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Some under the carpet preliminaries
In this talk, we shall be talking about various models of
set theory and changing them by forcing.

For us, set
theory is the one axiomatised by ZFC. By Gödel’s
Incompleteness theorem, we cannot prove the
consistency of ZFC while arguing in ZFC. Hence, by
Gödel’s Completeness Theorem for FO logic, we cannot
prove in ZFC the existence of a model of ZFC.

Nevertheless, there exist simple and well known methods
to avoid this logical difficulty when discussing forcing,
either by considering models of some large enough
fragment ZFC∗ or assuming a bit of large cardinals.
Therefore we shall simply do the usual, ignore this point
and concentrate on the mathematical points. The talk of
Matteo will give you some more details on the logical side.

(We’ll however honour this point by often saying universe
or set theory, in place of model.)
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Forcing and iterated forcing
Forcing is a technique to extend a universe M of set
theory=ZFC to another one, M[G], so that M[G]

has the same ordinals
(most often) has the same cardinals, i.e. the same
truth of “I am a cardinal” over the ordinals.
satisfies a desired formula ϕ.

For example, ϕ could be the failure of CH, or something
more involved such as “every ccc Boolean algebra of size
< c supports a measure”. For such more involved
statements we need to use iterated forcing.

To have the right picture in mind, imagine that in fact we
have some large model V of ZFC in which we have
isolated another small (in fact, countable) model M, and
now we are changing M by adding some objects that are
not in M but are in V. For example, we add a new subset
of ω=the set of natural numbers. Important: V has the
knowledge that M is countable, but M internally does not.
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Mirna Džamonja

Introduction and
MA

Iterating forcing

PFA

And now for
something
completely
different

How about ω2, or
something larger

Forcing and iterated forcing
Forcing is a technique to extend a universe M of set
theory=ZFC to another one, M[G], so that M[G]

has the same ordinals

(most often) has the same cardinals, i.e. the same
truth of “I am a cardinal” over the ordinals.
satisfies a desired formula ϕ.

For example, ϕ could be the failure of CH, or something
more involved such as “every ccc Boolean algebra of size
< c supports a measure”. For such more involved
statements we need to use iterated forcing.

To have the right picture in mind, imagine that in fact we
have some large model V of ZFC in which we have
isolated another small (in fact, countable) model M, and
now we are changing M by adding some objects that are
not in M but are in V. For example, we add a new subset
of ω=the set of natural numbers. Important: V has the
knowledge that M is countable, but M internally does not.



Les axiomes de
forcing

Mirna Džamonja
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Subsets of ω: Cohen forcing
Suppose that we want to add to M a subset A of ω which
is new to M.

We define the set of finite approximations of
the characteristic function of A:

P = {p : finite partial function from ω → 2 = {0,1}},

and we partially order P by ⊆.

For every g : ω → 2 that is in M, consider

Dg = {p ∈ P : (∃n ∈ dom(p))(p(n) 6= g(n)}.

Each such Dg is dense i.e every p ∈ P has an extension
in Dg . For n < ω let

En = {p ∈ P : n ∈ dom(p)}.

These are also dense. From the point of view of V, all
together we have countably many dense sets.
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Mirna Džamonja

Introduction and
MA

Iterating forcing

PFA

And now for
something
completely
different

How about ω2, or
something larger

Subsets of ω: Cohen forcing
Suppose that we want to add to M a subset A of ω which
is new to M. We define the set of finite approximations of
the characteristic function of A:

P = {p : finite partial function from ω → 2 = {0,1}},

and we partially order P by ⊆.

For every g : ω → 2 that is in M, consider

Dg = {p ∈ P : (∃n ∈ dom(p))(p(n) 6= g(n)}.

Each such Dg is dense i.e every p ∈ P has an extension
in Dg . For n < ω let

En = {p ∈ P : n ∈ dom(p)}.

These are also dense. From the point of view of V, all
together we have countably many dense sets.



Les axiomes de
forcing

Mirna Džamonja
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Cohen forcing continued

Applying reasoning similar to that in the proof of Baire
Category Theorem, we can guarantee that in V there is
G ⊆ P which is closed downwards, where each two
elements have an upper bound and which intersects all
the above mentioned dense sets.

(We call it a generic
filter). This is like induction, but over a partially ordered
set.

Note that
⋃

G is a function from ω → 2 which is not in M.

