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INTRODUCTION

The development of Geometric Measure Theory has been mostly motivated by the

attempts to solve Plateau’s problem, that we can state here as follows.

Plateau’s problem. Let M be an (m + n)-dimensional Riemannian manifold and

let Γ ⊂M be a compact (m− 1)-dimensional oriented embedded submanifold without

boundary. Find an m-dimensional oriented embedded submanifold Σ with boundary Γ

such that

volm(Σ) ≤ volm(Σ′),

for all oriented submanifolds Σ′ ⊂M such that ∂Σ′ = Γ.

As a matter of fact, Plateau’s problem (here stated in classical terms and for embed-

ded submanifolds) can be very sensitive to the choice of the dimension m, the codimen-

sion n and to the class of admissible surfaces. For instance, in the case m = 2 and for

boundaries Γ parametrized on the boundary of the unit disk D of R2, J. Douglas [25]

and T. Radó [45] provided existence of solutions, using the fact that the so-called con-

formal parametrizations lead to good compactness properties of minimizing sequences.

However, for general dimension and codimension, parametric methods fail.

It is a well-known fact that, in the formulation I gave, the solution of the Plateau

problem does not always exist. For example, consider M = R4, n = m = 2 and Γ the

smooth Jordan curve parametrized in the following way:

Γ =
{

(ζ2, ζ3) : ζ ∈ C, |ζ| = 1
}
⊂ C2 ' R4,

where we use the usual identification between C2 and R4, and we choose the orientation

of Γ induced by the anti-clockwise orientation of the unit circle |ζ| = 1 in C. It can be

shown by a calibration technique (see the next sections) that there exists no smooth

solution to the Plateau problem for such fixed boundary, and the (singular) immersed

2-dimensional disk

S =
{

(z, w) : z3 = w2, |z| ≤ 1
}
⊂ C2 ' R4,

oriented in such a way that ∂S = Γ, satisfies

H2(S) < H2(Σ),
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for all smooth, oriented 2-dimensional submanifolds Σ ⊂ R4 with ∂Σ = Γ. Here and in

the following we denote by Hk the k-dimensional Hausdorff measure, which for k ∈ N
corresponds to the ordinary k-volume on smooth k-dimensional submanifolds.

This fact motivates the introduction of weak solutions to the Plateau problem, in-

cluding at least immersed submanifolds, and the main questions about their existence

and regularity. In this text I will focus on the line of thought that originated from E. De

Giorgi’s work for oriented hypersurfaces, thought as boundaries of sets (the so-called

theory of sets of finite perimeter, closely related also to the theory of BV functions),

which eventually led H. Federer and W.H. Fleming [27] to the very successful theory

of currents, which provides weak solutions with no restriction on dimension and codi-

mension (I will not discuss here the topological point of view and the formulation of

Plateau’s problem adopted by E.R. Reifenberg [46, 47], which is more appropriate for

non-oriented surfaces).

In a parallel way, also the regularity theory has been first developed in codimension 1,

essentially thanks to the work of E. De Giorgi. The ideas introduced by E. De Giorgi

in [17] had an impact also in other fields, as I will illustrate, and they could be almost

immediately applied and adapted also to the higher codimension regularity theory (by

F. Almgren [6] for currents, by B. Allard [2] for varifolds) to provide regularity in a dense

open subset of the support. A major open problem, already pointed out in H. Federer’s

monograph [26], was then the achievement of an almost everywhere regularity theory,

possibly with an estimate on the codimension of the singular set Sing(T ) inside the

support spt (T ) \ spt (∂T ) out of the boundary.

It took many years to F. Almgren to develop an innovative and monumental program

for the almost everywhere regularity and, at the same time, for the optimal estimate

of the dimension of the singular set in arbitrary dimension and higher codimension.

Announced in the early ’80, circulated in preprint form and published posthumous in

[7], his work provides the interior partial regularity up to a (relatively) closed set of

dimension at most (m− 2) inside spt (T ) \ spt (∂T ):

Theorem 0.1 (F. Almgren). — Let T be an m-dimensional area minimizing integer

rectifiable current in a C5 Riemannian manifold M . Then, there exists a closed set

Sing(T ) of Hausdorff dimension at most (m− 2) such that in M \ (spt (∂T )∪ Sing(T ))

the current T is induced by the integration over a smooth oriented submanifold of M .

Almgren’s result can be recovered in the case m = 2 (proving the existence of a dis-

crete set of singular points) with simpler proofs for some classes of calibrated currents,

see [12, 51, 52], which are indeed area-minimizing. Although some parts of F. Alm-

gren’s work, for instance the theory of Q-valued functions and the use of frequency

function, were known and used by the specialists (see also the regularity results in the

2-dimensional case [14, 44]), I think it is fair to say that some parts of his technical

tour de force had not been completely reviewed. In any case, the necessity to have
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this whole program streamlined and improved was widely felt, as a necessary step to-

wards the advancement of the field and the analysis of the many problems still open

in the regularity theory (see the last section). In more recent times, C. De Lellis and

his former PhD student E. Spadaro undertook this very ambitious task in a series of

papers [20, 23, 24, 21, 22] (actually [23], dealing with the theory of Q-valued functions,

originated from his PhD thesis, see also [59]) in the last 5 years.

In this text I will give an overview of these developments of the regularity theory for

mass-minimizing currents, starting from the codimension 1 case and then moving to the

higher codimension. My goal is to illustrate the key ideas of F. Almgren’s proof, the

new difficulties due to the higher codimension and, to some extent, some of the technical

improvements introduced by C. De Lellis and E. Spadaro. Some of these are related

to new ideas which spread in the literature only more recently, as higher integrability

estimates via reverse Sobolev inequalities [33], the intrinsic point of view in the theory of

Dir-minimizing functions, the R. Jerrard-M. Soner BV estimates on jacobians [39] and

their applications to the theory of currents [9]. Other important technical improvements

and simplifications regard the construction of the so-called center manifold and the error

estimates, which measure the deviation of the “sheets” of the current from it; this is

for sure the most involved and less explored part of F. Almgren’s program, see [7,

Chapter 4]. A byproduct of this optimization in the construction of the center manifold

is the extension of Theorem 0.1 to C3,α ambient manifolds.

Although C. De Lellis-E. Spadaro’s proof is considerably simpler and in some as-

pects different from F. Almgren’s original one, it remains quite involved. A curse of

the regularity theory, particularly of regularity in Geometric Measure Theory, is the

complexity of proofs: very often arguments that can be heuristically explained in a few

words need very lengthy arguments to be checked, and this involves iterations, change of

scales, passage from cubes to balls, from flat to curvilinear systems of coordinates, etc.

Moreover, it happens often that nontrivial technical improvements and new estimates

appear precisely at this level, and so it is not easy to explain them in a reasonably short

text. For this reason I will focus on the most essential aspects of the strategy of proof,

leaving out of the discussion other important technical issues discussed in [21, 22] as

“splitting before tilting”, “persistence of Q-points” and “intervals of flattening”.

In the preparation of this text I relied mostly on the Lecture Notes [60] and on

E. Spadaro’s Phd thesis, which are both recommended to the reader interested to enter

more into the (somehow unavoidable) technical details.

1. BACKGROUND: THE H. FEDERER-W. FLEMING THEORY OF

CURRENTS

One of the most successful theories of oriented generalized submanifolds is the one by

H. Federer and W. Fleming in [27] on integer rectifiable currents (see also [15, 16] for

the special case of codimension one generalized submanifolds, the so-called sets of finite
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perimeter). I illustrate the basic definitions in Euclidean spaces, but all definitions

and results can be immediately adapted to the case when the ambient manifold is

Riemannian. See also [9] for a far reaching extension of the theory to metric spaces,

involving a suitable notion of “Lipschitz differential forms”.

