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LA CONJECTURE DE HODGE POUR LES VARIETES ABELIENNES
DE DIMENSION AU PLUS 5
[d’aprés Markman]

par Claire Voisin

1. Introduction

La conjecture de Hodge concerne les variétés algébriques projectives lisses X définies
sur le corps des nombres complexes et leurs contre-parties analytiques X,,, qui sont des
variétés complexes, c’est-a-dire des variétés différentiables munies d’un atlas de cartes
holomorphes. Dans chaque carte, on dispose de coordonnées locales a valeurs complexes
21y ..., Zn, n = dim X, dites holomorphes, telles que les changements de coordonnées
2l = ¢i(z1,. .., z,) sur 'intersection de deux cartes soient holomorphes. Si X C PV est
définie par des équations algébriques et donc localement dans la topologie de Zariski
par des équations polynomiales, la variété X,, est la sous-variété complexe de CPV
définie localement par les mémes équations polynomiales, vues comme des fonctions
holomorphes. Un théoréme important di & Chow (1949) dit qu’inversement toute sous-
variété complexe fermée de CPV est algébrique, c’est-a-dire est 'analytisée X,, d’une
sous-variété algébrique X de PV, définie par des équations polynomiales homogenes.

La variété X,, est aussi un espace topologique auquel on associe ses groupes de
cohomologie de Betti H*(Xan,Z). Les théoréemes de de Rham permettent de calculer les
groupes

H (Xan,C) = H' (Xan, Z) @ C
via les formes différentielles
Ker (d: AY(Xan) = ATH (X))
Im (d: A=Y (Xan) = AY(Xan))

H' (X, C) &

ou AY(X,,) est Pespace des formes différentielles de degré 4, de classe C*™ et a coeffi-
cients complexes sur la variété différentiable sous-jacente a X,,. La structure de variété
complexe de X,, permet de définir les formes de type (p,q) sur X,,. Ce sont celles qui
s’écrivent localement dans des coordonnées holomorphes sous la forme

o= Z Oé]}JdZ]/\d?J,
[|=p,|J|=q

ou les fonctions ay ; sont de classe C*° a valeurs complexes.
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Le théoreme fondamental de décomposition de Hodge est le résultat suivant. La
variété X étant projective lisse complexe, soit

HP(X,,) C H"*(X,,,C)
le sous-espace des classes de formes différentielles fermées de type (p, q) sur X,,. Alors

(1) H*(Xan, C) = H*(Xan,C) = @ H"(Xan).
p+q=k

DEFINITION 1.1. — L’espace Hdg?* (X, Q) des classes de Hodge rationnelles de X de
degré 2k est l'intersection

Hdg™ (X, Q) = H*(Xan, Q) N H"* (Xan),

prise dans l’espace vectoriel compleze H*(X,,, C).

Si X est une variété projective lisse complexe et Z C X est un fermé algébrique de
codimension ¢, donc défini localement par des équations algébriques et tel qu'un ouvert
de Zariski dense de Z soit une sous-variété algébrique lisse de codimension ¢ de X, on
dispose d'un fermé analytique correspondant

Zan C Xan-

(Toujours d’apres Chow, les fermés analytiques de X,, sont en fait en bijection avec
les fermés algébriques de X.) Méme lorsque Z est singulier, on sait depuis Borel et
Haefliger (1961) construire la classe de cycle

[Z] == [Zan] € H*(Xan, Z)

et a fortiori la classe de cohomologie rationnelle correspondante qui nous intéressera
ici. Le point important est que [Z] est une classe de Hodge, ce qui se voit soit en
introduisant suivant Lelong (1957) le courant d’intégration sur Z, soit en utilisant
la résolution d’Hironaka, qui donne une variété algébrique lisse Z et un morphisme
Z—=Z propre, holomorphe et birationnel. On a alors un morphisme composé

i Z—7Z— X,
tel que
[Z] = j.(15) dans H**(X,n,Z),
ol J, HO(Zan, Z) — H*(X,,,Z) est le morphisme de Gysin.

La conjecture de Hodge est I'énoncé suivant.

CONJECTURE 1.2. — Toute classe de Hodge rationnelle sur une variété projective
lisse complexe X est une combinaison d coefficients rationnels de classes [Z] de fermés
algébriques de X.
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De telles classes seront appelées des classes de cycles et dites « classes algébriques ».
Dans la suite de ce texte, on ne distinguera plus la variété projective X sur C et la variété
complexe associée X,,, et on notera H'(X,,,C) =1 H(X,C). Grace au principe GAGA
de Serre (1955b) les constructions de géométrie algébrique (telles que les faisceaux
cohérents et leur cohomologie ou plus généralement leurs images directes) peuvent se
faire de fagon équivalente dans le cadre analytique, ce qui autorise cette confusion.

Le travail présenté ici concerne la conjecture de Hodge pour une classe tres particuliere
de variétés projectives lisses, a savoir les variétés abéliennes (de dimension < 5). La
définition la plus simple consiste a dire que ce sont les variétés projectives également
munies d’une structure de groupe commutatif compatible avec la structure de variété
algébrique. Les variétés complexes correspondantes sont alors des tores complexes.

Le théoreme présenté ici et d a Eyal Markman (2025) est le suivant.

THEOREME 1.3. — La conjecture de Hodge est satisfaite par les variétés abéliennes de
dimension < 5.

Une variété abélienne “tres générale” ne possede pas de classes de Hodge autres que
les puissances de la classe d’une section hyperplane, qui sont évidemment algébriques.
Le sujet des contraintes (dites de Mumford-Tate) imposées aux variétés abéliennes
par l'existence d’autres classes de Hodge a été abondamment étudié, en particulier par
Deligne (1982), Tankeev (1982) et Moonen et Zarhin (1995, 1999). Le travail de Markman
concerne en fait les variétés abéliennes de Weil, qui sont des variétés abéliennes possédant
un automorphisme satisfaisant certaines conditions. Une construction formelle permet
d’en déduire 'existence de classes de Hodge exceptionnelles, dites de Weil, dans la
cohomologie de telles variétés. Les travaux mentionnés ci-dessus permettent de ramener
le théoréeme 1.3 a 1’énoncé suivant.

THEOREME 1.4 (Markman, 2025). — La conjecture de Hodge est satisfaite par les
classes de Weil sur les variétés abéliennes de Weil de dimension 6 et de discriminant 1.

Les variétés abéliennes de Weil admettent l'action par isogénies d’un corps quadra-
tique K. Leur discriminant est un invariant numérique lié a leur polarisation (choisie
compatible avec 'action de K et généralement unique a un coefficient multiplicatif pres).
Je renvoie a la section 2 (voir aussi van Geemen, 1994) pour la définition des variétés
abéliennes de Weil, leurs classes de Weil et leur discriminant.

Des résultats similaires antérieurs avaient été obtenus par Markman (2023), établissant
I’analogue du théoréeme 1.4 pour les variétés abéliennes de Weil de dimension 4 et
discriminant 1. Une autre démonstration de ce résultat, reposant également sur la
géométrie hyper-kéhlérienne, a été obtenue ultérieurement par Floccari et Fu (2025).
Ce méme énoncé avait été établi par Schoen (1988, 2007) pour des corps K spécifiques.

Dans les paragraphes qui suivent, je présente quelques résultats classiques sur la
conjecture de Hodge, de fagon a situer I’énoncé de Markman par rapport a I’ensemble
du sujet.
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1.1. Classes de cycles, classes de Chern et classes de Hodge

Soit X une variété projective lisse sur C et F' un fibré vectoriel algébrique sur X. On
peut considérer les classes de Chern ¢;(F) € H*(X,Q). La donnée d’un tel fibré F est
équivalente a celle de son faisceau F de sections locales, qui est cohérent et localement
libre. On peut également considérer les classes de Chern de faisceaux cohérents (non
nécessairement localement libres) sur X. Les faisceaux cohérents F sur X admettent
des résolutions finies par des faisceaux cohérents localement libres

0O=F,—...=Fy—=F =0,

et on a ’égalité de classes de Chern totales (voir Borel et Serre, 1958)
o(F) = Hc(}})ei, € = (—1)".

Ceci montre que les classes de Chern de faisceaux cohérents et celles des fibrés vectoriels
sur X engendrent le méme Q-sous-espace vectoriel de H? (X, Q) pour tout 1.

I1 est connu depuis Grothendieck (1958), Borel et Serre (1958) que pour formuler la
conjecture de Hodge, on peut remplacer les classes de cycles par les classes de Chern
introduites ci-dessus. Cette construction est cruciale des la codimension 1, ou l'on
associe classiquement a une hypersurface D C X un fibré en droites Ox (D) muni d’une
section sp, dont D est le lieu des zéros. Partant d'un fibré vectoriel ¥ sur X de rang k,
quitte a le tordre par un fibré en droites suffisamment ample, on peut supposer qu’il
est engendré par N sections globales, et donc provient d’un fibré vectoriel sur une
Grassmannienne G(k, N) via un morphisme ¢r: X — G(k, N). La cohomologie entiere
de G(k, N) étant engendrée par des classes de cycles algébriques (variétés de Schubert),
les classes ¢;(E) sont donc des classes algébriques sur X.

Dans 'autre direction, si on part d’un fermé algébrique Z C X de codimension k, le
faisceau cohérent Oz a la propriété que ¢;(Oz) = 0 pour i < k, et

cr(0z) = (=1)*1(k — 1)![Z] dans H**(X, 7).

On voit donc qu’a coefficients rationnels ces différentes constructions engendrent les
mémes classes de Hodge. Le point de vue des faisceaux est souvent plus performant
comme on le verra ci-dessous et dans toute la suite.