The method of forcing gives us a model M[G] which is a
model that contains G (and hence

⋃
G) as elements, and

M as a subset.

Important: ω is definable from the axioms of ZFC, so all
models of ZFC have the same ω. Hence

⋃
G is a bona

fide new to M subset of ω.
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Continuum Hypothesis, CH
Continuum Hypothesis in thermodynamics “Thus the
continuum hypothesis allows us to replace the
thermodynamic quantities by corresponding
thermodynamic fields that are continuous functions of
space and time.”

Our Continuum Hypothesis comes from Cantor 1878:

Ordinals are linearly ordered and every non-empty family
of ordinals has the least element. An ordinal is a cardinal
if it is not bijective with any smaller ordinal. Every set is
bijective with a cardinal, its cardinality. Since |P(A)| > |A|
for every set A, for every cardinal κ there are cardinals
> κ, and the first such is called κ+= the successor. ℵ0 is
the cardinality of ω, its successor is ℵ1 (which is the
ordinal ω1),and |P(ω)| = 2ℵ0 . So 2ℵ0 ≥ ℵ1.

CH : 2ℵ0 = ℵ1.
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Independence of CH

CH is independent of ZFC.

That is, ZFC can’t prove it or
refute it. Like the 5th postulate of Euclid with respect to
the other axioms of geometry ...

(Gödel 1938) If ZFC is consistent, then so is ZFC +CH.
(the constructible universe)

(Cohen 1963) If ZFC is consistent, then so is ZFC + ¬
CH.

The method of forcing was invented to prove the latter
result.
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Violating CH

We shall change P a bit so to add ℵ2
M many new subsets

to ω.

Q = {q : q a finite partial function from ω2 × ω → 2},

partially ordered by ⊆.

Now a generic adds a new function from ω2 × ω to 2,
which can be seen as ℵ2

M many new functions from ω to
2.

So in M[G) the size of P(ω) is at least ℵ2
M . Are we done

?
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Preserving cardinals

We would be done if knew that ℵ2
M[G] = ℵ2

M .

We did not
have to worry about this regarding ω, as it is definable
and unique, but not so the other cardinals !

We say that the forcing notion (the partial order we used
to force) preserves cardinals if the ordinals that are
cardinals from the point of view of M remain cardinals in
M[G] (i.e. M[G] still does not see what V sees, that M is a
cheat :-).

Cohen forcing preserves cardinals. Hence ℵ2
M[G] = ℵ2

M

and we are done. F

One could have done this with an arbitrarily large value
for 2ℵ0 . So ZFC does not decide even an upper bound for
2ℵ0 . Lévy and Solovay (1967) proved that adding large
cardinals to ZFC does not help either. The theory of P(ω)
is not fixed by the axioms.
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Lévy and Solovay (1967) proved that adding large
cardinals to ZFC does not help either. The theory of P(ω)
is not fixed by the axioms.



Les axiomes de
forcing

Mirna Džamonja
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Countable Chain Condition (ccc)

The reason that Cohen forcing preserves cardinals is that
it has ccc : all antichains are countable.

In the theory of
forcing an antichain is a set of elements of the forcing
notion (conditions) such that no two distinct ones have an
upper bound.

The name ccc comes from an interpretation in terms of
Boolean algebras and their Stone spaces. In topology, a
space has ccc if it has no uncountable family of pairwise
disjoint non-empty sets.

ccc forcing preserves cardinals.
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Mirna Džamonja

Introduction and
MA

Iterating forcing

PFA

And now for
something
completely
different

How about ω2, or
something larger

Changing properties of objects in M

Cantor: The reals are characterised as being a dense
complete separable linear order with no first or last
element.

Suslin (1920) asked if one can weaken the
condition of separability to ccc. A putative
counterexample became known as a Suslin line.

Jech (1967) added a Suslin line by forcing. There is a
Suslin line in the constructible universe L (Jensen, 1972).

Solovay and Tennenbaum (1971) realised the potential of
forcing in trying to construct a model in which there are
no Suslin lines. Take Suslin lines one by one and add a
countable dense set (the actual proof is somewhat
different). For each line, change the universe to a forcing
extension that adds such a set. Hence we need to iterate
forcing.

This is not easy and cannot be done in a naive way ...
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Iteration
The naive way would be to take unions of extensions :

M ⊆ M[G0] ⊆ M[G0][G1] . . .