Definition 1.1 (Integer rectifiable currents). — An integer rectifiable current T of

dimension m in Rm+n is a triple T = (R, τ, θ) such that:

(i) R is a rectifiable set, i.e. R =
⋃
i∈NCi with Hm(R0) = 0 and Ci ⊂ Mi for every

i ∈ N \ {0}, where Mi are m-dimensional oriented C1 submanifolds of Rm+n;

(ii) τ : R → Λm is a measurable map, called orientation, taking values in the space

of simple unit m-vectors and more precisely such that, for Hm-a.e. x ∈ Ci, τ(x) =

v1 ∧ · · · ∧ vm with {v1, . . . , vm} an oriented orthonormal basis of TxMi;

(iii) θ : R → Z is a measurable function, called multiplicity, which is integrable with

respect to Hm.

An integer rectifiable current T = (R, τ, θ) induces a continuous linear func-

tional (with respect to the natural Fréchet topology) on smooth, compactly supported

m-dimensional differential forms ω (i.e. smooth compactly supported m-covector fields),

denoted by Dm, acting as follows

T (ω) =

∫
R

θ 〈ω, τ〉 dHm.

Remark 1.2. — The continuous linear functionals defined in the Fréchet space Dm are

a more general class (basically vector-valued L. Schwarz’s distributions taking their

values in the space of m-vectors in Rm+n), called m-dimensional currents. Note that

the submanifolds Mi in Definition 1.1 are only C1 regular, and that they could even be

taken to be Lipschitz regular, providing an equivalent definition. This low regularity

requirement is crucial for the H. Federer-W. Fleming closure and compactness theorem,

discussed below. The price to pay, of course, is that regularity theory is hard, because

of the very low initial regularity level.

For an integer rectifiable current T , one can define the analog of the boundary and

the volume for smooth submanifolds.

Definition 1.3 (Boundary and mass). — Let T be an m-dimensional current in Rm+n.

The boundary of T is defined as the (m− 1)-dimensional currents acting as follows

∂T (ω) := T (dω) ∀ ω ∈ Dm−1.

If T is integer rectifiable, the mass of T is defined as the quantity

M(T ) :=

∫
R

|θ| dHm.
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More generally, one can define by duality the boundary and the mass even for a

general m-dimensional current. The general definition of mass involves the choice of a

suitable norm on the space of m-covectors, but we will not need this definition in the

sequel.

Note that, in the case T = (Σ, τΣ, 1) is the current induced by an oriented sub-

manifold Σ, with τΣ a continuous orienting vector for Σ, then by Stokes’ Theorem one

has

∂T = (∂Σ, τ∂Σ, 1),

where τ∂Σ is the induced orientation. Moreover, M(T ) = volm(Σ).

Finally, we recall that the space of currents is usually endowed with the weak* topol-

ogy (often called in this context weak topology).

Definition 1.4 (Weak topology). — We say that a sequence of currents (T`)`∈N weakly

converges to some current T , and we write T`⇀T , if

T`(ω)→ T (ω) ∀ ω ∈ Dm.

Using the dual definition of mass, it is not hard to show that T 7→M(T ) is (sequen-

tially) weakly lower semicontinuous even in the class of general m-dimensional currents.

The Plateau problem has now a straightforward generalization to the context of

integer rectifiable currents.

Generalized Plateau problem. Let Γ be a compactly supported (m − 1)-

dimensional integer rectifiable current in Rm+n with ∂Γ = 0. Find an m-dimensional

integer rectifiable current T such that ∂T = Γ and

(1) M(T ) ≤M(S),

for every S integer rectifiable with ∂S = Γ.

It is not hard to see, by a classical cone construction, that the class of admissible

currents T in (1) is not empty. In addition, the existence of a minimizing sequence

(T`) weakly convergent to an m-dimensional current T is not hard to prove. The key

technical point, on which ultimately the success of the theory of integer rectifiable

currents relies, is the following closure theorem by H. Federer and W. Fleming, proven

in their pioneering paper [27]. It states that T is still an integer rectifiable current.

Then, the lower semicontinuity of mass under weak convergence provides existence of

solutions to the generalized Plateau problem.

Theorem 1.5 (H. Federer and W. Fleming [27]). — Let (T`)`∈N be m-dimensional

integer rectifiable currents in Rm+n with

sup
`∈N

(
M(T`) + M(∂T`)

)
<∞,

and assume that T`⇀T . Then, T is an integer rectifiable current.
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It is then natural to ask about the regularity properties of the solutions to the gener-

alized Plateau problem, called in the sequel area-minimizing integer rectifiable currents.

Another important operator in the theory of currents, widely used in arguments

involving induction on the dimension and cut&paste procedures, is the slicing operator.

If p ≤ n and f : Rm+n → Rp is a Lipschitz map, then there exists a unique (up to

Hp-negligible sets in Rp) family of (m− p)-dimensional currents

〈T, f, z〉 z ∈ Rp

concentrated on the fiber f−1(z) and satisfying, for all bounded Borel g : Rp → R,

T (g ◦ f)df 1 ∧ . . . ∧ dfp =

∫
g(z)〈T, f, z〉 dz,

the equality being undersdood in the sense of superposition of currents, i.e.

T ((g ◦ f)hdf ∧ dq) =

∫
Rp
g(z)〈T, f, z〉(hdq) dz for all hdq ∈ Dm−p.

Notice that this is a geometric counterpart of the existence conditional probability

measures in Probability. In the case p = 1 the slice operator can be obtained as a kind

of commutator between boundary and restriction:

〈T, f, z〉 = (∂T ) {f < z} − ∂
(
T {f < z}).

In general, the slice operator can be built by iterating this procedure. The slice operator

preserves the property of being (integer) rectifiable.

We close this section providing some additional notation that will consistently be

used in this text. Given an m-dimensional integer rectifiable current T = (R, τ, θ), we

set:

‖T‖ := |θ|Hm R, ~T := τ and spt (T ) := spt (‖T‖).

The regular and the singular parts of a current are naturally defined as follows.

Reg(T ) :=
{
x ∈ spt (T ) : spt (T ) ∩Br(x) is induced by a smooth

submanifold for some r > 0
}
,

Sing(T ) := spt (T ) \
(
spt (∂T ) ∪ Reg(T )

)
.

The definition of Sing(T ) is motivated by the fact that we will deal only with “interior”

regularity, since in general codimension the boundary regularity is still open.

We shall also denote by ωm the Lebesgue measure of the unit ball in Rm.
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2. CODIMENSION 1 REGULARITY THEORY

The codimension 1 case has been studied first, starting from E. De Giorgi’s work [17]

(see also E. Giusti’s monograph [34] and also the more recent one by F. Maggi [43]) and

more refined results can be proven, compared to the higher codimension case (see also

[29, 54, 56, 58, 46] for the interior regularity and [3, 37] for the boundary regularity).

In this section I will illustrate the key technical tools needed to attack the regularity

problem in the original context of [17], namely sets E of finite perimeter. In the language

of currents, a set of finite perimeter corresponds to an (m+ 1)-dimensional current TE
associated to the integration on E, i.e.

TE(fdx1 ∧ . . . ∧ dxm+1) =

∫
E

f dx

having the property that ∂TE has finite mass. It turns out (and this corresponds to the

so-called boundary rectifiability theorem of the theory of currents) that

∂TE = (∂∗E, τE, 1)

is an integer rectifiable current with multiplicity 1. The countably Hm-rectifiable set

∂∗E is the so-called essential boundary, and the perimeter is precisely Hm(∂∗E). In

codimension 1 it is also customary to write νE for ∗τE (here ∗ is the canonical operator

mapping m-vectors to 1-vectors in Rm+1), the so-called approximate unit normal.