1.1.1. Faisceaux tordus. — Soit £ un faisceau cohérent sans torsion de rang r ou un
fibré vectoriel sur une variété projective complexe X. Si le fibré en droites det &£ est
divisible par r dans Pic X, c’est-a-dire qu’il existe un fibré en droites L sur X tel que
L®" = det &, le faisceau cohérent ou fibré vectoriel

F=ERL!

satisfait det F = Ox. De plus les classes de Chern a coefficients rationnels de F ne
dépendent pas du choix de L et sont calculées formellement a partir de celles de £ du
fait que le caractere de Chern est multiplicatif sous le produit tensoriel, ce qui donne

(2) ch(F) = ch(E)ch(L™) = ch(E)exp (—Cl(‘g))

r
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On observe maintenant que le terme de droite fournit en général un élément de
H?*(X,Q), qui a son terme de degré 2 nul, définissant

ch(€ @ (det £)7 ) == ch(E)exp(ci(€))+

sans 'hypothese de divisibilité de det £. Sans cette hypothese, le fibré en droites L
n’existe que de fagon “fractionnaire”; c’est-a-dire dans (Pic X)) ® Q. Pour donner un
sens géométrique & £ ® L~!, pensons & L comme a une racine r-ieme de det £. Le fibré
en droites det £7! admet des trivialisations holomorphes

ti: det &y = Oy,

dans des ouverts (pour la topologie analytique) U; couvrant X, et les fonctions inversibles
tij =t 0 tj_1 sur U; N U; satisfont la condition de cocycle

lijtirtei =1

sur U; N U; N Uy. Quitte a restreindre les ouverts U;, on peut choisir des racines r-iémes
si; de t;; sur U; N Uj, et on obtient

(3) SijSjkSki = gk

sur U; NU;NUy, ou les aj, sont des racines r-iemes de 1'unité et fournissent un 2-cocycle
a valeurs dans le groupe p,- des racines r-iemes de I'unité, soit une “classe de Brauer”

a € H*(X, ).

Etant donnée une classe o € H?(X, ), on a la notion de « faisceau tordu par o » :
les faisceaux cohérents localement libres de rang s tordus par « sont trivialisés dans les
ouverts U; d'un recouvrement ouvert adéquat de X, et leurs matrices M;; de transition
sur U;; = U; N Uj, doivent satisfaire la condition de cocycle tordue

Mij @) Mjk ©) Mkz = aijklsy

ou (aijk) est un cocycle représentant la classe a pour ce recouvrement.

Ce formalisme permet de donner un sens a £ ® L~ comme faisceau tordu par « lorsque
L = (det &)+ n'existe que de facon fractionnaire : les matrices de transition M;; de &
sont remplacées par s;; M;;. On dispose d'une catégorie des faisceaux cohérents tordus
par «, et on peut faire la théorie de leurs déformations. Notons que la description a été
donnée ici dans le contexte analytique (du fait de la nécessité de trivialiser localement
et de prendre des racines r-ieémes de fonctions holomorphes), mais l'utilisation de la
topologie étale aurait permis de définir la classe de Brauer et les faisceaux cohérents
tordus dans le contexte algébrique (un principe GAGA s’applique également ici). Les
classes de Chern d’un faisceau tordu F relativement a une classe de Brauer « sont
données par la formule (2) lorsque F = € ® (det £)~+ comme ci-dessus. En général on
peut utiliser une variété de Brauer—Severi f: X’ — X sur laquelle la classe de Brauer
devient triviale, de sorte que le tiré en arriere f*F est un faisceau cohérent sur X', et
définir les classes de Chern de F en utilisant celles de f*F, qu’on descend sur X par
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une formule de projection. Ces classes de Chern sont des classes de Hodge rationnelles
qui sont en fait algébriques a coefficients rationnels.

Bien que cette construction puisse paraitre artificielle, elle est essentielle pour amélio-
rer le champ d’application de la théorie de la semi-régularité décrite dans la section 5,
intervenant dans I’approche variationnelle de la conjecture de Hodge. En effet, le fais-
ceau tordu £ @ (det £ )_% est a déterminant trivial. Il peut donc tres bien se déformer
avec X sans que la classe de Chern ¢;(€) reste algébrique, ce qui n’est évidemment
pas le cas de £. Cette observation est particulierement importante dans la théorie des
variétés hyper-kdhlériennes (voir Charles et Markman, 2013, Markman, 2020).

1.2. Cas connus de la conjecture de Hodge et exemples classiques de classes
de Hodge

On peut dire qu’a part les cas triviaux k£ = 0, ot H°(X, Q) est engendré par la classe
de X lui-méme, et k = n = dim X, on H*"(X,Q) est engendré par la classe d’'un point
de X, le seul cas connu de la conjecture de Hodge est celui ou k£ = 1, pour lequel le
point de vue des faisceaux est fondamental.

THEOREME 1.5 (Théoréme de Lefschetz sur les classes (1,1))

Soit X une variété projective lisse compleze et v € Hdg*(X,Z) une classe de Hodge
entiere. Alors ~y est algébrique sur X et plus précisément :

(i) 1l existe un fibré en droites algébrique L sur X tel que c;(L) = 7.

(ii) 1l existe un cycle da coefficients entiers D = Y, n;D;, ou les D; C X sont des
fermés algébriques de codimension 1 de X, tel que [D] =%, n;[D;] = .

Il se trouve que ce cas entraine grace a l'isomorphisme de Lefschetz un second cas, a
savoir celui des classes de courbes :

THEOREME 1.6. — Soit X une variété projective lisse complexe de dimension n et soit
v € Hdg* (X, Q) une classe de Hodge rationnelle de degré 2n — 2. Alors il existe un
cycle Z =Y, n; Z; de codimensionn—1 de X, oun; € Q et les Z; C X sont des courbes,
tel que [Z] = 32 ni[Z;] = .

A priori, il est difficile de construire des classes de Hodge intéressantes sur les variétés
algébriques, qui ne soient pas évidemment algébriques. Cependant, il existe des classes
de Hodge construites par des opérations formelles sur la cohomologie des variétés algé-
briques. Les classes de Weil étudiées par Markman entrent dans cette catégorie, mais
aussi d’autres classes que nous décrivons ci-dessous. L’algébricité de certaines de ces
classes fait I’objet des conjectures standard (voir Kleiman, 1968), trés importantes dans
la théorie des motifs.

Ezxemple 1.7 (Conjecture de Kiinneth standard). — Soit X une variété projective lisse
complexe de dimension n et soit Ay C X x X sa diagonale. La diagonale Ax est un
fermé algébrique de X x X et sa classe 0y = [Ax] € H*(X x X,Z) est donc une
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classe algébrique, et en particulier de Hodge. La cohomologie a coefficients rationnels
H?"(X x X,Q) admet la décomposition de Kiinneth
H™(X x X, Q)= @ H(X,Q)® HI(X,Q)
p+q=2n

et on voit formellement que chaque composante de Kiinneth 4, , € H?(X,Q)® H!(X, Q)
de dx est une classe de Hodge sur X x X. Lorsque n > 3, la conjecture de Hodge pour
ces classes n’est pas connue en général.

FEzxemple 1.8. — Soit X une variété projective lisse complexe et k£ > 0 un entier. Soit
by := dim H*(X, Q). On a une inclusion composée

by
N H*(X,Q) c H*(X,Q)*" c H**(X",Q)

et on voit de fagon formelle que le sous-espace de rang 1

b
N H*(X,Q) c H*"* (X", Q)

est engendré par une classe de Hodge. L’algébricité de cette classe n’est pas connue en
général.

Ezemple 1.9 (Conjecture de Lefschetz standard). — Si X est une variété projective
lisse complexe de dimension n et L est un fibré en droites ample sur X, la premiere
classe de Chern | = ¢;(L) € H*(X,Q) est une classe de Kéhler sur X,, et le théoréme
de Lefschetz difficile dit que pour tout £ < n, on a un isomorphisme donné par le
cup-produit

(4) U HA (X, Q) — H™ (X, Q).
Le morphisme [ *U est un morphisme de structures de Hodge et fournit par dualité

de Poincaré et décomposition de Kiinneth une classe de Hodge v, € Hdg™ 2"(X x X, Q)
telle que pour tout a € HE(X, Q)

P U a = . (a) = pry, (pricc U ).
Supposant L tres ample, il est immédiat de voir que la classe v, peut étre construite
comme la classe du cycle Z, C Ax C X x X défini comme l'intersection, dans Ay =
X, de n — k hypersurfaces de X de classe [. Considérons maintenant I’isomorphisme
réciproque
(5) (" Fu)yTt HRX, Q) — HY (X, Q)
de (4). Cet isomorphisme est donné par I'action d’une classe de Hodge

~* e Hdg* (X x X, Q).

La conjecture de Hodge prédit donc que cet isomorphisme est induit par I'action de la
classe [Z¥] = 4% d’un cycle de codimension k dans X x X. Cette conjecture est d’une
importance capitale dans la théorie des motifs et est essentiellement ouverte, bien que
connue pour certains types de variétés algébriques, telles que les variétés abéliennes
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(Lieberman, 1968) et certaines variétés hyper-kéhlériennes (Charles et Markman, 2013,
Voisin, 2022, Ancona, Cavicchi, Laterveer et Sacca, 2025).

1.3. Déformations des variétés algébriques et lieux de Hodge

La plupart des variétés projectives lisses complexes X admettent des déformations,
c’est-a-dire qu’elles apparaissent comme fibre Ay = X au-dessus de 0 € B d’un mor-
phisme projectif lisse f: X — B, ou X et B sont quasi-projectives et B est irréductible.
(Un fait remarquable di & la théorie des variétés de Chow, ou du schéma de Hilbert, est
qu’il existe un ensemble dénombrable de tels morphismes f: X — B, tel que toute va-
riété projective lisse soit isomorphe a une fibre de f pour au moins un f.) Soit f: X — B
un tel morphisme et supposons maintenant que X = Xy admet une classe de Hodge
v E Hdgzk(X ,Q). Le morphisme correspondant fu,: Xan — Bay de variétés complexes
étant propre et lisse, le théoreme d’Ehresmann dit que c¢’est une fibration C°, et en
particulier topologique. La classe v admet donc dans un voisinage By, o de 0 € B,, une
extension Jy € ['(Bano, B?* funsQ) et on peut définir le lieu de Hodge

B, = {t € Bano, 0. € Hdg* (X, Q)}.

Grace aux travaux de Griffiths sur les variations de structures de Hodge, il est facile
de voir que B, est un fermé analytique de B,y (Voisin, 2002b, section 17.3.1). Un
résultat majeur, qui constitue un argument fort en faveur de la conjecture de Hodge,
est le suivant.

THEOREME 1.10 (Cattani, Deligne et Kaplan, 1995). — Le germe d’espace analytique
B,y C B, est ouvert dans une branche d’un fermé algébrique B, de B. De plus, il
existe un morphisme algébrique fini r: Eﬂ, — B, tel que la section locale r*¥y s’étende
en une section globale 7 du systéme local tiré en arriére r—1(R* f,..Q). La section 7 est
partout de Hodge, au sens o, pour tout t € Ew Y € Hdg%()c}(t)).

