dt� (N + |E|T

1
2 log T )

∑
n≤N

|a(n)|2.

Proof. — Let I denote the integral to be estimated, and let A(t) =
∑

n≤N a(n)nit.
Then

I =

∫
E

∑
n≤N

a(n)n−itA(t)dt ≤
∑
n≤N

|a(n)|
∣∣∣ ∫
E
A(t)n−itdt

∣∣∣.
Using Cauchy-Schwarz we obtain

(17) I2 ≤
(∑
n≤N

|a(n)|2
)( ∑

n≤2N

(
2− n

N

)∣∣∣ ∫
E
A(t)n−itdt

∣∣∣2),
where we have taken advantage of positivity to smooth the sum over n in the second
sum a little. Expanding out the integral, the second term in (17) is bounded by

(18)
∫
t1,t2∈E

A(t1)A(t2)
∑
n≤2N

(
2− n

N

)
ni(t2−t1)dt1 dt2.

Now a simple argument (akin to the Pólya-Vinogradov inequality) shows that

(19)
∑
n≤2N

(
2− n

N

)
nit � N

1 + |t|2
+ (1 + |t|)1/2 log(2 + |t|);

here the smoothing in n allows us to save 1+ |t|2 in the first term, while the unsmoothed
sum would have N/(1 + |t|) instead (see the proof of Theorem 7.8 in [24]). Using this,
and bounding |A(t1)A(t2)| by |A(t1)|2 + |A(t2)|2, we see that the second term in (17) is

�
∫
t1∈E
|A(t1)|2

(∫
t2∈E

( N

1 + |t1 − t2|2
+ T 1/2 log T

)
dt2

)
dt1 �

(
N + |E|T 1/2 log T

)
I.

Inserting this in (17), the lemma follows.
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3. A FIRST ATTACK ON THEOREM 1.1

In this section we establish Theorem 1.1 in the restricted range h ≥ exp((logX)3/4).
This already includes the range h > Xε for any ε > 0, and moreover the proof is simple,
depending only on Lemmas 2.2, 2.3 and 2.4. Since a large interval may be broken down
into several smaller intervals, we may assume that h ≤

√
X.

Let P denote the set of primes in the interval from exp((log h)9/10) to h. Let us
further partition the primes in P into dyadic intervals. Thus, let Pj denote the primes
in P lying between Pj = 2j exp((log h)9/10) and Pj+1 = 2j+1 exp((log h)9/10). Here j
runs from 0 to J = b(log h − (log h)9/10)/ log 2c. This choice of P was made with
two requirements in mind: all elements in P are below h, and all are larger than
exp((log h)9/10) which is larger than exp((logX)27/40), and note that 27/40 is a little
larger than 2/3 (anticipating an application of Lemma 2.3).

Now define a sequence a(n) by setting

(20) A(y) =
∑
n

a(n)niy =
∑
j

∑
p∈Pj

∑
X/Pj+1≤m≤2X/Pj

λ(p)piyλ(m)miy.

In other words, a(n) = 0 unless X/2 ≤ n ≤ 4X, and in the range X ≤ n ≤ 2X we have

(21) a(n) = λ(n)ωP(n), where ωP(n) =
∑
p∈P
p|n

1.

Turán’s proof of the Hardy-Ramanujan theorem can easily be adapted to show that
for n ∈ [X, 2X] the quantity ωP(n) is usually close to its average which is about
W (P) =

∑
p∈P 1/p ∼ (1/10) log log h. Precisely,

(22)
∑

X≤n≤2X

(
ωP(n)−W (P)

)2 � XW (P)� X log log h.

Moreover, note that for all X/2 ≤ n ≤ 4X one has |a(n)| ≤ ωP(n) and so

(23)
∑
n

|a(n)|2 � XW (P)2.

Now

W (P)2
∫ 2X

X

( ∑
x<n≤x+h

λ(n)
)2
dx�

∫ 2X

X

( ∑
x<n<x+h

λ(n)ωP(n)
)2
dx

+

∫ 2X

X

( ∑
x<n≤x+h

λ(n)(ωP(n)−W (P))
)2
dx,

and the Cauchy-Schwarz inequality and (22) show that the second term above is

�
∫ 2X

X

h
∑

x<n≤x+h

(ωP(n)−W (P))2dx� Xh2W (P).
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Combining this with Lemma 2.2 we conclude that

(24)
∫ 2X

X

( ∑
x<n≤x+h

λ(n)
)2
dx� X

W (P)2

∫ ∞
−∞
|A(y)|2 min

( h2
X2

,
1

y2

)
dy +

Xh2

W (P)
.