2.1. Excess and ε-regularity theorem

We define the excess E(∂TE, Br(x)) of ∂TE as follows:

E(∂TE, Br(x)) :=
1

rm
(
Hm(Br(x) ∩ ∂∗E)− |

∫
Br(x)∩∂∗E

νE dHm|
)

(2)

=
1

2rm

∫
Br(x)∩∂∗E

|νE(y)− νE(x, r)|2 dHm(y),

where

(3) νE(x, r) =
1∣∣∫

Br(x)∩∂∗E νE(y) dHm(y)
∣∣ ∫

Br(x)∩∂∗E
νE(y) dHm(y).

If we write the excess in terms of ∂TE, instead, we get

(4) E(∂TE, Br(x)) =
1

rm
(
‖∗∂TE‖(Br(x))− |∗∂TE(Br(x))|

)
,

where ∗∂TE is the Rm+1-valued measure canonically associated to ∂TE by letting ∂TE
act on forms φd̂xi (indeed, the distributional derivative of the characteristic function

of E).

This scale-invariant quantity measures the quadratic variance of the approximate

unit normal and it is the key ingredient of the regularity theory. We state the main

result for local minimizers, i.e. we assume that in some open set Ω ⊂ Rm+1 one has

Hm(Br(x) ∩ ∂∗E) ≤ Hm(Br(x) ∩ ∂∗F ) whenever E∆F b Br(x) b Ω.
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Theorem 2.1 (De Giorgi). — There exists a dimensional constant ε(m) > 0 such that

if E is locally perimeter minimizing in Ω, Br(x) ⊂ Ω and x ∈ spt ∂TE, then

(5) E(∂TE, Br(x)) < ε

implies that Br/2(x) ∩ spt ∂TE is the graph of a smooth (actually analytic) function, in

a suitable system of coordinates. In particular Hm(Ω ∩ Sing(∂TE)) = 0.

The final part of the statement follows by the fact that at Hm-a.e. point x ∈ ∂∗E
one always has E(∂TE, Br(x)) < ε for r = r(x) > 0 sufficiently small, roughly speaking

this happens at Lebesgue points of the approximate normal.

Theorem 2.1 reveals a deep phenomenon, a kind of good separation between smooth

and singular objects: there is a critical threshold, based on the excess, such that we

are in the smooth scenario as soon as we are below this critical threshold. After E. De

Giorgi’s work, and after his discovery that full regularity cannot be expected in general

for systems of partial differential equations with nonconstant coefficients, the idea was

immediately exploited to prove regularity theorems for systems (first in [35], then in

many other papers). It is now widely used also in other geometric contexts, as harmonic

maps between manifolds, mean curvature flow, etc. and this kind of statements are

named ε-regularity theorems.

The proof of Theorem 2.1 is in turn based on the excess decay lemma: for α = α(m) ∈
(0, 1) sufficiently small one has

(6) E(∂TE, Bαr(x)) ≤ 1

2
E(∂TE, Br(x))

as soon as x ∈ spt (∂TE) and E(∂TE, Br(x)) < ε. At all points x where the excess

goes below the critical threshold ε, and at all nearby points (since the condition (5) is

open) one can then initiate a standard iteration scheme to show that the approximate

normals (3) are Hölder continuous in space, uniformly w.r.t. the scale parameter r.

This shows that in a neighbourhood of x the set ∂∗E is the graph of a C1,γ function φ

(an optimization of E. De Giorgi’s proof actually gives that one can reach any power

γ < 1). Since φ solves in the weak sense the minimal surface equation

div

(
∇φ√

1 + |∇φ|2

)
= 0

one eventually gets the smoothness of φ by the regularity theory for quasilinear elliptic

equations.

2.2. Lipschitz approximation and comparison with harmonic functions

The proof of the excess decay is achieved by contradiction (although in more recent

times effective proofs that lead to an effective estimate of the decay threshold ε have

been given, see [13, 53] and [11]) and it relies on a deep intuition of E. De Giorgi. Here

is a very rough sketch. In balls where the excess is small, after scalings and rotations

we reduce ourselves to a family of sets of finite perimeter Eh in the unit ball B1 with

0 ∈ spt (∂TEh) whose normal deviates very little from a given direction independent of h.
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Choosing a system of coordinates adapted to this situation, one can expect that Eh can

be well approximated by graphs of functions φh with very small Lipschitz constant, so

that by linearizing the area functional one obtains (see also Proposition 3.6 for a more

precise expansion of the area of a graph)

(7) perimeter of Eh in the ball ∼ ωm +
1

2

∫
Bm1

|∇φh|2 dx.

The main point is that one can use this expansion to transfer informations from Eh
to φh in two ways: first, the expansion suggests that because of minimality of Eh the

functions φh, suitably rescaled, should be close (possibly passing to a subsequence) to

a harmonic function φ. Second, the assumption that the excess of Eh does not decay

as required in (6) contradicts, in the limit, the decay∫
Bmα

|∇φ|2 dx ≤ αm
∫
Bm1

|∇φ|2 dx

typical of harmonic functions. Notice that, in order to get the contradiction, it is

necessary to have sufficiently strong convergence of the rescalings of φh to φ and this

depends very much on the accuracy in the expansion (7); this aspect will be even more

crucial in the higher codimension case.

I will give later on more precise statements, and say a few words about the proof

of the Lipschiz and harmonic approximation in the next sections, when dealing with

general codimension currents. In E. De Giorgi’s original proof, the functions φh are

obtained by a suitable convolution procedure, on scales given by a suitable power of the

excess. In the first extension of E. De Giorgi’s approach to currents [6] and varifolds

[2], instead, the Lipschitz functions are built by looking at the set of points where the

excess is small on sufficiently small scales: on this set we have a “Lipschitz behaviour”

and a covering argument then shows that the complement of this set can be estimated

with the excess.

2.3. Monotonicity and tangent cones

Another crucial tool introduced by E. De Giorgi is the monotonicity formula: if E is

locally minimizing in Ω, then

Hm(Br(x) ∩ ∂∗E)

rm
≤ H

m(Bs(x) ∩ ∂∗E)

sm
whenever Br(x) ⊂ Bs(x) b Ω.

The same result holds, in general codimension, for area-minimizing currents, namely

‖T‖(Br(x))

rm
≤ ‖T‖(Bs(x))

sm
whenever Br(x) ⊂ Bs(x) b Rm+n \ spt (∂T ).

A careful analysis of the nonnegative term arising in the proof of the monotonicity

formula shows that it measures somehow the deviation of ∂TE from being a cone. This

leads to the fact that a blow-up procedure not only preserves the (local) minimality

property, but also somehow leads to a simpler object, namely a cone. Since the same
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result holds for currents, we state it at this more general level (for sets of finite perimeter

this corresponds to considering the sets Ex,r = (E − x)/r).

For any r > 0 and x ∈ Rm+n, let ιx,r denote the map

(8) ιx,r : y 7→ y − x
r

,

and set Tx,r := (ιx,r)]T , where ] is the push-forward operator, namely

(ιx,r)]T (ω) := T (ι∗x,rω) ∀ ω ∈ Dm.

Theorem 2.2 (Tangent cones). — If T is area-minimizing and x ∈ spt (T ) \ spt (∂T ),

any weak limit point S of Tx,r as r ↓ 0 is a cone without boundary (i.e. S0,r = S for all

r > 0 and ∂S = 0) which is locally area minimizing in Rm+n, i.e.

‖S‖(Br(x)) ≤ ‖S ′‖(Br(x)) whenever spt (S − S ′) b Br(x) b Rm+n.

Such a cone S is called, as usual, a tangent cone to T at x.

2.4. Persistence of singularities and dimension reduction

Theorem 2.1 can be substantially improved, we state it for sets of finite perimeter

but the same result holds for codimension 1 currents:

Theorem 2.3. — If E is a locally minimizing set of finite perimeter in Ω, then the

singular set is empty if m ≤ 6, is discrete if m = 7 and it has Hausdorff dimension

(m− 7) if m > 7. More precisely

Hm−7+ε
(
Sing(∂TE) ∩ Ω

)
= 0 ∀ε > 0.