Les travaux de Deligne (1971) sur la théorie de Hodge mixte permettent de donner
une version plus forte de la seconde assertion. En effet, ils entrainent le résultat suivant.

THEOREME 1.11. — Dans la situation du théoréme 1.10, soit f: )?7 — Eﬁ, le produit
fibré X xp B, et soit Y une compactification lisse projective de X,. Alors il existe une
classe de Hodge vy € Hdg**(Y,Q) induisant la section 7, i.e. 4

dans é,y.

= Vyx, bour tout t

Ces résultats constituent la premiere étape de ’étude variationnelle de la conjecture
de Hodge. Soit X une variété projective lisse complexe et soit v € Hdg"(X) une classe
de Hodge sur X. Soit f: X — B un morphisme propre et lisse de fibre Ay = X, et
avec les notations ci-dessus, soit f,: X, o — B, la restriction de f au-dessus du lieu
de Hodge B, .

CONJECTURE 1.12 (Conjecture de Hodge variationnelle). — Si la classe v est algébrique
sur X, alors pour tout t € B, o, la classe de Hodge 7y, est algébrique sur X;.
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Grace aux théoremes 1.10 et 1.11, la conjecture de Hodge variationnelle est en fait
équivalente a la conjecture suivante.

CONJECTURE 1.13. — Soit f: Y — S un morphisme projectif, avec Y lisse projective
et S irréductible. Soit S® C S lowvert au-dessus duquel f est lisse. Soit v € Hdg®*(Y, Q).
S’il existe un point ty € SO tel que Vi, €st algébrique, alors pour tout point ¢t € S9, NYs
est algébrique.

La conjecture 1.12 est presque complétement ouverte mais nous présenterons dans la
section 5 la théorie de la semi-régularité, qui fournit des critéres permettant de I’établir.
On sait par des généralités sur les variétés de Chow relatives que l’ensemble Sg_alg
des points t € SY tels que Yy, est algébrique, est une union dénombrable de fermés
algébriques de SY. On sait, grace a la construction par Kollar de contre-exemples a la
conjecture de Hodge entiére (voir Kollar, 1990), que la conjecture 1.12 devient fausse si
on la formule pour les classes de Hodge entieres. On sait aussi (voir par exemple André,
2006) que la conjecture de Lefschetz standard (Exemple 1.9) entraine la conjecture
1.13 et donc la conjecture de Hodge variationnelle 1.12. Finalement Deligne (1982) et
André (1996) étudient systématiquement les classes de Hodge vy, apparaissant dans
la conjecture 1.13, qui ont par hypothese la propriété de se spécialiser en une classe
algébrique sur au moins une fibre. Ces classes sont généralisées par André sous la forme
des “classes de Hodge motivées”, et par Deligne sous la forme des “classes de Hodge
absolues”. Il est montré par Deligne (1982) que les classes de Hodge sur les variétés
abéliennes sont engendrées par des classes de Hodge satisfaisant cette propriété.

1.4. Stratégie de la démonstration

Je renvoie a la section 2.3 pour la réduction du théoreme 1.3 au théoreme 1.4. Pour
la preuve du théoreme 1.4, Markman utilise la spécialisation déja utilisée par Deligne
(1982). Une variété abélienne de Weil de dimension 2n se spécialise sur un produit
X x X, ou X est une variété abélienne de dimension n tres générale (voir section 3.1).
De plus, sous cette spécialisation, les classes de Weil deviennent algébriques (comme le
sont toutes les classes de Hodge sur un produit X x X, avec X tres générale). Markman
étudie alors la conjecture de Hodge variationnelle (conjecture 1.12) pour les classes de
WEeil spécialisées. Dans le cas qui nous intéresse, on a n = 3 et les variétés abéliennes X
(qu’on peut choisir principalement polarisées grace a I'hypothese de discriminant 1) sont
donc des jacobiennes de courbes. La variété abélienne X étant principalement polarisée
et donc isomorphe a sa duale X , Markman construit explicitement sur un quotient Y de
X x X un faisceau cohérent sans torsion de rang r tordu & ® (det &)+ qui satisfait
la condition de semi-régularité de Buchweitz—Flenner, et dont les classes de Chern en
degré 6 sont des classes de Hodge—Weil, c’est-a-dire des combinaisons des classes de
WEeil et des puissances de la polarisation. Ce sont aussi les classes de Hodge sur X x X
qui restent de Hodge lorsque X x X se déforme comme variété abélienne de Weil. On
notera HW(A) l'espace des classes de Hodge—Weil pour une variété abélienne de Weil A
projective.
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La théorie de la semi-régularité (voir section 5) a été initiée par Bloch (1972). C’est
a priori 'outil idéal pour attaquer la conjecture de Hodge variationnelle mais elle a été
quelque peu délaissée du fait du manque d’objets semi-réguliers fournissant des applica-
tions. Si on prend le cas le plus simple d'une sous-variété Z C W, ou W est projective
lisse, la semi-régularité de Z introduite par Bloch est une condition cohomologique
garantissant que pour toute déformation d’ordre fini, c’est-a-dire toute déformation
Wy — Spec A de W paramétrée par un schéma de longueur finie, telle que la classe
[Z] de Z C W reste une classe de Hodge sur Wy, il existe un sous-schéma Z,4 C W4
plat au-dessus de Spec A et étendant Z C W. Cela permet donc d’établir une version
formelle de la conjecture de Hodge variationnelle pour v = [Z]. On conclut finalement
par le théoreme d’algébrisation d’Artin (1969) que la conjecture de Hodge variationnelle
est satisfaite par v = [Z]. Markman a recours a la théorie analogue de la semi-régularité
développée par Buchweitz et Flenner (2003) pour les faisceaux et I’étend au cas des
faisceaux tordus, au moins sur les variétés abéliennes. La preuve de la propriété de
semi-régularité pour le faisceau &y sur le quotient Y de X x X repose sur le fait que X
est la jacobienne d'une courbe C' de genre 3, et que I'idéal de C' dans X est semi-régulier
(lemme 5.3).

Les variétés de Weil spécialisées X x X possedent beaucoup plus de classes de Hodge
que les classes de Hodge-Weil. Les classes de Hodge-Weil sont caractérisées par leur
invariance sous un certain groupe de spineurs agissant sur H*(X x X ,Q). L’invariance
des classes de Chern du faisceau tordu &y ® (det Ey)_Tl sous ce groupe de spineurs résulte
de I’étude cohomologique du foncteur d’Orlov (voir section 3.2) utilisé par Markman
pour construire £y en partant d'un faisceau tres simple sur X x X. Cette construction
sera présentée dans la section 3.3.

Remarque 1.14. — 1l est nécessaire ici de travailler avec les classes de Hodge-Weil et
pas seulement avec les classes de Weil. Il n’est pas possible en effet de construire des
faisceaux tordus semi-réguliers sur X x X dont les classes de Chern soient des classes de
WEeil. Ceci entrainerait que les classes de Weil sur X x X restent des classes de Chern
de faisceaux analytiques tordus sur une déformation générale de X X X comme tore
complexe de Weil. Or il est prouvé par Voisin (2002a) que les classes de Weil sur un
tore complexe de Weil tres général de dimension > 4 ne sont pas analytiques.

Remerciements. Je remercie Fyal Markman pour sa patience et la clarté de ses
réponses a mes questions parfois trés naives au cours de la préparation de cet exposé.

2. Variétés abéliennes de Welil et classes de Weil

2.1. Tores complexes

Soit A une variété abélienne de dimension n sur C, qu’on voit ici comme une variété
complexe. Le point de vue de la géométrie analytique permet d’appliquer 'uniformisation
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et de conclure que A est un tore complexe
A=C"/T,

ou I' € C" est un réseau cocompact, donc I' = Z2". Ce point de vue permet de
décrire explicitement la topologie de A et la décomposition de Hodge sur ses groupes
de cohomologie. En effet on a des isomorphismes canoniques

'~ H(AZ), H(AZ) & /\r
et 'inclusion I' C C" s’étend en une application surjective
B:Tg=TwC—-C"
d’espaces vectoriels complexes, de noyau I'V. On a alors

(6) [e=H'(AC), H(A) = ()" = p*((C")") € H'(A,C),
et (I")* = H%Y(A) = HY9(A). Finalement
(7) H'(A,C) = HYY(A) ® H*'(A)

p+q

8)  HPYA) = /}'\HLO(A) ® /q\HO’l(A) c /\ H'(A,C) = H"*(A,C).

La principale difficulté de ce point de vue est que les objets et constructions décrits ici
ne voient pas la structure algébrique de A, mais seulement sa structure de tore complexe.
L’algébricité de A se traduit, grace au théoreme de plongement de Kodaira (1954), par
l'existence d'une classe de Kihler entiere § € H%(A,Z) = A\’T*, qui fournit donc une
forme d’intersection alternée non dégénérée sur I', satisfaisant des conditions, dites
de Hodge—Riemann, de positivité et de compatibilité avec la décomposition (7). Cette
donnée, appelée une polarisation, introduit un invariant discret, le type de la polarisation
qui décrit la classe d’isomorphisme de la forme d’intersection alternée entiére sur I" (voir
Debarre, 1999, Chapitre IV.1). En fait, lorsqu’on s’intéresse aux variétés abéliennes
seulement a isogénie pres, ce qui est le cas pour 1’étude de la conjecture de Hodge pour
les variétés abéliennes, on remplace les données précédentes par le Q-espace vectoriel
I'p =T ® Q munie de sa forme alternée a coefficients rationnels, et le seul invariant
discret qui subsiste est le discriminant, un nombre rationnel bien défini modulo les
carrés.

2.2. Variétés abéliennes de Weil, classes de Weil et polarisations

Une variété abélienne de Weil est une variété abélienne A de dimension paire 2n
admettant un endormorphisme ¢: A — A tel que ¢* = —dId4 pour un entier d > 0 et
satisfaisant de plus une condition que nous décrivons maintenant. L’endomorphisme ¢
agit par tiré en arriere sur la cohomologie de degré 1 de A. L’endomorphisme

¢*: H'(A,C) — H'(A,C)
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préserve le sous-espace H"?(A) C H'(A,C) qui est de dimension 2n, et satisfait I’équa-
tion
(¢*)? = —d1dg1(a0)-

La condition de Weil est que ¢* agissant sur H'9(A) ait exactement n valeurs propres
égales & iv/d et n valeurs propres égales & —iv/d. Soit W+ c H 1(A,C) le sous-espace
propre de ¢* associé a la valeur propre ivd et soit W~ c H 1(A,C) son conjugué
complexe, qui est le sous-espace propre de ¢* associé & la valeur propre —iv/d. Ces deux
espaces vectoriels sont de dimension 2n.