It remains now to estimate the integral in (24). First we dispense with the |y| ≥ X

contribution to the integral, which will be negligible. Indeed by splitting into dyadic
ranges 2kX ≤ |y| ≤ 2k+1X and using Lemma 2.4 we obtain

(25)
∫
|y|>X

|A(y)|2dy
y2
� 1

X

∑
X/2≤n≤4X

a(n)2 � W (P)2.

Now consider the range |y| ≤ X. From the definition (20) and Cauchy-Schwarz we
see that (note λ(p) = −1)

|A(y)|2 ≤
( J∑
j=0

1

logPj

)( J∑
j=0

logPj

∣∣∣ ∑
p∈Pj

piy
∣∣∣2∣∣∣ ∑

X/Pj+1≤m≤2X/Pj

λ(m)miy
∣∣∣2).

Thus, setting

(26) Ij = (logPj)
2

∫ X

−X

∣∣∣ ∑
p∈Pj

piy
∣∣∣2∣∣∣ ∑

X/Pj+1≤m≤2X/Pj

λ(m)miy
∣∣∣2 min

( h2
X2

,
1

y2

)
dy,

and noting that
∑

j 1/ logPj � W (P), we obtain∫ X

−X
|A(y)|2 min

( h2
X2

,
1

y2

)
dy � W (P)

J∑
j=0

1

logPj
Ij � W (P)2 max

0≤j≤J
Ij.(27)

To estimate Ij, we now invoke Lemma 2.3. As noted earlier, our assumption that
h ≥ exp((logX)3/4) gives logPj ≥ (log h)9/10 ≥ (logX)27/40. Thus for |y| ≤ X, Lemma
2.3 shows that∑

p∈Pj

piy � Pj
logPj

1

1 + |y|
+ Pj exp

(
− (logX)

27
40
− 2

3
−δ)� Pj

logPj

( 1

1 + |y|
+

1

logPj

)
,

say. Using this bound for X ≥ |y| ≥ logPj, we see that this portion of the integral
contributes to Ij an amount

�
P 2
j

(logPj)2

∫
logPj≤|y|≤X

∣∣∣ ∑
X/Pj+1≤m≤2X/Pj

λ(m)miy
∣∣∣2 min

( h2
X2

,
1

y2

)
dy.

Split the integral into ranges |y| ≤ X/h, and 2kX/h ≤ |y| ≤ 2k+1X/h (for k = 0, . . .,
b(log h)/ log 2c) and use Lemma 2.4. Since X/Pj � X/h, this shows that the quantity
above is

(28) �
P 2
j

(logPj)2

( h2
X2

X2

P 2
j

+
∑
k

h2

22kX2

(
2k
X

h
+
X

Pj

)X
Pj

)
� h2

(logPj)2
.
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Finally, if |y| ≤ logPj, then Lemma 2.3 gives

(29)
∑

X/Pj+1≤m≤2X/Pj

λ(m)miy � X

Pj
(logX)−10,

say, so that bounding
∑

p∈Pj
piy trivially by � Pj/(logPj) we see that this portion of

the integral contributes to Ij an amount

(30) � (logPj)
2

P 2
j

(logPj)2
X2

P 2
j

(logX)−20
h2

X2
(logPj)� h2(logX)−19.

Combining this with (28), we obtain that Ij � h2/(logPj)
2, and so from (27) it follows

that ∫ X

−X
|A(y)|2 min

( h2
X2

,
1

y2

)
dy � W (P)2 max

j

h2

(logPj)2
� W (P)2

h2

(log h)9/5
.

Using this and (25) in (24), we conclude that∫ 2X

X

( ∑
x<n≤x+h

λ(n)
)2
dx� Xh2

( 1

(log h)9/5
+

1

W (P)
+

1

h2

)
� Xh2

log log h
.

This proves Theorem 1.1 in the range h ≥ exp((logX)3/4).
There are two limitations in this argument. In order to use the mean value theorem

(Lemma 2.4) effectively we need to restrict the primes in P to lie below h, so that the
Dirichlet polynomial overm has length at leastX/h. Secondly, in order to apply Lemma
2.3 to bound the sum over p ∈ Pj, we are forced to have Pj > exp((logX)2/3+δ) and
this motivated our choice of P . If we appealed to the Riemann Hypothesis bound (16)
instead of Lemma 2.3, then the second limitation can be relaxed, and the argument pre-
sented above would establish Theorem 1.1 in the wider range h ≥ exp(10(log logX)10/9).
In the next section, we shall obtain such a range unconditionally.

4. THEOREM 1.1 – ROUND TWO

We now refine the argument of the previous section, adding another ingredient
which will permit us to obtain Theorem 1.1 in the substantially wider region h ≥
exp(10(log logX)10/9). Now we shall also need Lemmas 2.5 and 2.6.