The proof of Theorem 2.3 rests on another powerful heuristic principle, namely the

persistence of singularities under blow-up limits and, more generally, weak convergence.

In order to understand this, let us first state a stability result for mass minimizing

currents, which already plays a role in Theorem 2.2, to show that tangent cones are

still mass minimizing. We state the result in local form, saying that T is locally mass-

minimizing in an open set Ω ⊂ Rm+n if

(9) ‖T‖(A) ≤ ‖T ′‖(A) whenever spt (T − T ′) b A b Ω.

Theorem 2.4 (Stability of mass-minimizing currents and improved convergence)

If Ω ⊂ Rm+n is an open set and T` are currents locally mass-minimizing in Ω weakly

convergent to T , then:

(i) T is locally mass-minimizing in Ω;

(ii) the mass measures ‖T`‖ weakly converge to ‖T‖, in duality with Cc(Ω).

The proof of Theorem 2.4 can be achieved with the slicing operator, which allows

to perform the standard cut&paste procedure to transfer the minimality property from

T` to T (at the same time, this argument provides the proof of (ii)). Now, if we take

into account the expression (4) for the excess, remembering that at singular points the

excess has to be larger than ε on all scales, in codimension 1 we have the following
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principle, for sequences of sets Eh of finite perimeter which are locally minimizing in

an open set Ω:

(10) xh ∈ Sing(∂TEh), lim
h→∞

xh = x ∈ Ω =⇒ x ∈ Sing(∂TE).

We can now explain informally the proof of Theorem 2.3: if we are able to rule out

the existence of singular minimal cones of dimension smaller than 6 (starting from the

easy case m = 2, this was actually achieved in progressively higher dimensions thanks

to the work of E. De Giorgi, W. Fleming, F. Almgren and culminated in J. Simons’

work [58]), then Theorem 2.2 and (10) show that the singular set of any locally mass-

minimizing set is empty for m ≤ 6. In dimension m = 7 there is indeed a singular

minimal cone, the celebrated J. Simon’s cone{
(y, z) ∈ R4 × R4 : |y|2 < |z|2

}
.

We can prove that for 7-dimensional boundaries the singular set is always discrete as

follows: if, for some E, xh ∈ Sing(∂TE) and xh → x, then x ∈ Sing(∂TE) and we can

blow up at x along the scales rh = |xh − x| to find a minimal cone S in R8 whose

singular set contains 0 and another point on the unit sphere: by the cone property, the

singular set contains a halfline L. But now we can blow up at a point different from

0 and on L to find a cone S ′ which splits, choosing appropriately the coordinates, as

S ′′ ×R, with S ′′ singular. Since ∂TS′′ is a 6-dimensional singular minimal boundary in

R7, we have a contradiction.

When m > 8 we can somehow repeat this argument, by the so-called dimension

reduction argument (first used by H. Federer in [28]) and it is convenient to put it in

an abstract form as follows (see [55]) to obtain the proof of Theorem 2.4.

We let p ≥ q ≥ 2 and we consider a collection F of functions φ : Rp → Rk with

the topology induced by the weak convergence, in the duality with Cc(Rp), of the

corresponding measures fHq. We assume that:

– [A1] F is invariant under the transformation φ 7→ φ ◦ ι−1
x,r, with ιx,r defined as in

(8);

– [A2] for all x the family φ ◦ ι−1
x,r has limit points in F as r ↓ 0 and any limit point φ

is a cone, i.e. φ0,r = φ0 for all r > 0;

– [A3] there exists a map Σ from F to the closed subsets of Rp such that Σ(φ) = ∅ if

φ is the constant multiple of the characteristic function of a q-dimensional subspace

of Rp, Σ is upper semicontinuous with respect to the (local) Hausdorff convergence

of closed sets in Rp and scale-invariant:

Σ(φx,r) =
1

r

(
Σ(φ)− x

)
.

Theorem 2.5 (Federer’s dimension reduction argument). — Under the assumptions

above, let d ∈ [0, q − 1] be the largest dimension of a subspace L ⊂ Rp such that

φx,r = φ for all x ∈ L and r > 0 and Σ(φ) = L, for some φ ∈ F .
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Then, the Hausdorff dimension of Σ(φ) does not exceed d for all φ ∈ F and, if d = 0,

Σ(φ) is discrete for all φ ∈ F .

In the higher codimension case the dimension reduction argument will indeed play

a role in the estimate of the singular set of Dir-minimizing functions, see Theorem 3.3

below.

3. CODIMENSION N > 1 REGULARITY THEORY

The structure of the area minimizing integer rectifiable currents and their regularity

theory depend very much on the dimension m of the current and its codimension in

the ambient space (i.e., with the notation above, if T is an m-dimensional current in

Rm+n, the codimension is n). We now illustrate the new singular examples arising

in codimension higher than 1 (basically due to the appearence of branch points), the

technical challenges and the new fundamental ideas behind the proof of Theorem 0.1.

3.1. The basic examples and the new difficulties

Calibrated currents. The calibration method, going back to [26, 5.4.19], is a powerful

tool to prove that an integer rectifiable current T is (locally) mass-minimizing. It is

based on the construction of a smooth (although in many cases this requirement can

be weakened) closed m-form ω defined in an open set Ω of Rm+n with |ω(x)| ≤ 1 for all

x ∈ Ω and

〈~T (x), ω(x)〉 = 1 for ‖T‖-a.e. x ∈ Ω.

If this happens, it is not hard to show that T is locally mass-minimizing in Ω, according

to (9), and we say that T is calibrated by ω.

It is not hard to show that the form ω = λk/k!, where λ is the Kähler form

λ :=
d∑
i=1

dxi ∧ dyi Cd ∼ (R2)d

is a calibration for any complex manifold S ⊂ Cd of complex dimension k. This obser-

vation provides plenty of examples of locally mass-minimizing currents and shows that

the estimate of the singular set in Theorem 0.1 is optimal.

Flat tangent cones do not imply regularity. We have seen in codimension n = 1

that regularity is driven by the excess. So, a point x is regular if and only if (some)

tangent cone to the current T at x is flat. This is not the case for higher codimension

currents, unless one requires some upper bounds on multiplicity (for instance currents

with multiplicity 1). In order to illustrate this phenomenon, let us consider the current

TV induced by the complex curve mentioned in the introduction:

V =
{

(z, w) : z3 = w2, |z| ≤ 1
}
⊂ C2 ' R4.
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By the calibration method it is simple to show that TV is an area minimizing integer

rectifiable current (cf. [26, 5.4.19]), which is singular in the origin. Nevertheless, the

unique tangent cone to TV at 0 is the current S = (R2×{0}, e1∧e2, 2) which is associated

to the integration on the horizontal plane R2×{0} ' {w = 0} with multiplicity 2. The

tangent cone is actually regular, although the origin is a singular point!

Non-homogeneous blow-up. One of the main ideas by F. Almgren is then to extend

this reasoning to different types of blow-ups, by rescaling differently the “horizontal

directions”, namely those of a flat tangent cone at the point, and the “vertical” ones,

which are the orthogonal complement of the former. In this way, in place of preserving

the geometric properties of the rectifiable current T , one is led to preserve the energy

of the associated multiple-valued function.

In order to explain this point, let us consider again the current TV . The support of

such current, namely the complex curve V , can be viewed as the graph of a function

which associates to any z ∈ C with |z| ≤ 1 two points in the w-plane:

(11) z 7→ {w1(z), w2(z)} with wi(z)2 = z3 for i = 1, 2.