LEMME 2.1. — Sous la condition de Weil, les sous-espaces vectoriels de dimension 1

2n 2n
AW c NH'(A,C)=H"(A,C),

2n 2n

AW~ c NH'(A,C)=H"(A,C)
sont contenus dans H*?"(A).
Démonstration. — En effet comme ¢* préserve la décomposition de Hodge (7), on a
Wt =wH0ge Wl on W0 .=W+tnHYA), et WHOL =W+ N H%(A). On sait
par hypotheése (condition de Weil) que chacun des deux espaces W0 WH01 est de

dimension n. En effet W10 est Pespace propre associé & la valeur propre iv/d pour
l'action de ¢* sur H%°(A). Donc

2n n n
/\W+ — /\W+1,0 ® Aw—i-O,l C ]_In,n<14)7
et de méme A*" W~ C H""(A). O

Soit K le corps de nombres Q(v/—d). On verra K comme contenu dans C, v/—d € K
étant envoyé sur iv/d € C. On note que les espaces A" W+, A2 W~ ci-dessus sont en
fait définis sur K dans le sens suivant :

LEMME 2.2. — II existe un K-sous-espace vectoriel Wit de rang 1 de A\*" HY(A, K) tel

que
2n 2n

2n
WieR=AW"c ANH'(A,C)= \H' (4, K)oR.

Cela résulte en effet du fait que les espaces W et W~ sont définis sur K, étant des
espaces propres de ¢* pour des valeurs propres qui sont dans K.

COROLLAIRE 2.3. — Il existe un sous-espace vectoriel
W C Hdg™"(A, Q)
de dimension 2, tel que

2n 2n
We®C= AW PAW-.
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Démonstration. — On prend pour Wy la trace Try/oW;, qui est de dimension 2 par le
lemme 2.2. Par le lemme 2.1, Wq est contenu dans H?"*"(A) et donc est contenu dans
I’espace des classes de Hodge. O

La construction décrite ci-dessus n’a fait intervenir que le tore complexe A, et on
peut donc parler de tores complexes de Weil et de leurs classes de Weil. Les variétés
abéliennes de Weil sont des variétés projectives, admettant donc un fibré en droites
ample L de classe 6§ = ¢;(L) € Hdg?*(A, Q). Comme ¢? = —dId,, I'action

¢": H*(A,Q) — H*(A,Q)
de ¢ sur H?(A,Q) = N\* H'(A, Q) satisfait
(¢7)° = d’ld ().
L’espace vectoriel H?(A, Q) est donc la somme directe
H*(A,Q) = H*(A,Q)aD H*(A,Q)-a

des espaces propres associés aux valeurs propres d et —d. Chacun de ces sous-espaces
est une sous-structure de Hodge de H%(A, Q), c’est-a-dire, est stable sous la décomposi-
tion (1).

LEMME 2.4. — Pour toute variété abélienne de Weil, il existe une polarisation w de A
qui est dans H*(A,Q)q, ¢’est-a-dire satisfait

9) ¢'w = dw.

Démonstration. — Si 6y = ¢1(L) est une polarisation, w = dfy + ¢*y est aussi une
polarisation, qui satisfait (9). ]

Une telle polarisation w sera dite compatible avec I'action de K. On peut montrer
(voir van Geemen, 1994) que le nombre de Picard d’une variété abélienne de Weil tres
générale est égal a 1, c’est-a-dire que la polarisation w ci-dessus est unique a un multiple
pres. Le discriminant d’une telle variété abélienne polarisée est un élément (positif) de
Q*/Nm(K*), ot Nm(K*) est le sous-groupe de Q* constitué des normes d’éléments de
K*. 1l est obtenu en associant & la polarisation w € H?(A, Q) invariante sous ¢ la forme
hermitienne h,, sur 'espace vectoriel H;(A, Q) vu comme un K-espace vectoriel, définie
par

he(u,v) = —w(u, ¢v) + V—dw(u,v).
Le discriminant est défini comme le déterminant de la matrice de cette forme her-
mitienne dans une K-base de H;(A, Q). Le corps K étant donné, le discriminant est
I'unique invariant discret des variétés abéliennes de Weil pour K a isogénie pres (la
classification & isomorphisme prés étant évidemment plus compliquée). Si on fixe d, n,
¢, agissant sur I' et la classe d’isomorphisme a coefficients entiers de la polarisation
compatible w, il existe une famille connexe paramétrant les variétés abéliennes de Weil A
avec action de ¢, sur le réseau H(A,7Z) et polarisation compatible w du type fixé. En
effet, comme variété projective, A est déterminée par la variété complexe A munie de sa
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polarisation w et comme tore complexe, A est déterminée par le sous-espace vectoriel
de dimension n complexe H; o(A) C Hi(A,C) (noté I'" dans (6)), qui doit étre invariant
sous ¢,. Introduisant comme ci-dessus les espaces propres

Wy, W_ C Hi(A,C)

pour ¢,, A est déterminée par le choix des deux sous-espaces vectoriels complexes de
dimension n,

(].0) W+(1,O) C W_;,_, W—(l,O) C W_

puisque
Hyo(A) = W0 DW=

Les deux espaces (10) déterminent respectivement par conjugaison complexe
W,(OJ) cw_, W+(071) C W,.

Mais par ailleurs la condition que w polarise A entraine que W, () est orthogonal a
W_n,0) C W_ relativement a w € A? H'(A,C). Donc Wia,0) détermine W_, o) par la
formule
W_0 = W_NnW{ ),

du fait que par l'invariance (9), les deux espaces W, et W_ sont lagrangiens et duaux
pour w. Finalement, l'espace W, (o) n’est pas arbitraire dans la grassmannienne
G(n,W,), car

W+(170) @ W,(l’o) = HLO(A) C Hl,B(Aa C)
doit satisfaire également les secondes relations bilinéaires de Hodge-Riemann (voir
Debarre, 1999, Chapitre IV.1 ou Voisin, 2002b, section 7.2.2) relatives a w, disant que la
forme hermitienne A/, (u,v) = iw(u,v) est définie positive sur Hy(A). Cette condition
définit un ouvert de la grassmannienne G(n, W, ). On obtient de cette maniere une
uniformisation de ’espace de modules des variétés abéliennes de Weil relatives a K par
une variété complexe connexe, les invariants numériques entiers de la polarisation étant
fixés.

2.3. Réduction aux classes de Weil

Une variété abélienne complexe A a une algebre de cohomologie trés riche, a savoir

HYA,Q) = \H'(A,0).
L’ensemble des classes de Hodge
Hdg*'(4,Q) € H*(A,Q)

est une sous-algebre, qui contient par ailleurs au minimum les puissances ¢, i = 1,..., ¢
d’une polarisation 8 = ¢;(L). Les classes de Hodge 7 agissent par cup-produit sur
H*(A,Q) et les morphismes induits

YU: H'(A,Q) — H™(A,Q), 2¢ = deg~,
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sont des morphismes de structure de Hodge (i.e. sont compatibles avec la décompo-
sition de Hodge (1)), réduisant fortement le groupe de Mumford-Tate MT(A) (voir
Deligne, 1982). On peut définir ce dernier comme le plus petit sous-groupe algébrique
de End(H'(A,Q)) contenant (aprés extension a R) la copie du sous-groupe S' € C* des
nombres complexes de module 1, agissant sur a = a'® + a®' € H'(A,R) par

z-a=za"? 4+ za™

et donc déterminant la décomposition de Hodge (7, 8). Son lien avec les classes de Hodge
est que les classes de Hodge de A sont clairement invariantes sous MT(A) (puisqu’elles le
sont sous St) et qu'inversement MT(A) peut étre défini comme le sous-groupe algébrique
de End(H'(A, Q)) laissant invariantes les classes de Hodge sur les puissances A* pour
tout k. L’étude du groupe de Mumford-Tate MT(A) a donné lieu & de nombreux
résultats (voir entre autres Tankeev, 1982, Moonen et Zarhin, 1995, Hazama, 1989). Par
exemple, Tankeev (1982) montre le résultat suivant :

THEOREME 2.5. — Soit A une variété abélienne simple sur C, dont la dimension g est
un nombre premier. Alors la Q-algébre des classes de Hodge de A est engendrée par les
classes de Hodge de degré 2 de A.

On dit ici que A est simple si elle n’est pas isogene a un produit non trivial de
variétés abéliennes. Comme la conjecture de Hodge est connue en degré 2 (théoreme
1.5), il en résulte que sous les hypotheses du théoréme 2.5, A satisfait la conjecture
de Hodge. En dimension 5, seules les variétés abéliennes non simples nécessitent une
analyse supplémentaire. Pour les applications au théoreme de Markman, I'article de
Moonen et Zarhin (1999) fournit exactement la réduction désirée de la conjecture de
Hodge au cas des classes de Weil.

THEOREME 2.6 (Moonen et Zarhin, 1999, Theorem 0.1 et Theorem 0.2)

Soit X une variété abélienne sur C, avec dim X < 5. Alors la Q-algébre des classes
de Hodge rationnelles de X est engendrée par les classes de Hodge de degré 2 et par des
classes de Weil sur certains facteurs de X admettant un endomorphisme quadratique.

Remarque 2.7. — Dans loc. cit., les auteurs donnent également la liste des groupes
de Mumford—Tate possibles, ce qui revient a analyser les classes de Hodge sur les
puissances A*.

COROLLAIRE 2.8. — La conjecture de Hodge pour les variétés abéliennes de dimension
au plus 5 est entrainée par la conjecture de Hodge pour les classes de Weil sur les variétés
abéliennes de Weil de dimension < 4.

Comme on 'a vu plus haut, une variété abélienne de Weil a un corps de nombres
K = Q(v/—d) associé et un discriminant 6 € Q**/Nm(K*).
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LEMME 2.9. — Le produit Ay X Ay de deux variétés abéliennes de Weil de méme
corps K associé et de discriminants respectifs 01, 0o est une variété abélienne de Weil
de discriminant 0105. De plus, si la conjecture de Hodge est satisfaite par les classes de
Weil sur Ay et par les classes de Weil sur Ay X Ay, alors elle ’est par les classes de Weil
sur As.