Let us suppose that h ≤ exp((logX)3/4), and let P and Pj be as in the previous
section. Now we introduce a set of large primesQ consisting of the primes in the interval
from exp((logX)4/5) to exp((logX)9/10). As with P , let us also decomposeQ into dyadic
intervals with Qk denoting the primes in Q lying between Qk = 2k exp((logX)4/5) and
Qk+1 = 2k+1 exp((logX)4/5), where k runs from 0 to K ∼ (logX)9/10/ log 2.

In place of (20) we now define the sequence a(n) by setting

(31) A(y) =
∑
n

a(n)niy =
∑
j

(∑
p∈Pj

λ(p)piy
)
Aj(y),



1119–14

where

(32) Aj(y) =
∑
k

∑
q∈Qk

∑
X/(Pj+1Qk+1)≤m≤2X/(PjQk)

λ(q)qiyλ(m)miy.

Now a(n) = 0 unless X/4 ≤ n ≤ 8X, and in the range X ≤ n ≤ 2X we have
a(n) = λ(n)ωP(n)ωQ(n), where ωP(n) is as before, and ωQ analogously counts the
number of prime factors of n in Q.

As noted already in (22), a typical number in X to 2X will have ωP(n) ∼ W (P), and
similarly will have ωQ(n) ∼ W (Q) =

∑
q∈Q 1/q ∼ (1/10) log logX. Precisely, we have∑

X≤n≤2X

(
ωP(n)ωQ(n)−W (P)W (Q)

)2 � XW (P)2W (Q)2
( 1

W (P)
+

1

W (Q)

)
.

Now set (analogously to (26))

(33) Ij = (logPj)
2

∫ X

−X

∣∣∣ ∑
p∈Pj

piy
∣∣∣2|Aj(y)|2 min

( h2
X2

,
1

y2

)
dy.

Then arguing exactly as in (24), (25), and (27), we find that

(34)
∫ 2X

X

( ∑
x<n≤x+h

λ(n)
)2
dx� X

W (Q)2
max
j
Ij +

Xh2

log log h
,

so that our problem has now boiled down to finding a non-trivial estimate for Ij.
In the range |y| ≤ logPj, we may use a modified version of the bounds in (29) and (30)

to see that the contribution of this portion of the integral to Ij,k is� h2(logX)−19, which
is negligible. It remains now to bound the integral in (33) in the range logPj ≤ |y| ≤ X.

Note that we may not be able to use Lemma 2.3 to bound
∑

p∈Pj
piy since the range

for p might lie below exp((logX)2/3+δ). Define

(35) Ej =
{
y : logPj ≤ |y| ≤ X,

∣∣∣ ∑
p∈Pj

piy
∣∣∣ ≥ Pj

(logPj)2

}
,

which denotes the exceptional set on which the sum over p ∈ Pj does not exhibit
much cancelation. To bound the integral in (33) in the range logPj ≤ |y| ≤ X, let us
distinguish the cases when y belongs to the exceptional set Ej, and when it does not.
Consider the latter case first, where by the definition of Ej the sum over p ∈ Pj does
have some cancelation. So this case contributes to (33)

�
P 2
j

(logPj)2

∫ X

−X
|Aj(y)|2 min

( h2
X2

,
1

y2

)
dy.

The integral above is the mean value of a Dirichlet polynomial of size about X/Pj,
which is larger than X/h. Therefore applying Lemma 2.4 (as in our estimate (28)) we
obtain that the above is

�
P 2
j

(logPj)2
h2

X2

X

Pj

∑
X/(2Pj)≤n≤4X/Pj

(∑
q|n
q∈Q

1
)2
� h2

(logPj)2
W (Q)2.
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Thus the contribution of this case to (34) is small as desired.

Finally we need to bound the contribution of the exceptional values y ∈ Ej: upon
bounding the sum over p ∈ Pj trivially, this contribution to Ij is

(36) � P 2
j

∫
Ej
|Aj(y)|2 min

( h2
X2

,
1

y2

)
dy � P 2

j

h2

X2

∫
Ej
|Aj(y)|2dy.

Now recall the definition of Aj(y) in (32), and use Cauchy-Schwarz on the sum over k
(as in (26) or (33)) to obtain that the quantity in (36) above is
(37)

� P 2
jW (Q)2

h2

X2
max
k

(logQk)
2

∫
Ej

∣∣∣ ∑
q∈Qk

qiy
∣∣∣2∣∣∣ ∑

X/(Pj+1Qk+1)≤m≤2X/(PjQk)

λ(m)miy
∣∣∣2dy.