Then the right rescaling according to F. Almgren is the one producing in the limit a

multiple valued harmonic function preserving the Dirichlet energy (for the definitions

see the next sections). In the case of V , the correct rescaling is the one fixing V . For

every λ > 0, we consider Φλ : C2 → C2 given by

Φλ(z, w) = (λ2 z, λ3w),

and note that (Φλ)]TV = TV for every λ > 0. Indeed, in the case of V the functions

w1 and w2, being the two determinations of the square root of z3, are already harmonic

functions (at least away from the origin).

Abstracting from the above example, one is led to consider multiple-valued functions

from a domain in Rm which take a fixed number Q ∈ N\{0} of values in Rn. These func-

tions were called by F. Almgren Q-valued functions. What about harmonic Q-valued

functions, the natural candidate for the approximation of a current? The definition of

harmonic Q-valued function is simple around any “regular point” x0 ∈ Rm, for it is

enough to consider just the superposition of classical harmonic functions (possibly with

a constant integer multiplicity), i.e.

(12) Rm ⊃ Br(x0) 3 x 7→ {u1(x), . . . , uQ(x)} ∈ (Rn)Q,

with ui harmonic and either ui = uj or ui(x) 6= ui(x) for every x ∈ Br(x0). The

issue becomes much more subtle around singular points. In the example (11), in a

neighborhood of the origin there is no representation of the map z 7→ {w1(z), w2(z)} as

in (12). In this case the two values w1(z) and w2(z) cannot be ordered in a consistent

way (due to the branch point at 0), and hence cannot be distinguished one from the

other. We are then led to consider a multiple valued function as a map taking Q values

in the quotient space (Rn)Q/∼ induced by the symmetric group SQ of permutations of
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Q elements and to provide a more intrinsic and “variational” notion of harmonicity for

Q-valued functions, see the next sections.

The need of centering and the order of contact. A major geometric and analytic

problem has to be addressed in order to find non-trivial blow-up limits. In order to

make it apparent, let us discuss another example. Consider the complex curve W given

by

W =
{

(z, w) : (w − z2)2 = z5, |z| ≤ 1
}
⊂ C2.

As before, W can be associated to an area minimizing integer rectifiable current TW in

R4, which is singular at the origin. It is easy to prove that the unique tangent plane to

TW at 0 is the plane {w = 0} taken with multiplicity 2. On the other hand, the only

nontrivial inhomogeneous blow-up in these vertical and horizontal coordinates is given

by

Φλ(z, w) = (λ z, λ2w),

and (Φλ)]TW converges as λ → +∞ to the current induced by the smooth complex

curve {w = z2} taken with multiplicity 2. In other words, the inhomogeneous blow-up

did not produce in the limit any singular current and cannot be used to study or to

detect the singularity of TW at the origin.

For this reason it is essential to “renormalize” TW by averaging out its regular first

expansion, on top of which the singular branching behavior happens. In this case, the

regular part of TW is exactly the smooth complex curve {w = z2}, while the singular

branching is due to the determination of the square root of z5. It is then clear that

one should look for parametrizations of W defined in the regular embedded manifold

{w = z2}, so that the singular map to be considered reduces to

z 7→ {u1(z), u2(z)} with u1(z)2 = z5.

The regular surface {w = z2} is called center manifold by F. Almgren, because it

behaves like (and in this case it is exactly) the average of the sheets of the current

in a suitable system of coordinates. The construction of the center manifold actually

constitutes the most intricate part of the proof of Theorem 0.1.

Having taken care of the geometric problem of the averaging, one has to be sure that

the first singular expansion of the current around its regular part does not occur with

an infinite order of contact, because in that case the blow-up would be by necessity zero.

This issue involves one of the most interesting and original ideas of F. Almgren, namely

a new monotonicity formula for the so-called frequency function (which is a suitable

ratio between the energy and a zero degree norm of the function parametrizing the

current). This is in fact the right monotone quantity for the inhomogeneous blow-ups

introduced before, and it leads to a nontrivial limiting current.

In order to introduce the frequency function, we consider the case of a real valued

harmonic function f : B1 ⊂ R2 → R with an expansion in polar coordinates

f(r, θ) = a0 +
∞∑
k=1

rk
(
ak cos(kθ) + bk sin(kθ)

)
.
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It is not difficult to show that the quantity

(13) If (r) :=
r
∫
Br
|∇f |2∫

∂Br
|f |2

is monotone increasing in r and that its limit as r ↓ 0 gives exactly the smallest non-zero

index k in the expansion above. One of the most striking discoveries of F. Almgren is

that the frequency function can be defined for Q-valued functions, retaining its mono-

tonicity. This allows to obtain a non-trivial blow-up limit: indeed, by monotonicity the

frequency is, locally in space, uniformly bounded as r → 0, thus excluding the infinite

order of contact. In a PDE context, this idea has been used in [31, 32] to study the

regularity of the nodal set of solutions to partial differential equations and the unique

continuation property.

3.2. Q-valued functions

Let AQ(Rn) := (Rn)Q/∼ be the set of unordered Q-tuples of points in Rn, where

Q ∈ N \ {0} is a fixed number. It can be identified with the class of positive measures

of mass Q which are the sum of integer multiplicity Dirac delta:

(Rn)Q/∼ ' AQ(Rn) :=

{
Q∑
i=1

[[Pi]] : Pi ∈ Rn

}
.

We can then endow AQ(Rn) with one of the canonical distances defined for (probability)

measures, the most appropriate and consistent with the case Q = 1 is the quadratic

Wasserstein distance: for every T1 =
∑

i[[Pi]] and T2 =
∑

i[[Si]] ∈ AQ(Rn), we set

(14) W2(T1, T2) := min
σ∈SQ

√√√√ Q∑
i=1

∣∣Pi − Sσ(i)

∣∣2,
where we recall that SQ denotes the permutation group of Q elements.

A Q-valued function is simply a map f : Ω → AQ(Rn), where Ω ⊂ Rm is an open

domain. We can then talk about measurable (with respect to the Borel σ-algebra

of AQ(Rn)), bounded, uniformly-, Hölder- or Lipschitz-continuous Q-valued functions.

However, for the development of a Sobolev space theory, more is needed. In the following

remark we describe the original extrinsic approach followed by F. Almgren, while in the

sequel we describe the intrinsic point of view adopted by C. De Lellis and E. Spadaro

in the development of the theory of Q-valued functions, based on relatively more recent

advances in Analysis in metric spaces.

Remark 3.1 (F. Almgren’s extrinsic approach). — A standard procedure to define

Sobolev maps with a manifold target M is, when the manifold is isometrically em-

bedded in some Euclidean space Rp, to define

W 1,p(Ω,M) :=
{
f ∈ W 1,p(Ω,Rp) : f(x) ∈M for a.e. x ∈ Ω

}
.
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With this definition, the theory still works well even under weaker requirements on the

target: it suffices to assume that M is a Lipschitz retract of Rp, since in this case one

can use standard convolution arguments in the ambient linear space and use eventually

the retraction map to produce M-valued maps. F. Almgren proved the existence of

p = p(n,Q) such that AQ(Rn) is bi-Lipschitz equivalent to a Lipschitz retractM of Rp

and, building on this, he developed the theory of Sobolev and Dir-minimizing functions

(actually he proved a bit more, also a kind of local isometry between AQ(Rn) and M,

which plays an important role in the theory).

The intrinsic approach is developed following [8] (see also [49, 48], metric theory of

harmonic functions developed in [36, 40, 41] and finally the very recent papers [20, 42]).

Definition 3.2 (Sobolev Q-valued functions). — Let Ω ⊂ Rm be a bounded open set.

A measurable function f : Ω→ AQ(Rn) is in the Sobolev class W 1,2(Ω,AQ(Rn)) if there

exist functions ϕj ∈ L2(Ω) for j = 1, . . . ,m, such that

(i) x 7→ W2(f(x), T ) ∈ W 1,2(Ω) for all T ∈ AQ(Rn);

(ii) |∂jW2(f, T )| ≤ ϕj almost everywhere in Ω for all T ∈ AQ(Rn) and for all j ∈
{1, . . . ,m}, where ∂jW2(f, T ) denotes the weak partial derivatives of the functions in

(i).