Démonstration. — L’ensemble des classes de Weil sur A; x A, est un sous-espace vec-
toriel W (A; x Ay) de dimension 2 non dégénéré de W (A;) ® W(A,). La restriction de
la forme d’intersection de H?*%'(A;,Q), g1 = dim A, a I'espace W (A;) des classes de
Weil sur A; est non dégénérée. Partant d’une classe de Weil wy € W (Aj3), on peut donc
écrire wy de la fagon suivante

wy = pry, (priw; U w),

ounw € W(A; x Ay), et w; € W(A;). Dans cette formule, les classes w; et w sont par
hypothese algébriques, et donc wq est algébrique. [

On déduit de ce corollaire, en utilisant le théoreme de Lefschetz sur les classes (1, 1)
(Théoréme 1.5) lorsque dim A; = 2, le résultat suivant.

COROLLAIRE 2.10. — Le corps K étant donné, la conjecture de Hodge pour les classes
de Weil sur les variétés abéliennes de Weil pour le corps K, de dimension 6 et de
discriminant 1, entraine la conjecture de Hodge pour les classes de Weil sur les variétés
abéliennes de Weil pour le corps K, de dimension 4 et de discriminant arbitraire. Elle
entraine donc également la conjecture de Hodge pour les variétés abéliennes de dimension
< 5 par le corollaire 2.8.

3. Foncteur d’Orlov et faisceaux sur X x X

3.1. Spécialisation des variétés abéliennes de Weil

Soit X une variété abélienne de dimension n et soit K = Q(v/—d). Soit A == X x X.
Soit ¢ ’endomorphisme de A défini par

(11> (b(au b) = (_bada’)
De toute évidence, on a ¢? = —dId,. Vérifions que A est une variété abélienne de Weil.
L’action de ¢* sur H"*(A) = pri HY9(X) @ pry HYO(X) est donnée par la formule

¢ (e, B) = (d 5, —av).
L’espace propre associé & la valeur propre iv/d de ¢* agissant sur H LO(A) est donc
isomorphe & H'9(X) et de dimension n. La variété abélienne A est donc une variété
abélienne de Weil, associé au corps K. Ces variétés abéliennes de Weil sont des spé-
cialisations de variétés abéliennes de Weil générales. C’est la spécialisation utilisée par
Markman en dimension 6, X étant alors de dimension 3. Notons que cette spécialisation
est utilisée également par Deligne (1982) pour montrer que les classes de Hodge sur
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les variétés abéliennes se spécialisent sur des classes algébriques. En effet, lorsque la
variété X est une variété abélienne tres générale, toutes les classes de Hodge sur X x X
sont algébriques. L’action ¢* de ¢ sur

H(A, Z) = pr, H2(X, Z) @ pryH*(X, Z) & pri H'(X, Z) & pryH (X, Z)
est donnée par

(12) ¢"(priw) = priw, ¢ (prjw) = d*priw, ¢ (priev A pr3f) = —dpryar A prif.
Si X est tres générale de polarisation 6y, il résulte de (12) que les polarisations inva-
riantes de A = X x X sont de la forme

(13) w = dprifx + pryfx.

Si de plus fx est unimodulaire (de sorte que (X, f0x) est une variété abélienne principa-
lement polarisée), le discriminant de w est une puissance de d, qui est une norme de K
et donc les variétés abéliennes de Weil obtenues en partant d’une variété abélienne X
principalement polarisée sont de discriminant 1. Dans ce cas, X est aussi isomorphe a
sa variété abélienne duale X = Pic®(X).

Une variété abélienne de Weil A pour le corps Q(v/—d) et de discriminant 1 se
spécialise (apres isogénie) sur un produit X x X comme ci-dessus. On connait I’algebre
des classes de Hodge sur le produit X x X pour X tres générale. Elle est engendrée
par Hde(X x X,Q), qui est de dimension 3. Nous aborderons dans la section 4 la
question suivante : quelles sont les spécialisations sur X x X des classes de Weil sur A?
En fait, comme déja mentionné, c’est I'espace HW (X x X)) des classes de Hodge—Weil,
combinaisons linéaires des classes de Weil et des puissances de la polarisation qui nous
intéresse pour cette question.

3.2. Foncteur d’Orlov

Soit X une variété abélienne complexe, et X = Pic’ (X) sa variété abélienne duale. Les
tores complexes correspondants X et X sont donc duaux au sens ou les décompositions
de Hodge sur H'(X,Z) et H'(X,Z) = H'(X,Z)* sont duales. Soit

P € Pic(X x X)
le fibré de Poincaré, c’est-a-dire le fibré en droites uniquement déterminé par le fait que
Pixxiey = Ox, Pz = Oz
ou o, 0 sont les origines des variétés X, X ,et ¢ (P) € Hdgz(X x X ,Z) est donnée par
Tds1(xz)- € Hom(HY(X,Z)*, H'(X,Z)*) = H'(X,Z) ® HY(X,Z) ¢ H}(X x X,Z).
La restriction de P & la fibre X x {L}, L € X, est (avec un abus de notation) le fibré
en droites L. On note D°(Y') la catégorie dérivée d'une variété algébrique lisse Y. C’est

la catégorie des complexes de faisceaux cohérents bornés a gauche de Y, considérés a
quasi-isomorphisme pres. Le foncteur de Fourier—-Mukai P

DY(X) — D'(X)
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associé & P est une équivalence de catégories définie par Mukai (1981) comme

(14) Dp(E) = Rory, (pri€ @ P).

Le foncteur de Fourier—-Mukai agit sur la cohomologie a coefficients rationnels par la
formule

(15) ®p.(a) = pry, (pria Uexp(e(P)).

Il n’est pas difficile de voir que ®p, préserve la structure entiere et est en fait I’isomor-
phisme

H*(X,7) =~ H(X,7Z)" = H*(X,Z)
ou le premier isomorphisme est donné par la dualité de Poincaré. Notons que par le
théoreme de Grothendieck—Riemann-Roch (Borel et Serre, 1958), les formules (14) et
(15) sont compatibles au sens ou

ch(®p(€)) = Pp.(ch(E)).
Le foncteur d’Orlov est une équivalence de catégories
®: D'(X x X) = DX x X)

introduite par Orlov (2002) et définie de la fagon suivante. Soit fi: X x X — X x X
I’automorphisme défini par

f(u,v) = (u+v,v).
Soient pryy, pry3, Preg les trois projections de X x X x X sur X x X et X x X.

(16) (I)(]:) = Rpry3, (Prfz(ﬁ*}—) ® pr§373).

Partons du cas (qui sera celui qui nous intéresse) ot F est un faisceau cohérent de la
forme
F1 W Fy = priFi @ pryFo.

Alors la restriction du faisceau pri,(a*(F)) a la fibre {u} x X x {L} de pr,5 au-dessus
de (u, L), est égale a

tuxF1 @ Fo
et la restriction de prisP a cette méme fibre est isomorphe a L. Le complexe O(F) sur
X x X encode donc la cohomologie des faisceaux

(17) twFl@ L uc X, LeX

sur X.

Le foncteur ® est une équivalence de catégories car il est aussi la composée des
équivalences de catégories fi*: D*(X x X) — D’(X x X) et du foncteur de type Fourier—
Mukai

D'(X x X) = D*(X x X)
associé a prysP sur X x X x X , qui est aussi une équivalence de catégories par les
mémes arguments que dans Mukai (1981).
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3.3. Construction d’un faisceau tordu

Soit C' une courbe de genre 3 non hyperelliptique. Choisissons un plongement C' C
X = J(C), ou J(C) est la jacobienne de C. Soient G, G5 deux sous-groupes cycliques
d’ordre d + 1 de J(C'), agissant sur X par translation. Le nombre d qui apparait ici est
celui qui déterminera le corps K = Q(v/—d) plus tard. Pour des choix génériques de C,
de son plongement dans X et de Gy, G, les translatés

Ci IIC—FS,L' CX, G1 = {O, S1yev.y Sd}
sont disjoints deux a deux et les translatés
CJ, = —C—f-tj C X, ng{é, t1, ..., td}

sont disjoints deux a deux. De plus C; N € = ) pour tous 4, j.

Avec ces notations, soient
(18) Fii=1T ,(0) COx(0), Fo =Ty (0)COx(0),
ou O est un diviseur Théta fixé de J(C'). Considérons 1'objet
G = d(F KF) e DX x X).

JOR YA

(au sens dérivé) d’un faisceau cohérent et méme réflexif sur X x X.

THEOREME 3.1 (Markman, 2025, Proposition 9.2.2). — Si C' et les groupes G; sont
génériquement choisis, les faisceauxr de cohomologie G' de G satisfont aux propriétés
suivantes : GO = 0, G2 = 0, le faisceau G? est de torsion supporté sur un fermé de
codimension 4 de X x X et, notant & = (G')*, on a

i) Le faisceau cohérent £ est réflexif et G' = £*.

ii) Le compleze G est quasi-isomorphe a Ext(E, 0, ¢)[1]. En particulier

Gl=gr G2 &t'(€,0

Xx)/(\)7

et Ext'(€,0 =0 pouri > 2.

Xx)?)

JOR R

tions entre la courbe Cy = f-l:o C; et les translatés de la courbe C. := U, C’J'-. On notera

C! =t,(C") le translaté de C’ par u € J(C).

LEMME 3.2. — Si lintersection C N C.,, pour u € J(C), est non vide, alors elle est
constituée de deux points (ou d’un point de multiplicité 2). Cette condition est satisfaite
pour u dans un diviseur Occr C J(C).

Démonstration. — En effet, soit z € Pic’(C) donnant le plongement C' C J(C) =
Pic’(C). Pour u € J(C) = Pic’(C), un point de C' N C’, est un point = € C tel que

x —z=—2' 4z +u dans Pic’(0),
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pour un point 2’ de C. Ceci équivaut au fait que = + 2’ = 2z +u dans Pic?(C), équation
symétrique en x et z’, et réalisée pour u dans une hypersurface de J(C), qui est un
diviseur Théta (c’est-a-dire un translaté de C? c J(C)). O

La premiere condition est la suivante

(A) (Markman, 2025, Assumption 9.1.1) On a H°(X,Z¢, (20 + L)) = 0 pour tout
L € Pic’(X).

Cette hypothese est évidemment satisfaite si d est suffisamment grand, ce qu'on peut
supposer quitte a remplacer d par m?d pour m grand.