Since logQk ≥ (logX)4/5 (note 4/5 is bigger than 2/3+δ), in the rangeX ≥ |y| ≥ logPj
we can use Lemma 2.3 to obtain

(38)
∑
q∈Qk

qiy � π(Qk+1)

logPj
� 1

logPj

Qk

logQk

,

which represents a saving of 1/ logPj over the trivial bound Qk/ logQk. Using this in
(37) and substituting that back in (36), we see that the contribution of the exceptional
y ∈ Ej to Ij is

(39) �
P 2
jW (Q)2

(logPj)2
h2

X2
max
k
Q2
k

∫
Ej

∣∣∣ ∑
X/(Pj+1Qk+1)≤m≤2X/(PjQk)

λ(m)miy
∣∣∣2dy.

It is at this stage that we invoke Lemmas 2.5 and 2.6. We are assuming that
exp(10(log logX)10/9) ≤ h ≤ exp((logX)3/4), so that (logX)7 ≤ Pj ≤ Xε. Appeal-
ing to Lemma 2.5, it follows that |Ej| � X3/7+ε. Using now the bound of Lemma 2.6,
we conclude that the quantity in (39) is

(40) �
P 2
jW (Q)2

(logPj)2
h2

X2
max
k
Q2
k

( X

PjQk

+X3/7+εX1/2+ε
) X

PjQk

� h2W (Q)2

(logPj)2
.

Inserting these estimates back in (34), we obtain finally that∫ 2X

X

( ∑
x<n≤x+h

λ(n)
)2
dx� Xh2

log log h
,

which establishes Theorem 1.1 in this range of h.

The limitation in this argument comes from the last step where in applying the
Halász-Montgomery Lemma 2.6 we need the measure of the exceptional set Ej to be a
bit smaller than X1/2, and to achieve this we needed Pj to be larger than a suitable
power of logX.
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5. ONCE MORE UNTO THE BREACH

Now we add one more ingredient to the argument developed in the preced-
ing two sections, and this will permit us to obtain Theorem 1.1 in the range
h > exp((log log logX)2). Moreover once this argument is in place, we hope it
will be clear that a more elaborate iterative argument should lead to Matomäki and
Radziwiłł’s result; we shall briefly sketch their argument, where the details are arranged
differently, in the next section. Assume below that h ≤ exp(10(log logX)10/9).

Let P and Q be as in the previous section. Let P(1) denote the set of primes lying
between exp(exp( 1

100
(log h)9/10)) and exp(exp( 1

30
(log h)9/10)), so that this set is inter-

mediate between P and Q. Again split up P(1) into dyadic blocks, which we shall index
as P(1)

j1
. In place of (31) we now define the sequence a(n) by setting

(41) A(y) =
∑
n

a(n)niy =
∑
j

(∑
p∈Pj

λ(p)piy
)
Aj(y),

with

(42) Aj(y) =
∑
j1

( ∑
p1∈P(1)

j1

λ(p1)p
iy
1

)
Aj,j1(y),

where, with Mj,j1,k = X/(PjP
(1)
j1
Qk),

(43) Aj,j1(y) =
∑
k

∑
q∈Qk

∑
Mj,j1,k

/8≤m≤2Mj,j1,k

λ(q)qiyλ(m)miy.

Thus a(n) is zero unless n lies in [X/8, 16X] and on [X, 2X] we have a(n) =

λ(n)ωP(n)ωP(1)(n)ωQ(n).
Now arguing as in (33) and (34) we obtain

(44)
∫ 2X

X

( ∑
x<n≤x+h

λ(n)
)2
dx� X

W (Q)2W (P(1))2
max
j
Ij +

Xh2

log log h
,

where

(45) Ij = (logPj)
2

∫ X

−X

∣∣∣ ∑
p∈Pj

piy
∣∣∣2|Aj(y)|2 min

( h2
X2

,
1

y2

)
dy.

As before the small portion of the integral with |y| ≤ logPj can be estimated trivially.
Further if the sum over p ∈ Pj exhibited some cancelation, then the argument of Section
3 applies and produces the desired savings (we also saw this in Section 4 when dealing
with y not in the exceptional set Ej).