By simple reasonings, one can infer the existence of minimal functions |∂jf | fulfilling

(ii), namely |∂jf | ≤ ϕj a.e., for any other ϕj satisfying (ii). We set

(15) |Df |2 :=
m∑
j=1

|∂jf |2 ,

and define the Dirichlet energy of a Q-valued function as (cf. also [40, 41, 42] for

alternative definitions)

Dir(f) :=

∫
Ω

|Df |2.

A Q-valued function f is said Dir-minimizing if∫
Ω

|Df |2 ≤
∫

Ω

|Dg|2(16)

for all g ∈ W 1,2(Ω,AQ(Rn)) with W2(f, g)|∂Ω = 0,

where the last equality is meant in the sense of traces (whose existence can be easily

shown, for instance, using condition (i) and appealing to the usual trace theory for

Sobolev functions).

The main tool of the theory of Q-valued functions, in the development of the regular-

ity theory for area-minimizing currents, is the following existence and regularity result

for Dir-minimizing functions.

Theorem 3.3. — Let Ω ⊂ Rm be a bounded open domain with Lipschitz boundary,

and let g ∈ W 1,2(Ω,AQ(Rn)) be fixed. Then, the following hold.

(i) There exists a Dir-minimizing function f solving the minimization problem (16).
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(ii) Every such function f belongs to C0,κ
loc (Ω,AQ(Rn)) for a dimensional constant

κ = κ(m,Q) > 0 and |Df | ∈ Lploc(Ω) for some dimensional constant p = p(m,n,Q) > 2.

(iii) There exists a relatively closed set Sing(u) ⊂ Ω of Hausdorff dimension at most

(m− 2) such that the graph of u outside Sing(u), i.e. the set

graph
(
u|Ω\Sing(u)

)
= {(x, y) : x ∈ Ω \ Σ, y ∈ spt (u(x))} ,

is a smooth embedded m-dimensional submanifold of Rm+n.

As we already said, the proof of Theorem 3.3(iii) can be achieved with a dimension

reduction argument, with a careful analysis of homogeneous Dir-minimizing functions

which arise as blow-up limits, while the proof of statement (ii) relies on a reverse Hölder

inequality (
1

ωmrm

∫
Br(x)

gα
)1/α

≤ C
1

ωm(2r)m

∫
B2r(x)

g

satisfied by g = |Df |2m/(m+2) with α = (m + 2)/m and the so-called Gehring’s lemma

[33].

For the reasons explained in the previous section, a Q-valued function has to be

considered as an intrinsic map taking values in the non-smooth space of Q-points AQ,

and cannot be reduced to a “superposition” of Q single-valued functions. Nevertheless,

in many situations it is possible to handle Q-valued functions as a superposition. For

example, as shown in [20, Proposition 0.4] every measurable function f : Rm → AQ(Rn)

can be written (not uniquely) as

(17) f(x) =

Q∑
i=1

[[fi(x)]] for Hm-a.e. x,

with f1, . . . , fQ : Rm → Rn measurable functions.

Similarly, for weakly differentiable functions it is possible to define a notion of point-

wise approximate differential (cf. [20, Corollary 2,7])

Df =
∑
i

[[Dfi]] ∈ AQ(Rn×m),

with the property that at almost every x it holds Dfi(x) = Dfj(x) if fi(x) = fj(x).

This property ensures that several push-forward maps related to f , see for instance (18)

below, are well defined.

There is a canonical way to give the structure of integer rectifiable current to the

graph of a Lipschitz Q-valued function, in analogy with the classical theory.

By a simple induction argument (cf. [23, Lemma 1.1]), one can prove the existence

of a countable partition of M in bounded measurable subsets Mi (i ∈ N) and Lipschitz

functions f ji : Mi → Rm+n (j ∈ {1, . . . , Q}) such that

(a) F |Mi
=
∑Q

j=1[[f ji ]] for every i ∈ N and Lip(f ji ) ≤ Lip(F ) ∀i, j;
(b) ∀ i ∈ N and j, j′ ∈ {1, . . . , Q}, either f ji ≡ f j

′

i or f ji (x) 6= f j
′

i (x) ∀x ∈Mi;

(c) ∀ i we have DF (x) =
∑Q

j=1[[Df ji (x)]] for a.e. x ∈Mi.
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In the next definition we consider proper Q-valued functions, i.e. measurable functions

F : M → AQ(Rm+n) (where M is any m-dimensional submanifold of Rm+n) such that

there is a measurable selection F =
∑

i[[Fi]] for which⋃
i

(Fi)−1(K)

is compact for every compact K ⊂ Rm+n. This is indeed an intrinsic property: if there

exists such a selection, then every measurable selection shares the same property.

Definition 3.4 (Q-valued push-forward). — Let M be an oriented submanifold of

Rm+n of dimension m and let F : M → AQ(Rm+n) be a proper Lipschitz map. Then,

we define the push-forward TF of M through F as the current

TF =
∑
i,j

(f ji )][[Mi]],

where Mi and f ji are as above: that is,

(18) TF (ω) :=
∑
i∈N

Q∑
j=1

∫
Mi

〈ω(f ji (x)), Df ji (x)]~e(x) 〉 dHm(x) ∀ ω ∈ Dm(Rn) .

One can prove that the current TF in Definition 3.4 does not depend on the decom-

position chosen for M and f and, moreover, it is integer rectifiable (cf. [23, Proposi-

tion 1.4]). It is also not hard to see that the boundary operator is coniugated to the

restriction operator via the push-forward (see [23, Theorem 2.1]), namely if M ⊂ Rm+n

is an m-dimensional submanifold with boundary, F : M → AQ(Rm+n) is a proper

Lipschitz function and G = F |∂M , ∂TF = TG.

Graphs are a special and important class of push-forwards.

Definition 3.5 (Q-graphs). — Let f =
∑

i[[fi]] : Rm → AQ(Rn) be Lipschitz and

define the map F : M → AQ(Rm+n) as F (x) :=
∑Q

i=1[[(x, fi(x))]]. Then, TF is the

current associated to the graph Gr(f) and will be denoted by Gf .

In connection with the energy comparison between a current and its harmonic approx-

imation, the following Taylor expansion of the mass of a graph plays also a fundamental

role (cf. [23, Corollary 3.3]).

Proposition 3.6 (Expansion of M(Gf )). — There exist dimensional constants

c̄, C > 0 such that, if Ω ⊂ Rm is a bounded open set and f : Ω→ AQ(Rn) is a Lipschitz

map with Lip(f) ≤ c̄, then

(19) M(Gf ) = Q|Ω|+ 1

2

∫
Ω

|Df |2 +

∫
Ω

∑
i

R̄4(Dfi) ,

where R̄4 ∈ C1(Rn×m) satisfies |R̄4(D)| = |D|3L̄(D) for L̄ : Rn×m → R Lipschitz with

Lip(L̄) ≤ C and L̄(0) = 0.
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3.3. Approximation of area-minimizing currents

In this section we illustrate some approximation results of currents by means of

graphs. We have basically three levels of approximation: on the first level one can

approximate general currents by Lipschitz graphs, while on the second level one ap-

proximates area-minimizing currents still by Lipschitz graphs, but with a much better

degree of approximation. In these first two levels, by approximation we mean that the

current and the Lipschitz graph coincide on a large set, with an error controlled by the

excess. In the third level (maybe the one closer to E. De Giorgi’s original one) one

approximates the area-minimizing current by the graph of a harmonic function, but in

this case (obviously) the current and the graph may not overlap in a large set and the

approximation should be understood in area or, at the functional level, in the sense

of Dirichlet energy. This part of F. Almgren’s program has been greatly simplified by

C. De Lellis and E. Spadaro, using the R. Jerrard-M. Soner BV estimates on Jacobians

[39] and their applications to the theory of currents [9], as I will illustrate.