Une autre condition imposée est que les courbes translatées C; soient disjointes deux
a deux, ce qui est facile a réaliser, au moins pour C' générique.

La seconde condition est la suivante

(B) (Markman, 2025, Assumption 9.2.1.) Les (d+1)* surfaces ©;; := C; — C} (qui sont
des translatés de diviseurs Théta comme expliqué ci-dessus) sont en position générale, au
sens ou leurs intersections triples sont de dimension 0 et leurs intersections quadruples
sont vides.

Une derniere condition facile a réaliser est que le groupe G; X G4 s’injecte dans X.
Preuve du théoréme 3.1. — Rappelons que par (16) et (18), on a

(19) G = Rprys, (prisfi" (F) ® pragP),
ou le faisceau F sur X x X est défini par
(20) F =priZc,(0) @ pryZe;(©).

Soit F = priyfi*(F)@priyP. Le faisceau F est plat au-dessus de X x X, via le morphisme
prys. Pour tout t = (u, L) € X x X, notons X, la fibre {u} x X x {L} de pr,5 au-dessus
de .

En un point ¢t = (u, L) € X X X tel que t.(C;) N C} = O pour tous i, j, on a

(21) Fix, = Doy (© + 04 + L),
ou ©, = t,(0). On montre en utilisant (21) et la condition (A) que l'on a
ho(‘fixt) = 07 hg(ﬁ]Xt) =0

pour t € X X X général, mais il n’est pas difficile d’établir en fait ces annulations
pour tout t € X x X. Il en résulte immédiatement que G° = 0 = G3. Par la théorie
du changement de base, il existe alors deux fibrés vectoriels K*, K2 sur X x X et un

morphisme

(22) §: K — K?

tels que

(23) G' = Kerd, G* = Coker .

En utilisant la condition (B) et (21), on va montrer ensuite que h2(]-"| x,) = 0 pour tout
t = (u,L) € X x X en dehors d'un fermé ¥ de codimension 4 de X x X. Il résulte alors
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de la théorie du changement de base que le faisceau G? est de torsion, supporté sur le
fermé ¥ que nous décrivons maintenant.

Comme sur chaque composante C; ou C} de 'union ¢, (Ce) UCy, le degré de ©,+O+ L
est 6, on a

H1<tu(co> U Ci? L(Qu + @)|tu(0.)UC£) = 07

en tout point t = (u, L) € X X X tel que tu(Cs) N C% = () pour tous i, j, et donc on a
sous cette hypothese

H*(Xy, Fix,) = H* (X1, Thcayucy, © L(Ow + ©)) =

La situation est plus compliquée quand t,(C;) N Cj # @ pour une paire (4,7). Dans
ce cas, ]t"‘ x, a de la torsion (supportée aux points d’intersection des courbes t,(Cl,)
et C,) mais l'isomorphisme (21) reste vrai modulo la torsion de Fjx,. Le fermé ¥

supportant G2 parametre les paires (u, L) € X x X telles que pour au moins un couple
(i,4), tu(C:) N C} # 0 (donc u € O©y) et L € Pic’(X) a la propriété que

(24) Hl(tu(ci) U C}, L(@u + @)\tu(Ci)UC;) £ 0.

La courbe réductible mais connexe t,(C;) U C’ étant de genre 7 par le lemme 3.2, et
le degré de ©, + © + L sur cette courbe étant 12, le fibré L € Pic’(X) est uniquement
déterminé par la condition (24) qui implique que L(© + Oy)j, couc! = Ktu(ci)ucg-
On obtient donc dans X x X une réunion finie de surfaces (:)Z-j, chacune isomorphe
au diviseur ©;;. En fait, il faut aussi étudier ce qui se passe sur les intersections de
deux surfaces ©;;, c’est-a-dire lorsque le couple (4, j) n’est pas unique, ce qui est fait

soigneusement par Markman (2025). Le fermé ¥ C X X X est donc Ui; @Z] qui est de
codimension 4.

Le morphisme § de (22) est donc surjectif génériquement et son transposé
5 (K2)* — (KY)*
est un morphisme injectif de conoyau £. En écrivant la suite exacte
(25) 0— (K2 8 (KN = € >0

et en utilisant (23), on voit que G = &xt(E, O, ¢)[1]. La réflexivité de £ résulte de (25)

et du fait que &xt(€, 0O G? est supporté en codimension > 4. O

X><X)

Le faisceau & a les premieres propriétés numériques suivantes.
LEMME 3.3. — Le rang de & est 8d.

Démonstration. — D’apres la démonstration précédente, le rang de £ est égal a celui
de G! qui par la théorie du changement de base et par (21) pour ¢ = (0,0) (qui sous nos
hypotheses n’est pas dans le fermé X3) est égal a

(26) W (Fix,) = h°(Co U CL, Ocue; (20)) — hO(X, Ox(20)).
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On a h’(X,0x(20)) = 8 et
W (CeUCL, Oc,ucy(20)) = 2(d +1) -4

puisqu’on a 2d + 2 courbes disjointes de genre 3 sur lesquelles le diviseur Théta est de
degré 3. Donc le rang de & est 8d par (26). O

Comme on le verra dans la section 4, le caractére de Chern tordu
K(E) = ch(€ @ det(€)7)

du faisceau tordu € ® det(& )_% est fait de classes de Hodge-Weil, qui restent donc de
Hodge pour toute déformation de X x X comme variété abélienne de Weil. Cependant
le faisceau tordu & @ det(€ )_% n’est pas encore l'objet géométrique cherché. En effet,
il ne satisfait pas la condition de semi-régularité énoncée dans la section 5 (voir la
sous-section 5.3), qui garantirait que ses classes de Chern restent algébriques le long de
ces déformations.

Markman corrige ce défaut de la fagon suivante. Rappelons qu’a un décalage pres, le
dual au sens dérivé de & est le complexe

G =0(FIRF) € D'(X x X),
ot ®: DP(X x X) — DP(X x X) est le foncteur d’Orlov et
F1=1c,(0), Fo =Lcy(©).
En particulier £ = (G')*. On peut aussi écrire
(27) G =V(Zc, W Ig,),

ou l'équivalence de catégories W est la composition de ® et de I'autoéquivalence de
catégories de D’(X x X) donnée par le produit tensoriel avec Ox(©) X Ox(0).

Or par construction le faisceau Zpo, sur X est invariant sous l'action de G par
translations et le faisceau Z¢; sur X est invariant sous 'action de G par translations.
Donc le faisceau Zg, X Zoy sur X x X est invariant sous 'action de G x Go par
translations. Il en résulte que G € D(X x X ) est invariant sous 'action de G x Go sur
DY(X x X) donnée pour u € Gy x G, par

(28) M T,(M) =V ot,, oV (M),

oll t,, est l'action induite par la translation ¢, sur D’(X x X). L’action (28) n’est
pas induite par une action de translation sur la base X x X. Markman la calcule
explicitement :

PROPOSITION 3.4 (Markman, 2025, Equation (9.3.1)). — Pour u = (uy,u2) € Gy X Ga,
FeD(XxX),ona

(29> T, = ((prTLul ® pr;P'UQ)@) ° (tul_u27tLu1+Lu2)*7
ot pour u € G; C X, L, = Ox (0, — 0) € Pic’(X), la translation t,, est la translation

par L, sur X, et P, = Plyxx € Pic(X).

{u}xX
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COROLLAIRE 3.5. — 57 G; NGy = {0}, laction de Gy x Gy sur X X X induite par T
est fidéle.

On notera Gmg le groupe GG; x (G5 agissant par translations sur X X X , par la
formule

(Ula u?) = t(@) = (tm—uz’ tLu1+Lu2)'
Le faisceau &y qui va nous intéresser est grosso modo obtenu en descendant £ sur le

quotient
(30) Y =X x X/G; x Go.

La formule (29) et I'invariance de G! = £* sous Ty, pour u € G; x Gy, disent que pour
tout u = (uy,us) € Gy X G, on a canoniquement

(31) t—— (E) ZpriLy, QpryP, ®E.

(u1,u2)x*
Ceci ne dit pas cependant que & est invariant sous les translations t;=; du fait du
coefficient multiplicatif apparaissant a droite. Pour obtenir un objet GGy x Ga-invariant

a partir de £, Markman demande que d soit pair (ce qu'on peut toujours supposer vu

que Q(v/—d) = Q(v/—4d)). Il montre alors :

LEMME 3.6 (Markman, 2025, Lemma 9.3.5). — Si d est pair, il eziste un fibré en
droites D sur X x X tel que D ® &€ soit G x Gy-linéarisable.

Le fibré en droites D est tel que pour (u1,us) € G1 X Ga,
(32) (D) = (priLy, @ pryPy,) "' @ D.

(ur u2)
Les formules (31) et (32) montrent que D ® £ est invariant par translations sous
G1 X G, et en fait il est méme (G; x Ga-linéarisable. 11 descend donc en un faisceau

cohérent &y sur la variété Y, tel que, notant ¢: X x XY I’application quotient,
(33) TE = E.

. L : ., 1
Le faisceau & sur Y, ou plus précisément le faisceau tordu associé & ® (det€y) 54,
fournit la paire désirée.

4. Les classes de Chern de £ ® (det 5)_% sont de Hodge—Weil

Rappelons que nous appelons classes de Hodge—Weil les classes de Hodge existant
sur une variété abélienne de Weil trés générale, pour un corps K = Q(v/—d) fixé et
de discriminant 1, ou leurs spécialisations X x X , vues comme variétés abéliennes de
Weil comme dans la section 3.1. En les degrés 2k = 2n, ces classes sont des puissances
de la polarisation w compatible avec I'action de K (c’est-a-dire satisfaisant a (9)). En
degré 2n, 'espace des classes de Hodge—Weil est de dimension 3, engendré par les classes
de Weil elles-mémes et la puissance w".
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THEOREME 4.1. — Supposons dim X = 3. Soit £ le faisceau sur X x X de rang r = 8d
construit dans le théoréme 3.1. Alors
1

(i) (Markman, 2025, Remark 6.2.4) Les classes k;(E) = ch’(€ ® (det€)~7) sont de
Hodge—Weil sur X x X.
3

(77) (Markman, 2025, Lemma 8.3.1) La classe k3(E) n’est pas proportionnelle d w?.