So now consider the exceptional set Ej (exactly as in (35)) consisting of y with
logPj ≤ |y| ≤ X and |

∑
p∈Pj

piy| ≥ Pj/(logPj)
2, and we must bound the contribution

to Ij from y ∈ Ej. As we remarked at the end of Section 4, in the range of h considered
here we are not able to guarantee that the measure of Ej is below X1/2−δ, which would
have permitted an application of Lemma 2.6 (as in Section 4). Using a Cauchy-Schwarz
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argument (similar to the ones leading to (26), or (33), or (44)), we may bound the
contribution to Ij from y ∈ Ej by

(46) � W (P(1))2 max
j1

(logPj)
2(logP

(1)
j1

)2I(j, j1),

say, with

(47) I(j, j1) =

∫
Ej

∣∣∣ ∑
p∈Pj

piy
∣∣∣2∣∣∣ ∑

p1∈P(1)
j1

piy1

∣∣∣2|Aj,j1(y)|2 min
( h2
X2

,
1

y2

)
dy.

Now P(1) is a suitably large interval (the lower end point is larger than (logX)100

say), so that one can use Lemma 2.5 to show that the measure of the set of y ∈ [−X,X]

with |
∑

p1∈P(1)
j1

piy1 | ≥ (P
(1)
j1

)9/10 is at most X1/3. For these exceptionally large values of

the sum over p1, we bound the sums over p ∈ Pj and p1 ∈ P(1)
j1

trivially and argue as in
Section 4, (37)–(40). This argument shows that the contribution of large values of the
sum over p1 to (47) is acceptably small.

We finally come to the new argument of this section: namely, in dealing with the
portion of the integral I(j, j1) where the sum over p is large (since y ∈ Ej) but the sum
over p1 exhibits some cancelation. Bounding the sum over p1 by ≤ (P

(1)
j1

)9/10, we must
handle

(48) (P
(1)
j1

)9/5
∫
Ej

∣∣∣ ∑
p∈Pj

piy
∣∣∣2|Aj,j1(y)|2 min

( h2
X2

,
1

y2

)
dy.

Above we must estimate the mean square of a Dirichlet polynomial of length about
X/P

(1)
j1

; the set Ej may not be small enough to use Lemma 2.6 effectively, and the
length of the Dirichlet polynomial is small compared to X/h, so that there is also some
loss in using Lemma 2.4. The way out is to bound (48) by

(49) (P
(1)
j1

)9/5
∫ X

−X

∣∣∣ ∑
p∈Pj

piy
∣∣∣2+2`( Pj

(logPj)2

)−2`
|Aj,j1(y)|2 min

( h2
X2

,
1

y2

)
dy;

here ` is any natural number, and the inequality holds because on Ej the sum over p ∈ Pj
is ≥ Pj/(logPj)

2 by assumption. We choose ` = d(logP
(1)
j1

)/ logPje. Now in (49), we
must estimate the mean square of the Dirichlet polynomial (

∑
p∈Pj

piy)1+`Aj,j1(y), and
by our choice for ` this Dirichlet polynomial has length at least X, permitting an
efficient use of Lemma 2.4. With a little effort, Lemma 2.4 can be used to bound (49)
by (we have been a little wasteful in some estimates below)

� (P
(1)
j1

)9/5
( Pj

(logPj)2

)−2` h2
X2

W (Q)2(`+ 1)!
((2Pj)

`X

P
(1)
j1

)2
� W (Q)2h2(P

(1)
j1

)−1/5(` logPj)
4` � W (Q)2h2(P

(1)
j1

)−1/15,(50)
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where at the last step we used log logP
(1)
j1
≤ (1/30) logPj. This contribution to (46) is

once again acceptably small (having saved a small power of P (1)
j1

), and completes the
proof of Theorem 1.1 in this range of h.

At this stage, all the ingredients in the proof of Theorem 1.1 are at hand, and one can
begin to see an iterative argument that would remove even the very weak hypothesis
on h made in this section!

6. SKETCH OF MATOMÄKI AND RADZIWIŁŁ’S ARGUMENT FOR
THEOREM 1.1

In the previous three sections, we have described some of the key ideas developed
in [20]. The argument given in [20] arranges the details differently, in order to achieve
quantitatively better results: our version saved a modest log log h over the trivial bound,
and [20] saves a small power of log h.

Instead of considering a(n) being λ(n) weighted by the number of primes in various
intervals (as in Sections 3, 4, 5), Matomäki and Radziwiłł deal with a(n) being λ(n)

when n is restricted to integers with at least one prime factor in carefully chosen intervals
(and a(n) = 0 otherwise). To illustrate, we revisit the argument in Section 3, and let
P be the interval defined there. Let S denote the set of integers n ∈ [1, 2X] with n

having at least one prime factor in P . A simple sieve argument shows that there are
� X/(log h)1/10 numbers n ∈ [X, 2X] that are not in S. Therefore

(51)
∫ 2X

X

( ∑
x<n≤x+h

λ(n)
)2
dx�

∫ 2X

X

(( ∑
x<n≤x+h

n∈S

λ(n)
)2

+ h
∑

x<n≤x+h
n/∈S

1
)
dx,

and the second term is O(Xh2/(log h)1/10). Now we use Lemma 2.2 to transform the
problem of estimating the first sum above to that of bounding the Dirichlet polynomial

(52) A(y) =
∑

X<n≤2X
n∈S

λ(n)niy.