The union of such a sequence would in general not
satisfy ZFC.

However, Solovay and Tennenbaum found a way to
define an iterated forcing notion - kind of a long product
with finite supports, so that it gives one forcing notion and
hence one extension, which preserves ZFC.

There still remained several points - no new Suslin lines
arise (handled by clever bookkeeping) + cardinals are
preserved.

Theorem
(Solovay, Tennenbaum 1971) An iteration of ccc forcing
with finite supports is ccc.
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Mirna Džamonja

Introduction and
MA

Iterating forcing

PFA

And now for
something
completely
different

How about ω2, or
something larger

Use iterated forcing without doing the iteration
Using iterated forcing directly is rather challenging.

At
seeing the Solovay-Tennenbaum paper, Martin had the
idea that one could do more for the same price. Rather
than iterating forcings that destroy Suslin lines, iterate all
possible ccc forcing. So, the final universe will have
generics for all of them. This is the rough idea behind the
proof of the consistency of

Martin’s Axiom (MA) : For every ccc forcing notion P and
every family F of < c many dense sets in P, there is a filter
in P which intersects all elements of F.

Under CH, MA is true. It is consistent to have MA+¬CH,
as one can prove using an iteration of ccc forcing. MA
does not decide the value of 2ℵ0 , since there are models
of MA and the arbitrarily large value of 2ℵ0 .

Using MA + ¬CH set theorists and non-set theorists have
proved a variety of consistency results, mostly about
P(ω) and P(ω1).



Les axiomes de
forcing

Mirna Džamonja
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Is this an axiom ?

In what sense is Martin’s Axiom an axiom ?

It is a
postulate that

postulates additional properties of the universe,
namely that is closed under taking certain forcing
extensions and
is not contradictory to the axioms of ZFC.

It could be taken as an extra axiom, but there is no
reason to prefer this axiom over its opposite. Forcing
axioms can do better than that, let us see.
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Mirna Džamonja

Introduction and
MA

Iterating forcing

PFA

And now for
something
completely
different

How about ω2, or
something larger

Is this an axiom ?

In what sense is Martin’s Axiom an axiom ? It is a
postulate that

postulates additional properties of the universe,
namely that is closed under taking certain forcing
extensions and
is not contradictory to the axioms of ZFC.

It could be taken as an extra axiom, but there is no
reason to prefer this axiom over its opposite. Forcing
axioms can do better than that, let us see.



Les axiomes de
forcing

Mirna Džamonja
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In the absence of ccc
There are nice forcings that preserve cardinals,

yet they
are not ccc. For example, adding a Sacks real.To iterate
those we need a more involved notion.

Properness is a property that guarantees that ω1 is
preserved.

Theorem
(Shelah 1980) Properness is preserved under countable
support iterations.

PFA The same as MA but with “ccc” replaced by proper
and “< c” with ℵ1 dense sets.
[Why ω1 ? Todorčević and Veličković proved that PFA
implies c = ℵ2.]

Theorem
(Baumgartner 1984) Modulo a supercompact cardinal,
PFA is consistent.
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Some facts about proper forcing

Proper forcing cannot be iterated with finite supports in
the sense of Solovay-Tennenbaum.

The iteration theorem for countable supports of proper
forcing is much more involved than the one for finite
supports of ccc forcing.

Proper forcing of size ℵ1 (or with strong ℵ2-cc) properties
preserves cardinals (and cofinalities and stationary
subsets of ω1).

The natural applications of proper forcing are therefore on
P(ω1).
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How far can we play this game?

We can now imagine how the game would go further:

invent new kind of supports for iteration and prove
stronger and stronger axioms.

Shelah (1987) developed iteration with revised countable
supports and proved a corresponding forcing axiom,
stronger than PFA. Foreman, Magidor and Shelah (1988)
proved that this is the end, in the sense that this is the
maximal axiom we can obtain in this way.

This is Martin’s Maximum MM.
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Mirna Džamonja

Introduction and
MA

Iterating forcing

PFA

And now for
something
completely
different

How about ω2, or
something larger

The Maximum for forcing

In the work of Aspero and Schindler (2021), the question
is of a technical variant of this axiom, called MM++.

Matteo will explain it in his talk, but we can think of this as
saying that the universe of sets satisfying MM++ is
saturated under reasonable forcing. Since MM++ implies
PFA, it implies that 2ℵ0 = ℵ2.