We first introduce more notation. We consider closed cylinders in Rm+n of the form

Cs(x) := B
m

s (x) × Rn with x ∈ Rm. One can show that the following setting is not

restrictive for the purpose of interior regularity theory: for some cylinder C4r(x) (with

r ≤ 1) and some positive integer Q, the area-minimizing current T has compact support

in C4r(x) and satisfies

(20) p]T = Q[[Bm
4r(x)]] and (∂T ) Bm

4r(x)× Rn = 0,

where p : Rm+n → π0 := Rm × {0} is the orthogonal projection and Bm stands for

m-dimensional ball.

We introduce next the main regularity parameter for area minimizing currents,

namely the Excess (notice the analogy with E. De Giorgi’s Excess (2)).

Definition 3.7 (Excess and excess measure). — For a current T as above we define

the cylindrical excess E(T,Cr(x)) as follows:

E(T,Cr(x)) :=
‖T‖(Cr(x))

ωmrm
−Q

=
1

2ωmrm

∫
Cr(x)

|~T − ~π0|2 d ‖T‖,

where ~π0 is the unit simple m-vector orienting π0. We also define the mass measure µT
as follows:

(21) µT (A) := M(T A× Rn)−QHm(A)

for A ⊂ Bm
r (x) Borel.

The first approximation result we state is based on the following idea. Any BV (or

Sobolev) function f is “Lipschitz on a large set”, more precisely there exist a non-

negative function g in the weak L1 space L1
w(Rm) (in particular finite Hm-a.e.) and a
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Hm-negligible set N such that

|f(x)− f(y)| ≤ (g(x) + g(y))|x− y| ∀x, y ∈ Rm \N.

The function g is, up to a multiplicative dimensional constant, the maximal function

of the distributional derivative of f , i.e. supr |Df |(Br(x))/rm. In the geometric con-

text, the basic observation of [39, 9] is that, for a current T (not necessarily integer

rectifiable) with finite mass and boundary with finite mass, the slice operator is BV

as a function of the slicing parameter. A particular instance of this statement, rele-

vant for the application to the approximation with graphs is the following: if T is a

m-dimensional current in Rm+n with finite mass and boundary with finite mass, and if

P : Rm+n → Rm is the canonical projection on the first m coordinates, then the map

x 7→ 〈T, P, x〉

is BV as a map from Rm to the space of 0-dimensional currents in Rm+n (supported in

the fiber {x} × Rn), when the latter space is endowed with the so-called flat distance:

dF(S1, S2) = inf {M(A) + M(B) : S1 − S2 = A+ ∂B} .

For currents without boundary, whose slices have no boundary as well, it is more ap-

propriate to consider this variant of the flat distance:

d̃F(S1, S2) = inf {M(B) : S1 − S2 = ∂B} ,

and the BV property can be proved in a stronger form, for this larger flat distance.

For 0-dimensional currents induced by elements of AQ(Rm+n) this variant of the flat

distance is closely related to the Wasserstein distance W2 in (14). Indeed, for every

T1 =
∑

i[[Pi]] and T2 =
∑

i[[Si]] in AQ(Rn), one has

d̃F(T1, T2) =

Q∑
i=1

|Pi − Sσ(i)|

for some permutation σ, hence

W2(T1, T2) ≤
( Q∑
i=1

|Pi − Sσ(i)|2
)1/2

≤
Q∑
i=1

|Pi − Sσ(i)| = dF(T1, T2).

These remarks lead to an elegant proof of the following approximation result, where we

use also the notation

MT (x) := sup
Bms (y)⊂Bmr (x)

E(T,Cs(y)).

Theorem 3.8. — There exist dimensional constants c, C > 0 with the following

property. If T is a mass-minimizing current in C4r(x) as in (20), then for all

η ∈ (0, c) there exist a compact set K ⊂ Bm
3r(x) and f ∈ Lip(Bm

3r(x),AQ(Rn)) such that

graph
(
f |K×Rn

)
= T K × Rn and

Hm(Bm
3r(x)) \K) ≤ C

η
µT
(
{MT >

η

2
}
)
, Lip(f) ≤ Cη1/2.
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The most general approximation result of area minimizing currents is the one due

to F. Almgren, and reproved in [24] with more refined techniques and building on

Theorem 3.8, which asserts that under suitable smallness condition of the cylindrical

excess, an area minimizing current coincides on a big set with the graph of a Lipschitz

Q-valued function. Another novel and important technical ingredient introduced by

C. De Lellis and E. Spadaro, is the following “higher integrability” of the density δT of

the mass measure µT in (21), namely∫
Bm2 (x)∩{δT≤1}

δpTdy ≤ CEp(T,C4 r(x)) as soon as E(T,C4 r(x)) < ε,

for dimensional constant p > 1, C > 0 and ε > 0. In turn, this result derives from an

analogous property proved for Dir-minimizing Q-valued functions, see Theorem 3.3(ii).

The most important improvement of the theorem below with respect to the pre-

existing approximation results is the small power Eγ1 in the three estimates (22) - (24).

Indeed, these play a crucial role in the construction of the center manifold. When Q = 1

and n = 1, this approximation theorem was first proved with different techniques by

E. De Giorgi in [17] (cf. also [19, Appendix]).

Theorem 3.9 (F. Almgren’s strong approximation). — There exist constants

C, γ1, ε1 > 0 (depending on m,n,Q) with the following property. Assume that T

is area minimizing in the cylinder C4r(x) and assume that

E := E(T,C4 r(x)) < ε1.

Then, there exist a map f : Br(x)→ AQ(Rn) and a closed set K ⊂ B̄r(x) such that the

following holds:

Lip(f) ≤ CEγ1 ,(22)

Gf (K × Rn) = T (K × Rn) and |Br(x) \K| ≤ C E1+γ1 rm,(23) ∣∣∣∣‖T‖(Cr(x))−Qωm rm − 1
2

∫
Br(x)

|Df |2
∣∣∣∣ ≤ C E1+γ1 rm.(24)

An important ingredient in the proof of Theorem 3.9 is the so-called harmonic ap-

proximation, which allows us to compare the Lipschitz approximation of Theorem 3.8

with a Dir-minimizing function. Actually, the harmonic approximation could also be

seen as a consequence of Theorem 3.9, choosing w as the solution of a suitable Dirichlet

problem with f as boundary datum.

Theorem 3.10 (Harmonic approximation). — Then, for every η̄ > 0, there exists a

positive constant ε̄1 with the following property. Assume that T is as in Theorem 3.8,

E := E(T,C4 r(x)) < ε̄1
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and let f be the map provided by Theorem 3.8 with η = Eα, for some α ∈ (0, 1/(4m)).

Then there exists a Dir-minimizing function w in Bm
2r(x) such that

(25)

r−2

∫
Bmr (x)

W2(f, w)2 +

∫
Bmr (x)

(|Df | − |Dw|)2 +

∫
Bmr (x)

|D(b ◦ f)−D(b ◦w)|2 ≤ η̄ E rm,

where b : AQ(Rn)→ Rn is the barycenter map, i.e. b (
∑

i[[Pi]]) = 1
Q

∑
i Pi.

3.4. Center manifold and normal approximation

The center manifold M is the graph of a classical function over an m-dimensional

plane with respect to which the excess of the minimizing current is sufficiently small.