To proceed further, we need to be able to factor the Dirichlet polynomial A: this can
be done by means of the approximate identity

(53) A(y) ≈
∑
p∈P

∑
m

pm∈[X,2X]
pm∈S

λ(m)miy

ωP(m) + 1
λ(p)piy.

(The approximate identity above fails to be exact because n might have repeated prime
factors from P , but this difference is of no importance.) Now above we can use a
standard Fourier analytic technique to separate the variables m and p, and in this
fashion make p and m range over suitable dyadic intervals. Alternatively one can
divide the sum over P into many short intervals, and for each such short interval the
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corresponding range for m may be well approximated by a suitable interval; this is the
approach taken in [20]. In either case, we obtain a factorization of A(y) very much
like what we had in Section 3, and now the argument can follow as before. Note
that in the first step (51) we now have a loss of only O(Xh2/(log h)1/10) which is
substantially better than our previous argument in (24) where we had the bigger error
term O(Xh2/ log log h).

Jumping to the argument in Section 5, we can take S to be the set of integers
n ∈ [1, 2X] having at least one prime factor in each of the intervals P , P(1), and Q.
Once again the sieve shows that there are � X/(log h)1/10 integers in [X, 2X] that are
not in S. We start with the expression (53), and perform a dyadic decomposition of
p ∈ P . If for each j the sum

∑
p∈Pj

piy exhibits cancelation, then using Lemma 2.4 and
(53) we obtain a suitable bound. If on the other hand for some j the sum over p ∈ Pj
is large, then we decompose the corresponding Dirichlet polynomial Aj(y) using the
primes in P(1):

Aj(y) =
∑

m∈[X/Pj+1,X/Pj ]

m∈S(1)

λ(m)miy

ωP(m) + 1

≈
∑

p1∈P(1)

λ(p1)p
iy
1

∑
m

mp1∈[X/Pj+1,X/Pj ]

mp1∈S(1)

λ(m)miy

(ωP(m) + 1)(ωP(1)(m) + 1)
,(54)

where S(1) denotes the integers in [1, 2X] with at least one prime factor in P(1) and one
in Q. Once again we can split up the primes in P(1) into dyadic blocks, and separate
variables. If now the sum over p1 ∈ P(1)

j1
always has some cancelation, then we can

argue using an appropriately large moment of the sum over p ∈ Pj as in (48)–(50). If
for some j1, the sum over p1 ∈ P(1)

j1
is large, then we exploit the fact that this set has

small measure, and argue as in (36)–(40). In short the decompositions (53) and (54)
give the same flexibility as the factorized expressions (41) and (42) that we used in
Section 5.

The argument in [20] generalizes the approach described in the previous paragraph.
Matomäki and Radziwiłł define a sequence of increasing ranges of primes, starting
with P = P(0) (as in our exposition), and proceeding with P(1), . . ., P(L) with the last
interval getting up to primes of size exp(

√
logX), and a final interval Q (again as in our

exposition). Then one restricts to integers having at least one prime factor in each of
these intervals. The corresponding Dirichlet series admits many flexible factorizations
as in (53) and (54). Start with the decomposition (53), and split into dyadic blocks. If
y is such that for all dyadic blocks Pj = P(0)

j one has cancelation in piy, then Lemma 2.4
leads to a suitable bound. Otherwise we proceed to a decomposition as in (54), and see
whether for every dyadic block in P(1) the corresponding sum has cancelation. If that
is the case, then a moment argument as in (46)–(50) works. Else, we must have some
dyadic block in P(1) with a large contribution, and we now proceed to a decomposition
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involving P(2). Ultimately we arrive at a dyadic interval in P(L) which makes a large
contribution, and now we use that this happens very rarely and argue as in (36)–(40).
The structure of the proof may be likened to a ladder – a large contribution to a dyadic
interval in P(j) is used to force a large contribution to a dyadic interval in P(j+1) – and
one must choose the intervals P(j) so that the rungs of the ladder are neither too close
nor too far apart. Fortunately the method is robust and a wide range of choices for
P(j) work. We end our sketch of the proof of Theorem 1.1 here, referring to [20] for
further details of the proof, and noting that somewhat related iterated decompositions
of Dirichlet polynomials arose recently in connection with moments of L-functions (see
[12], [29]).

