Séminaire N. Bourbaki

Samedi 13 janvier 2018

Le Séminaire a lieu à l'Institut Henri Poincaré (amphithéâtre Hermite), 11 rue Pierre et Marie Curie, Paris 5e.

Liens vers l'affiche et les résumés (PDF)

10h00
Javier FRESÁN — Équirépartition de sommes exponentielles (travaux de Katz) [PDF] [YouTube]
De nombreuses sommes exponentielles sur les corps finis, par exemple les sommes de Gauss ou les sommes de Kloosterman, s'obtiennent comme transformée de Fourier de la fonction trace d'un faisceau  l-adique sur un groupe algébrique commutatif par rapport à un caractère. L'exposé portera sur l'équirépartition de ces sommes lorsque le faisceau est fixe mais que l'on fait varier le caractère. Dans le cas du groupe additif, on sait grâce à Deligne que l'équirépartition est gouvernée par la monodromie. Récemment, Katz a résolu la variante multiplicative de cette question dans un travail où les idées tannakiennes jouent un rôle essentiel.
11h30
Raphaël BEUZART-PLESSIS — Progrès récents sur les conjectures de Gan-Gross-Prasad [d'après Jacquet-Rallis, Waldspurger, W. Zhang, etc.] [PDF] [YouTube]
Les conjectures de Gan-Gross-Prasad ont deux aspects: localement elles décrivent de façon explicite certaines lois de branchements entre représentations de groupes de Lie réels ou  p-adiques, globalement elles portent sur certaines périodes de formes automorphes et en particulier sur la question de leur (non-)annulation. Ces prédictions, qui font intervenir des invariants arithmétiques (facteurs epsilon locaux et valeurs de fonctions  L  automorphes en leurs centres de symétrie respectivement), ont été récemment démontrées dans un nombre significatif de cas par des méthodes variées (formules des traces relatives locales et globales, correspondance thêta, ...). Après avoir formulé précisément ces conjectures ainsi qu'un raffinement dû à Ichino-Ikeda, on donnera dans cet exposé un panorama des développements récents sur le sujet.
14h30
Sébastien GOUËZEL — Méthodes entropiques pour les convolutions de Bernoulli [d'après Hochman, Shmerkin, Breuillard, Varjú] [PDF] [YouTube]
La convolution de Bernoulli de paramètre $\lambda \in [1/2, 1\mathclose[$ est la loi de $\sum \lambda^n \xi_n$, où les $\xi_n$ forment une suite de variables de Bernoulli non biaisées. On conjecture depuis les travaux fondateurs d'Erdös et Kahane que cette mesure réelle est absolument continue par rapport à la mesure de Lebesgue lorsque $\lambda$ n'est pas l'inverse d'un nombre de Pisot. Cette question, malgré son apparente simplicité, est extrêmement délicate et encore ouverte. Elle a motivé au fil du temps le développement de différentes techniques qui ont ensuite pu être appliquées dans des contextes beaucoup plus généraux. Cet exposé sera consacré à la méthode entropique, introduite récemment par Hochman, qui fait le lien avec le monde de la combinatoire additive et a permis des développements spectaculaires.
16h00
Laure SAINT-RAYMOND — Des points vortex aux équations de Navier-Stokes [d'après P.-E. Jabin et Z. Wang] [PDF] [YouTube]
Pour  N  grand, on s'attend à ce que la dynamique stochastique de  N  points vortex donne une bonne approximation des équations de Navier-Stokes pour les fluides incompressibles visqueux en 2 dimensions d'espace. Jabin et Wang ont montré que la méthode d'entropie relative permet de quantifier cette convergence et la propagation du chaos qui y est associée. La principale difficulté est que l'interaction des vortex, donnée par la loi de Biot-Savart, est très singulière. Le contrôle de ce terme nécessite donc d'établir  une variante de la loi des grands nombres à l'échelle exponentielle, basée sur des arguments combinatoires fins.

Sessions antérieures :

Session de juin 2017

Session d'octobre 2017

Brochure

Des brochures contenant les quatre exposés de ce Séminaire seront distribués au début de chaque séance ; 300 exemplaires seront disponibles au cours de cette session.

Pour recevoir à l'avance le programme et les résumés de chaque séminaire, veuillez vous abonner en envoyant un mail à sympa@lists.ens.fr, en indiquant :
subscribe bourbaki-public <Prénom> <Nom>
<Prénom> et <Nom> devant, bien entendu, être remplacés par vos prénom et nom.

Remerciements

Une subvention du CNRS couvre une partie des frais d'organisation de ce Séminaire.

Powered by MathJax
Association des collaborateurs de Nicolas Bourbaki
École normale supérieure
45 rue d'Ulm
F-75230 Paris cedex 05, FRANCE
Téléphone : 01 44 32 20 88, Fax : 01 44 32 20 80
Courriel : bourbaki@dma.ens.fr