Les classes de Hodge sur un produit X x X, ou X est une variété abélienne tres
générale munie d'une polarisation €, sont toutes obtenues comme des polyndémes en les
trois classes de Hodge de degré 2

(34) 0, == pri6, Oy := prif, O3 == "0,

ou p: X x X — X est I'application somme. Il n’y a pas de relations polynomiales
P(6y,05,03) = 0 non triviales dans H?**(X x X, Q) lorsque le degré k de P (supposé
homogene) est < n := dim X. Lorsque k < n, les classes de Hodge—Weil sur X x X, munie
d’une structure de variété abélienne de Weil relative a un corps quadratique K, forment
donc un sous-espace de dimension 1 (en degré 2k < 2n) ou 3 en degré 2k = 2n, dans
un espace vectoriel de dimension Wr%ﬁ Markman (2025) commence par caractériser
ce sous-espace afin de démontrer le théoreme 4.1. Les sections 4.1 et 4.1.2 décrivent
cette caractérisation. La section 4.2 conclut la preuve du théoreme 4.1 par I'analyse
cohomologique du foncteur d’Orlov.

4.1. K-sécantes de la variété des spineurs et variétés abéliennes de Weil

Soit (X, fx) une variété abélienne principalement polarisée sur C et soit X sa duale
(qui est donc isomorphe & X). Soit

(35) V=H'(X x X,Q) = H(X,Q) ® H'(X,Q)*

(36) 5= NH'(X,Q) = H*(X,0)

L’espace vectoriel V' est muni de la forme bilinéaire symétrique (, ) définie par
((w, e), («, e’)) =¢'(x) + e(2).

Notons x — % et v > 0 les isomorphismes
XX H'(X,Q=xH'(X,Q)

donnés par la polarisation fx. L’endomorphisme ¢: X x X — X x X de (11), défini
par ¢(a,b) = (=b,da), et satisfaisant

¢2 = —dldx x X
induit un endomorphisme ¢’ de X x X , défini par

(37) ¢'(x,9) = (—y,d 1)
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qui satisfait également ¢'* = —dlIdy . De plus on a la formule suivante pour le tiré
en arriére agissant sur V'

(38) ¢ (v,0) = (dw, —1).

Soit

WcHY(X xX,C)=H'(X,C)s H'(X,C)*
le sous-espace propre associé & la valeur propre iv/d de ¢'*.

LEMME 4.2. — W est un sous-espace totalement isotrope mazimal de H'(X,C) @
HY(X,C)* muni de la forme bilinéaire (, ).

Démonstration. — Les éléments v de W sont de la forme

v = (v,0) + Z,\l/aﬁb,*(%w)

pour tous v € H(X,C), v € H*(X,C)*, c’est-a-dire, en utilisant (38)
(39) Y= (Ua ’UA}) + 7<dw> _@)
On obtient donc pour v, v/ € W
1 A 1 A
) = (v,0) + —=(dw, —0), (v, w') + —= dw’,—v’)
(7) = (0.8 + ——fdw,—0), () + ()
1 N 1 A 1 ~
+—(—=v'(v) +do(w)) + —=(dw'(w) —(v")) — = (—=dv'(w) — dd(w")).
i\/E( (v) ())i\/c_l( (w) =0(v)) = 5 (=dv'(w) — o))
Ceci vaut 0 du fait que I'isomorphisme H'(X,Q) = H'(X,Q)*, v — 0, est alterné,
c’est-a-dire d(w) = —w(v) pour tous v, w € H(X, Q). O

= w'(v) + D (V)

On rappelle qu’étant donné un Q-espace vectoriel V' muni d’'une forme quadratique
q(z) = (z,x), I'algebre de Clifford C (V') est définie comme le quotient
C(V)=V®*/I
ou I est Iidéal de 'algebre tensorielle V®* engendré par les tenseurs
T ® T+ Ty ®x1 — (21, 29)1

pour x1, 5 € V. On note C'(V)7* la sous-algebre engendrée par les tenseurs de degré
pair. L’algebre C'(V') admet une anti-involution * définie par

*

(1. ) = (=1)"zp ... 21
Le groupe Spin(V') est défini par
(40) Spin(V) ={zx € C(V)*, za* =1, et 2Va* C V}.
Les Q-espaces vectoriels V' et S étant définis comme dans (35) et (36), I'algebre de
Clifford C(V) agit sur S : un élément (u, ) de V = S & (S')* agit sur S = A* S! par
produit extérieur par u et produit intérieur par 0. On note m, € End(S) l'action de

v € C(V) sur S. L’algebre S se décompose selon la parité du degré en S = ST @ S~.
Le groupe Spin(V) € C(V)* agit d'une part sur V par définition (voir (40)), et donc
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aussi sur ses puissances extérieures (on notera g — p, cette action) et d’autre part sur
ST par multiplication de Clifford comme ci-dessus (on notera g — m, cette action). Un
élément £ € S¢ est appelé un « spineur pair pur »si

me: Ve = S7, v = my(§)

a pour noyau un sous-espace vectoriel isotrope maximal de V. Inversement un tel sous-
espace détermine a un coefficient pres I'unique spineur pair pur dont il est le noyau. Si
¢ est un spineur pur pair de noyau K, et g € Spin(V'), le noyau de m,(§) est p,(K).
La grassmannienne isotrope 1G(2n,4n) des sous-espaces vectoriels isotropes maximaux
de V¢ est donc plongée dans P(S¢). Le lemme 4.2 combiné avec les considérations
précédentes montre que 'action de K définie ci-dessus sur V' fournit un spineur pair
pur &y (défini sur K') associé a W, son conjugué complexe étant le spineur pair pur .
Le plan

(41) P = {w, &) C S¢
est clairement défini sur Q. La droite projective associée est une droite sécante de la

variété des spineurs IG(2n,4n) C P(S™). Le plan P est calculé explicitement de la fagon
suivante.

LEMME 4.3 (Markman, 2025, Equation (2.4.5)). — Soit u = iv/dfx € Hdg*(X) ® C.
Alors on a

(42) P ® C = (exp(u),exp(u))c
Im(exp(u))

43 P = (Re(exp(u)), —————2>) .

(43 (Re(espiun, D)

Démonstration. — Si n € N> H'(X,C), le cup-produit avec exp(n) est un automor-
phisme de Palgebre S¢c = A*H'(X,C) qui est de la forme mexp;) pour un élément
exp(n) € Spin(V)¢ dont la représentation spinorielle peyp, sur Ve est donnée par

(44) Pescp() (w,u?’) = (w— uA)’m, 1@’).

Ceci se voit en écrivant 77 comme une somme de bivecteurs décomposables 1’ := x1 A x5.
Supposons pour simplifier que dim H'(X, C) = 2 et x1, x5 est une base de H'(X, C), avec
base duale x}. Alors 'élément de Spin(V') correspondant est exp(n') = 14+x122 € C(V) 7T
et on trouve que dans C(V), (1 + z129)z;(1 + x9m1) = z; et

(1 + @)} (1 + 2o21) = 2] — 21, (1 4+ 2122)25(1 + 2021) = 25 + 21,

expliquant la formule (44).
En posant n = u = ivd fx, on trouve que

(45) Pesp(u) (W, W) = (w — Wduw', w)
puisque par définition w0y = w'.

L’élément 1 € ST est un spineur pur de noyau H!(X,C)*. Le spineur exp(u) =
Mexp(u) (1) € Sc est donc un spineur pur dont le noyau est pexp(u) (H* (X, C)*). D’aprés
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(45), Pespace isotrope maximal W C H'(X,C) & H'(X,C)* associé¢ au spineur pur
exp(u) est donc

(46> W= peXp(u)<Hl(X7 C)*) = {(—i\/ﬁw’,d;’), w' € H1<X’ (C)*}

Finalement, on note que 'espace W défini ci-dessus est le méme que I'espace W considéré

dans (39), si 'on pose w' = w — ﬁv. O

L’importance du lemme 4.3 vient du corollaire suivant. On reprend les notations et
la construction de la section 3.3.

COROLLAIRE 4.4. — Les faisceaur Fy = L4 ,(0) C Ox(0©) et Fo =ZLya (O) C
Ox(©) de (18) ont la propriété que

(47) ch(F) € P.

Démonstration. — Le caractere de Chern est multiplicatif. De plus, les C; étant dis-
jointes, on a Z¢, = ®; Z¢, et de méme pour C,. On a donc

d d
ch(F1) = ch(0x(0)) [] ch(Ze,), ch(F2) = ch(Ox(O H IC/
i=0 j=0

On a ch(Ox(0)) = exp(fx). Par ailleurs, le théoreme de Grothendieck—Riemann—Roch
appliqué a l'inclusion ic de C' ou €’ dans X = J(C') donne

h(O0,) = icn(eb(T)) = 25 — 2],

ou [pt] est la classe d'un point de X. Comme le caractére de Chern est additif, on en

déduit ,
() = 1 - X+ 2],

d’ou

ch(Fy) = ch(F) = exp(@x)<1 — 623( + 2[pt])d+1.

Comme on est en dimension 3, on obtient (1— %—FQ[pt})d“ =1—(d+ 1) +2(d+1)[pt]

et donce
2

ch(Fy) = exp(fx) — (d + 1)0—X +2(d+ 1)[pt] — (d + 1)05(.

2
Comme 63 = 6[pt], il vient
0% 03 0% 03
(48)  ch(F1) = exp(fx) — (d+ 1)7 —(d+ 1)% =1+0x— d7 —d= G

Par ailleurs, la formule (43), ou u = iv/d By, montre que P est engendré sur Q par

02 93
1—d=X. 0y —d-=X.
97 /X 6
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4.1.1. Polarisation de X x X comme variété abélienne de Weil. — Les notations précé-
dentes permettent aussi de décrire commodément la polarisation sur la variété abélienne
de Weil sur X x X (relativement au corps K). En effet, I'isomorphisme X = X est
donné par une polarisation x sur X, c’est-a-dire une 2-forme

2
Ox € AN H'(X,Q)

telle que v(u) = Ox(u,v) pour u, v € Hi(X,Q) et satisfaisant les conditions de Hodge—-
Riemann

(49) 9)((0(,6) = O, VOé, ﬁ S Hl’o(X), i@X(a,@) > 0, Va € Hl,o(X), o 7£ 0.