7. GENERALIZATIONS FOR MULTIPLICATIVE FUNCTIONS

As mentioned in (14), the work of Matomäki and Radziwiłł establishes short interval
results for general multiplicative functions f with −1 ≤ f(n) ≤ 1 for all n. Our
treatment so far has been specific to the Liouville function; for example we have freely
used the bounds of Lemma 2.3 which do not apply in the general situation. In this
section we discuss an important special class of multiplicative functions (those that
are “unpretentious”), and give a brief indication of the changes to the arguments that
are needed. There is one notable extra ingredient that we need – an analogue of the
Halász-Montgomery Lemma for primes (see Lemma 7.1 below).

A beautiful theorem of Halász [9] (extending earlier work of Wirsing) shows that
mean values of bounded complex valued multiplicative functions f are small unless f
pretends to be the function nit for a suitably small value of t. When the multiplicative
function is real valued, one can show that the mean value is small unless f pretends to
be the function 1: this means that

∑
p≤x(1 − f(p))/p is small. There is an extensive

literature around Halász’s theorem and its consequences; see for example [8, 10, 25, 38].
Let us state one such result precisely: suppose f is a completely multiplicative function
taking values in the interval [−1, 1], and suppose that

(55)
∑
p≤X

1− f(p)

p
≥ δ log logX

for some positive constant δ. Then uniformly for all |t| ≤ X and all
√
X ≤ x ≤ X2 we

have

(56)
∑
n≤x

f(n)nit � x

(log x)δ1
,

for a suitable constant δ1 depending only on δ.
Now let us consider the analogue of Theorem 1.1 for such a completely multi-

plicative function f , in the simplest setting of short intervals of length
√
X ≥ h ≥
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exp((logX)17/18) (a range similar to that considered in Section 3). In this range we
wish to show that

(57)
∫ 2X

X

( ∑
x<n≤x+h

f(n)
)2
dx = o(Xh2),

which establishes (14) for almost all short intervals in this particular situation.
Let P denote the primes in exp((log h)9/10) to h, as in Section 3, and break it up into

dyadic blocks Pj like before. Analogously to (20), we define the Dirichlet series

(58) A(y) =
∑
n

a(n)niy =
∑
j

∑
p∈Pj

∑
X/Pj+1≤m≤2X/Pj

f(p)piyf(m)miy,

so that a(n) is zero unless X/2 ≤ n ≤ 4X and in the range X ≤ n ≤ 2X we have
a(n) = f(n)ωP(n); all exactly as in (21). Now arguing as in (22)–(27) we obtain that

(59)
∫ 2X

X

( ∑
x<n≤x+h

f(n)
)2
dx� X max

j
Ij +

Xh2

log log h
,

where

(60) Ij = (logPj)
2

∫ X

−X

∣∣∣ ∑
p∈Pj

f(p)piy
∣∣∣2∣∣∣ ∑

X/Pj+1≤m≤2X/Pj

f(m)miy
∣∣∣2 min

( h2
X2

,
1

y2

)
dy.

Since f is essentially arbitrary, we can no longer use Lemma 2.3 to bound the sum
over p above. The argument splits into two cases depending on whether the sum over
p ∈ Pj is large or not. Let

(61) Ej =
{
y : |y| ≤ X,

∣∣∣ ∑
p∈Pj

f(p)piy
∣∣∣ ≥ Pj

(logPj)2

}
,

denote the exceptional set on which the sum over p is large. On the complement of
Ej, it is simple to estimate the contribution to Ij: namely, using Lemma 2.4, we may
bound this contribution by

�
P 2
j

(logPj)2

∫ X

−X

∣∣∣ ∑
X/Pj+1≤m≤2X/Pj

f(m)miy
∣∣∣2 min

( h2
X2

,
1

y2

)
dy � h2

(logPj)2
,

which is acceptably small in (59).
It remains to estimate the contribution to Ij from the exceptional set Ej. Here we

invoke the bound (56), so that the desired contribution is

(62) � X2(logPj)
2

(logX)2δ1P 2
j

∫
Ej

∣∣∣ ∑
p∈Pj

f(p)piy
∣∣∣2 min

( h2
X2

,
1

y2

)
dy.

Since h ≥ exp((logX)17/18) we have Pj ≥ exp((log h)9/10) ≥ exp((logX)17/20), and an
application of Lemma 2.5 shows that the measure of Ej is � exp((logX)1/6). This
is extremely small, and it is tempting to use the Halász-Montgomery Lemma 2.6 to
estimate (62). However this gives an estimate too large by a factor of logPj, since
Lemma 2.6 does not take into account that the Dirichlet polynomial in (62) is supported
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only on the primes. This brings us to the final key ingredient in [20] – a version of the
Halász-Montgomery Lemma for prime Dirichlet polynomials.