MM++ really looks a reasonable axiom, since it :

decides the value of 2ℵ0 ,
can’t be improved to another axiom of the same kind
and, modulo large cardinals, is consistent with the
axioms of ZFC.
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(∗)
In a totally different part of set theory, dealing with inner
models and determinacy

Woodin came up with a different
maximality principle (∗) (see his 1999 book on Pmax).
Matteo will say more, but one can see the book Théorie
des Ensembles, by Dehornoy (2017) for an enthusiastic
and knowledgable explanation from the scratch.

(∗) also says that the universe of sets is maximal, but in a
very different way. It says that the theory of P(ω1) is
frozen: whatever can be reasonably (a Π2 sentence over
H(ω2) with appropriate predicates) forced about it over a
model of (∗), is already true in the model. Woodin
showed it consistent modulo large cardinals.
The world of set theory thought that these two
approaches did not have anything to do with each other,
and even stated that they were “competitors”. The
Aspero-Schindler paper totally changed that vision, and
this is what Matteo will explain in his talk. I won’t spill the
beans. Let’s talk about something else ...
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Mirna Džamonja

Introduction and
MA

Iterating forcing

PFA

And now for
something
completely
different

How about ω2, or
something larger

(∗)
In a totally different part of set theory, dealing with inner
models and determinacy Woodin came up with a different
maximality principle (∗) (see his 1999 book on Pmax).
Matteo will say more, but one can see the book Théorie
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Mirna Džamonja

Introduction and
MA

Iterating forcing

PFA

And now for
something
completely
different

How about ω2, or
something larger

(∗)
In a totally different part of set theory, dealing with inner
models and determinacy Woodin came up with a different
maximality principle (∗) (see his 1999 book on Pmax).
Matteo will say more, but one can see the book Théorie
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Above ω1

It turns out that naive analogues of MA *do not* work with
ω2.

For example, the iteration of κ+-cc < κ-closed forcing
does not have to be κ+-cc (various examples, a known
one by Shelah).

To generalize MA to κ+ with κ<κ = κ we need to assume
a strong form of κ+ − cc (Baumgartner, Shelah 1984)
< κ-directed completeness or similar and some sort of
“well met property” : every two compatible conditions
have a lub.

There is no, at least no popular, analogue of properness
for ω2.

Solution, for adding an object *once* (no iteration) is
sometimes to use finite conditions and Todorčević’s
method of models as side conditions. Several results, in
chronological order: Baumgartner-Shelah, Todorčević,
Koszmider, Mitchell, Dolinar -Džamonja.
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Koszmider, Mitchell, Dolinar -Džamonja.
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Two kinds of Models as Side Conditions

Neeman (2014) developed a new way to iterate proper
forcing using finite support and two kinds of models as
side conditions.

He obtained a new proof of the
consistency of PFA. Veličković-Venturi showed that this
method subsumes all of the above results.

Neeman’s method is quite a revolution in the theory of
forcing. Important developments are happening in this
field, including the Veličković school here in Paris. A
space to watch !
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How about singular cardinals, like ℵω?

Forcing and singular cardinals do not really match.

Theorem
(Shelah 1980s) If 2ℵn < ℵω for all n < ω, then 2ℵω < ℵω4 .
In a strong sens, this is the final word. Why?
Because we cannot really monkey around (a famous
expression by Kunen) with the powers of singular
cardinals!
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Successors of singular cardinals, like ℵ+
ω

Well, these ones have some hope

but we (provably, by
Jensen’s Covering Lemma) need to mix forcing and large
cardinals.

There are no forcing axioms known, but some reasonable
forcing frameworks. Started by Dž. and Shelah (2005)
and developed in various papers by combinations of
authors Cummings, Dž., Magidor, Morgan, Poor and
Shelah. Hopefully another space to watch.
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and developed in various papers by combinations of
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Mirna Džamonja

Introduction and
MA

Iterating forcing

PFA

And now for
something
completely
different

How about ω2, or
something larger

Successors of singular cardinals, like ℵ+
ω

Well, these ones have some hope but we (provably, by
Jensen’s Covering Lemma) need to mix forcing and large
cardinals.

There are no forcing axioms known, but some reasonable
forcing frameworks. Started by Dž. and Shelah (2005)
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