To achieve a suitable accuracy in the approximation of the average of the sheets of

the current, it is necessary to define the function at an appropriate scale, which varies

locally. Around any given point such scale is morally the first at which the sheets of

the current cease to be close. This leads to a Whitney-type decomposition of the ref-

erence m-plane, where the refining algorithm is based on a stopping time argument,

as in the classical Calderón-Zygmund decomposition. In each cube of the decomposi-

tion the center manifold is then a smoothing of the average of the Lipschitz multiple

valued approximation of Theorem 3.9, performed in a suitable orthonormal system of

coordinates, which changes from cube to cube. Using a kind of discrete Schauder es-

timates, C. De Lellis and E. Spadaro obtain C3,α estimates for the center manifold.

The possibility to get estimates up to the order 3 is deeply related to the expansion in

Proposition 3.6, where the error term has order 4. It is interesting to notice that, if

the current has multiplicity 1 everywhere (i.e., roughly speaking, it is made of a single

sheet), then the center manifold coincides with it and, hence, one can conclude directly

a higher regularity than the one given by the usual E. De Giorgi’s argument (as I ex-

plained, higher regularity in the classical theory codimension 1 theory is obtained by

the PDE regularity for the minimal surface equation, at the continuous level). This

is already remarked in the introduction of [7] and it has been proved in [19] with a

relatively simple and short direct argument.

The normal approximation to the current is then a multivalued map F :M→AQ(U)

of the form

(26) F (x) :=

Q∑
i=1

[[x+Ni(x)]],

where U is a kind of tubular neighbourhood of M and Ni(x) ∈ [TxM]⊥.

3.5. Strategy of proof

We can give now a sketch of the C. De Lellis-E. Spadaro’s proof of Theorem 0.1, refer-

ring to [20, 23, 24, 21, 22] for the many more details. The proof is done by contradiction.
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Contradiction assumption: there exist numbers m ≥ 2, n ≥ 1, α > 0 and an

area-minimizing m-dimensional integer rectifiable current T in Rm+n such that

Hm−2+α(Sing(T )) > 0.

Note that the hypothesis m ≥ 2 is justified because, for m = 1, an area-minimizing

current is locally the union of finitely many non-intersecting open segments. The aim

of the proof is now to show that there exist suitable points of Sing(T ) where we can

perform a blow-up analysis leading to a Dir-minimizing Q-valued functions with a large

set of singular points, thus contradicting Theorem 3.3(iii). This process consists of

different steps.

(A) Find a point x0 ∈ Sing(T ) and a sequence of radii (rk)k with rk ↓ 0 such that:

(A1) the rescaling currents Tx0,rk := (ιx0,rk)]T converge to a flat mass-minimizing tan-

gent cone;

(A2) Hm−2+α(Sing(Tx0,rk) ∩B1) > η > 0 for some η > 0 and for every k ∈ N.

(B) Construction of the center manifold M and of a normal Lipschitz approximation

N : M→ Rm+n/∼ as in (26). This is the most technical part of the proof, and most

of the conclusions of the subsequent steps intimately depend on the fine details and

estimates relative to this construction.

(C) The center manifold that one constructs in step (B) can only be used in general

for a finite number of radii rk of step (A). The reason is that in general its degree of

approximation of the average of the minimizing currents T is under control only up

to a certain distance from the singular point under consideration. This leads to the

definition of the sets where the approximation works, called intervals of flattening, and

to the construction of an entire sequence of center manifolds which will be used in the

blow-up analysis.

(D) Next one has to take care of the problem of the infinite order of contact. This

is done in two steps. In the first one the authors introduce an almost monotonicity

formula, a geometric version of F. Almgren’s frequency function, which involves once

more the displacement part N of the normal approximation (26), deducing that the

order of contact remains finite within each center manifold of the sequence in (C)

(so, for scales belonging to the same interval of flattening). In the second step one

needs to compare different center manifolds and to show that the order of contact still

remains finite. This is done by exploiting a deep consequence of the construction in (C),

called splitting before tilting (the terminology is borrowed from T. Rivière’s paper [50]).

Roughly speaking, this is a kind of multivalued version of the so-called “tilt lemma”

where the L2 deviation from a tangent plane can be estimated with the Excess. In a(n)

(elliptic) PDE context, this corresponds to the R. Caccioppoli-J. Leray inequality∫
Br/2

|∇f |2 ≤ Cr−2 inf
c

∫
Br

|f − c|2 + lower order terms.
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(E) With this analysis at hand, one can pass to the limit and conclude the convergence

of the rescaling of N to the graph of a Dir-minimizing Q-valued function u.

(F) Finally, one can use a capacitary argument (quite more delicate, if compared with

the usual pointwise arguments of the codimension 1 theory based on the excess) leading

to the persistence of the singularities, to show that the function u in (E) needs to have

a singular set with positive Hm−2+α measure, thus contradicting the partial regularity

estimate for Q-valued harmonic functions.

4. OPEN PROBLEMS

I close this survey on the regularity theory for mass-minimizing currents by listing

a few open questions. All of them are quite challenging, and therefore brief or simple

solutions should not be expected. Nevertheless, as I wrote in the introduction, the long

term program undertaken by C. De Lellis and E. Spadaro makes F. Almgren’s work

readable and exploitable for a larger community of specialists, therefore after several

years without essentially new developments we may hope to see some new progress in

this field. See also [1, 18] for more open problems in the field.

(1) One of the main, perhaps the most well-known, open problems is the uniqueness

of tangent cones to an area-minimizing current, i.e. the uniqueness of the limit (ιx,r)]T

as r → 0 for every x ∈ spt (T ). The uniqueness is known for 2-dimensional currents

(cf. [61]), and there are only partial results in the general case (see [5, 54]). A related

question is that of the uniqueness of the inhomogeneous blow-up for Dir-minimizing

Q-valued functions. Also in this case the uniqueness is known for 2-dimensional domains

(cf. [20], following ideas of [14]).

(2) It is unknown whether the singular set of an area-minimizing current has always

locally finite Hm−2 measure. This is the case for 2-dimensional currents (as proven

by S. Chang [14], claiming in his proof a modification of the construction of the center

manifold adapted to this purpose); note that in this result the uniqueness of the blow-up

of a Dir-minimizing map plays a fundamental role.

(3) It is unknown whether the singular set of an area minimizing current has some

geometric structure, e.g. if it is rectifiable (i.e., roughly speaking, if it is contained in

lower dimensional (m− 2)-dimensional submanifolds). Once again, the positive answer

is known for 2-dimensional currents, where the singularities are known to be locally

isolated, and the uniqueness of the tangent map is one of the fundamental steps in

the proof, and for codimension 1 currents (in this case the singular set is countably

Hm−7-rectifiable, [56, 57]). An analogous question can obviously be raised for Q-valued

functions and a positive answer is presently known only in the case m = 2, [20].

(4) Recent progress on the theory of currents (see [9] and the more recent paper [10]) has

provided weak solutions to Plateau’s problem even when the ambient space is infinite-

dimensional. In [11] the effective approach to regularity theory of [53] has been adapted

to this more general situation: a careful analysis of the constructions shows that the
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constants involved in the proofs do not depend on the codimension, at least when the

ambient space is a Hilbert space. This provides regularity in a dense open set for

mass-minimizing currents (and almost everywhere regularity in the case of multiplicity

1 currents). Thanks to the work of C. De Lellis and E. Spadaro and to their intrinsic

approach, also a large part of the theory of Q-valued functions seems to be independent

of codimension. A challenging open question is to make also other parts of F. Almgren’s

theory, as for instance Theorem 3.9, equally “codimension free”, with the final goal of

getting at least an almost everywhere result for mass-minimizing currents in Hilbert

spaces. However, I have to stress that already [24] makes a deep use of F. Almgren’s

extrinsic approach, which seems to be codimension-dependent.

(5) Finally, I mention the problem of boundary regularity. For higher codimension area-

minimizing currents, the only positive known case is when the prescribed boundary is a

unit-multiplicity current with support contained in the boundary of a uniformly convex

set [4]. See also the recent work [38] for the case of Dir-minimizing Q-valued maps.
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