Lemma 7.1. — Let T be large, and E be a measurable subset of [−T, T ]. Then for any
complex numbers x(p) and any ε > 0,∫

E

∣∣∣∑
p≤P

x(p)pit
∣∣∣2dt� ( P

logP
+ |E|P exp

(
− logP

(log(T + P ))2/3+ε

))∑
p≤P

|x(p)|2.

Proof. — We follow the strategy of Lemma 2.6. Put P (t) =
∑

p≤P x(p)pit, and let I
denote the integral to be estimated. Then using Cauchy-Schwarz as in (17), we obtain

(63) I2 ≤
(∑
p≤P

|x(p)|2
)( ∑

p≤2P

(
2− p

P

)∣∣∣ ∫
E
P (t)p−itdt

∣∣∣2).
Now expanding out the integral above, as in (18), the second term of (63) is bounded
by ∫

t1,t2∈E
P (t1)P (t2)

∑
p≤2P

(
2− p

P

)
pi(t2−t1)dt1dt2.

Now in place of (19), we can argue as in Lemma 2.3 to obtain∑
p≤2P

(
2− p

P

)
pit � π(P )

1 + |t|2
+ P exp

(
− (logP )

(log(T + P ))2/3+ε

)
,

where once again the small smoothing in the sum over p produces the saving of 1 + |t|2
in the first term. Inserting this bound in (63), and proceeding as in the proof of Lemma
2.6, we readily obtain our lemma.

Returning to our proof, applying Lemma 7.1 we see that the quantity in (62) may be
bounded by

� X2(logPj)
2

(logX)2δ1P 2
j

( Pj
logPj

+ Pj exp
(

(logX)1/6 − (logX)17/20

(logX)2/3+ε

)) Pj
logPj

� h2

(logX)2δ1
.

Thus the contribution of y ∈ Ej to Ij is also acceptably small, and therefore (57) follows.

8. SKETCH OF THE COROLLARIES

We discuss briefly the proofs of Corollaries 1.5 and 1.6, starting with Corollary 1.5.
The indicator function of smooth numbers is multiplicative, and so Matomäki and
Radziwiłł’s general result for multiplicative functions (see the discussion around (14))
shows the following: For any ε > 0 there exists H(ε) such that for large enough N the
set

E = {x ∈ [
√
N/2, 2

√
N ] : the interval [x, x+H(ε)] contains no N ε-smooth number},

has measure |E| ≤ ε
√
N . Now if for some x ∈ [

√
N, 2
√
N ] we have x /∈ E and also

N/x /∈ E , then we would be able to find N ε-smooth numbers in [x, x+H(ε)] and also in
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[N/x,N/x+H(ε)] and their product would be in [N,N +4H(ε)
√
N ]. Thus if Corollary

1.5 fails, we must have (with χE denoting the indicator function of E)

√
N ≤

∫ 2
√
N

√
N

(χE(x) + χE(N/x))dx ≤ 4|E| ≤ 4ε
√
N,

which is a contradiction.
Now let us turn to Corollary 1.6. First we recall a beautiful result of Wirsing (see

[8], or [38]), establishing a conjecture of Erdős, which shows that if f is any real valued
multiplicative function with −1 ≤ f(n) ≤ 1 then

lim
N→∞

1

N

∑
n≤N

f(n) =
∏
p

(
1− 1

p

)(
1 +

f(p)

p
+
f(p2)

p2
+ . . .

)
.

The product above is zero if
∑

p(1 − f(p))/p diverges (this is the difficult part of
Wirsing’s theorem), and is strictly positive otherwise.

In Corollary 1.6, we are only interested in the sign of f and so we may assume that
f only takes the values 0, ±1. Wirsing’s theorem applied to |f | shows that condition
(ii) of the corollary is equivalent to

∑
p,f(p)=0 1/p < ∞, and further the condition may

be restated as
lim
N→∞

1

N

∑
n≤N

|f(n)| = α > 0.

Now applying Wirsing’s theorem to f , it follows that

lim
N→∞

1

N

∑
n≤N

f(n) = β

exists, and since f(p) < 0 for some p by condition (i), we also know that 0 ≤ β < α.
From (14) we may see that if h is large enough then for all but εN integers x ∈ [1, N ]

we must have ∑
x<n≤x+h

f(n) ≤ (β + ε)h, and
∑

x<n≤x+h

|f(n)| ≥ (α− ε)h.

Since α > β, if ε is small enough, this shows that for large enough h (depending on ε
and f) many intervals [x, x+ h] contain sign changes of f , which gives Corollary 1.6.
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