Considérons la forme bilinéaire w sur V* = Hy(X,Q & H;(X,Q)* définie par

(50) w(w, w') = (w, ¢ (w'))
Pour w = (u,9), w' = (u/,v') € V*, on a ¢_w' = (=, du’), d’ot
(51) ww,w') = (w, ¢ (w)) = du'(u) — 0(v)

= du'(u) +v'(v) = dOx(u,u') + Ox(v,v').

Ainsi la forme w de (50) est une polarisation K-compatible de X X X qui coincide
avec la forme donnée en (13).

4.1.2. Caractérisation spinorielle des classes de Hodge—Weil. — Avec les notations de
la section précédente, P = ({w, &) étant le plan correspondant & une droite K-sécante
de la variété des spineurs IG(2n,4n) C P(S™), on définit le groupe Spin(V')p C Spin(V)
comme étant le sous-groupe des éléments g € Spin(V') tels que my(p) = p, Vp € P.
Rappelons que le groupe Spin(V') agit par ailleurs sur A*V = H*(X x X ,Q) par la
représentation p. Markman établit la caractérisation suivante des classes de Hodge—Weil.

PROPOSITION 4.5. — Les classes de Hodge—Weil de X x X sont les classes invariantes
sous la p-action de Spin(V)p.

Cette proposition résulte de 1’énoncé suivant.

LEMME 4.6 (Markman, 2025, Lemma 2.2.7). — L’espace (A* V)P"(V)F des invariants
de N*V sous Spin(V)p est réduit a 0 en degré % impair, de dimension 1 et engendré
par la puissance w* de la polarisation compatible w de (51) en degré 2k # 2n, et de
dimension 3 en degré 2n, engendré sur C par les classes N*" W, N*" W et w™.

Ces résultats peuvent étre obtenus également en utilisant le groupe de Mumford-Tate
d'une variété abélienne de Weil trés générale, déformation de (X x X, K, w) (voir van
Geemen, 1994, Section 6). Ce dernier groupe est en effet le sous-groupe du groupe or-
thogonal SO(V/, (, )) constitué des automorphismes K-linéaires. Le formalisme spinoriel
va par contre étre fortement utilisé dans la démonstration du théoreme 4.1.
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4.2. Preuve du théoréme 4.1

D’apres la proposition 4.5, pour démontrer le théoreme 4.1(i), il suffit de montrer
I'invariance sous Spin(V)p de x(€). Rappelons (voir section 3.3) que

£V =G[-1], G = ®(F1 KR F;) = Rprys, (priy (" (Fi ¥ F)) @ prisP),

o @: DP(X x X) = DP(X x X) est Péquivalence de catégories dérivées d’Orlov et ol
le dual &Y = &rt(E,0 ) doit étre pris au sens dérivé puisque & n’est pas localement
libre.

I1 suffit donc de montrer que x(G) est Spin(V)p-invariant. Par le théoreme de
Grothendieck—-Riemann—Roch, en utilisant le fait que le fibré tangent relatif de prog
est trivial, on obtient

(52) ch(G) = prys. (pris(A”(ch(F1 B F2)))pras(ch(P))
q)coh(Ch(fl X fg))

On a vu dans le corollaire 4.4 que le caractére de Chern de F; et F5 est un élément
de P C S et donc invariant sous Spin(V')p x Spin(V') p. Malheureusement le morphisme
Peon: S® S =H (X x X,Q) = \V
défini dans (52) n’est pas équivariant sous les diverses actions du groupe Spin(V'). (Plus
précisément, le groupe Spin(V') agit & gauche sur S par la multiplication de Clifford
g — my et a droite par sa transposée g — m;. Par ailleurs il agit sur A*V = @, A'V
par la représentation p.) Ce défaut d’équivariance est analysé par Markman (2025). Soit

pg—q)coho(mgxm OCI)Colh /\V—>/\V

La différence entre p, et p; mesure le défaut de Spin(V')-équivariance de @
La formule suivante est établie par Orlov (2002). Pour tout g € Spin(V'), on a

(53) py = exp(ci(Ng)) U py,
ou Ng/\est un fibré en droites topologique (c’est-a-dire une classe entiere de degré 2) sur
X x X.
Markman (2025, Proposition 6.1.2) établit une formule explicite pour ¢;(N,) :
(54) &(Ny) = 5(@(P) ~ py(er(P))).
Preuve du théoréme 4.1(i). — Le caractére de Chern
ch(Fi K F,) = ch(F)ch(F) e S®@ S

est invariant sous my X m} pour g € Spin(V)p et donc

ch(G) = Peon(ch(F X Fy))

est invariant sous p, pour g € Spin(V)p. D’apres (53), on conclut que pour tout
g € Spin(V) p,

(55) exp(c1(Ng)) U py(ch(G)) = ch(G).
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Comme ch®(G) = —8d # 0 par le lemme 3.3, on obtient
(56) —8d ¢ (Ny) = ch'(G) — py(ch’(G)).
De plus, d’apres (56), on a pour tout g € Spin(V)p,

9) = exp () en(g) = expler (4,))exp (o, (29 )e(g)
et donc, en utilisant (55)
(57) (@) = exployfes (5, exp (D) ), (@)
= explpy(en(3)) esp (L) Jexpter (v,)entg)

= explpaler ()0 3 D) Yo () e (B9 g

Finalement, (56) entraine que

h' h! -1
explpy(er () e (3 L) Jexpea () e (L) T <,
et donc k(G) est Spin(V') p-invariant d’apres (57). ]

Remarque 4.7. — Notons que d’apres (56) et (54), ¢1(£) = ch'(G) n’est pas invariant
sous Spin(V)p, d’otl la nécessité de travailler avec le faisceau tordu € ® (det€) s .

Preuve du théoréme 4.1(ii). — La démonstration du fait que k3(G) n’est pas propor-
tionnel & w? repose sur les calculs précédents et sur I'analyse de I'action d’un groupe
Spin(V)gy ¢ 1égérement plus gros que Spin(V)p. Le groupe Spin(V)g, ¢ est le sous-
groupe de Spin(V) qui fixe (via la représentation m) chaque élément &y, & a un
coefficient pres. Ce groupe agit trivialement (via la représentation p) sur les puissances
de la polarisation w, mais pas sur les classes de Weil. En utilisant (54), Markman montre
que ce groupe ne laisse pas x3(G) invariant. ]

5. Semi-régularité

5.1. Semi-régularité de Bloch

La théorie de la semi-régularité pour les sous-variétés ou sous-schémas fournit un
critere permettant d’étudier la question suivante de déformation des paires.

Question 1. Soit X une variété projective lisse et soit f: X — B un morphisme
lisse de fibre Xy = X. Soit Z C X une sous-variété ou un sous-schéma. Existe-t-il un
sous-schéma Z C X plat sur B tel que 290 = Z ¢
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Cette question peut étre posée dans le cadre analytique complexe ou dans le cadre
algébrique. Dans les deux cas, il est naturel d’étudier ce probleme d’abord a l'ordre
fini (arbitrairement grand), c’est-a-dire lorsque B = Spec A est un schéma artinien
local, i.e. de longueur finie supporté en un point. Si I’étude formelle ne rencontre pas
d’obstructions, des méthodes analytiques difficiles permettent de répondre a la question
en géométrie complexe localement sur la base (Kodaira, 1963) et dans le cadre algébrique,
le principe d’algébrisation d’Artin (1969) permet de répondre a la question globalement
mais apres un changement de base.

Le critere suivant est établi par Kodaira (1963).

THEOREME 5.1. — Soit X une variété complexe compacte et Z C X une sous-variété
compleze. Supposons que le fibré vectoriel holomorphe Nz x sur Z satisfait

H'(Z,Nyx) = 0.

Alors la réponse a la question 1 est oui (dans le cadre formel, ou analytique local).

On note cependant que la question ci-dessus est trop naive pour avoir une réponse
satisfaisante. En effet, s’il existe une déformation Z C X de Z, la classe [Z] de Z reste
une classe de cycle et a fortiori de Hodge dans les fibres voisines &}, pour ¢t € B proche
de 0. Ici, on pense au morphisme lisse f comme a un morphisme analytique qui est
donc localement topologiquement trivial par Ehresmann, ce qui permet de transporter
la classe [Z] € H**(X,Z) en une classe [Z], € H*(X,,Z), pour t € B. Comme déja
mentionné, c¢’est en fait le cas d’une base formelle ou artinienne B qui est intéressant,
mais on peut 1a aussi donner un sens a la condition que la classe [Z] € H*(X,Z) reste
une classe de Hodge sur les fibres X}, griace a la connexion de Gauss—Manin et aux
fibrés de Hodge (voir Voisin, 2002b, section 17.3 par exemple). Méme dans le cas tres
simple des surfaces projectives lisses (par exemple les surfaces S de degré d > 4 dans
P3 étudiées par Noether), on sait bien que des classes de courbes C' C S ne restent pas
en général des classes de Hodge dans toutes les déformations S; de S.

La semi-régularité de Bloch étudie donc la question raffinée suivante.

Question 2. Soit X une variété projective lisse sur C et soit f: X — B un morphisme
lisse de fibre Xy = X . Soit Z C X une sous-variété ou un sous-schéma de codimension c.
On suppose que la classe [Z] € H**(X,Z) reste une classe de Hodge sur les fibres X;,
t € B. Existe-t-il un sous-schéma Z C X plat sur B tel que Zg = 7 ¢

Supposons que Z C X est localement intersection compléte de codimension ¢, de
sorte que son fibré normal

Nzix = (Iz/1;)"

est localement libre sur Z. L’application de semi-régularité

(58) 521 Hl(Z,Nz/X) —)HCJA(X,QAC);I)
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est introduite par Bloch (1972). Elle est définie comme la transposée, relativement a la
dualité de Serre, de I'application de restriction

Hn_c_l(X, Q}_C—H) N Hn—c—l(Z’ N;/X X KZ), n = dim X

induite par le morphisme naturel de faisceaux Q% “** — N} /x ® Kz. Le sous-schéma
Z C X est dit semi-régulier si 'application 07 de (58) est injective. Bloch montre le
résultat suivant.

THEOREME 5.2 (Bloch, 1972). — Si l'application de semi-régularité §, est injective, la
réponse a la question 2 est affirmative pour Z, sur toute base artinienne B.

Le théoreme 5.2 est une extension naturelle du théoreme 5.1. En effet, la théorie de
Griffiths des variations de structure de Hodge et 1’étude des lieux de Hodge montrent
que Pespace HT(X, Q5 !) contient les obstructions successives & tous les ordres & ce
que la classe [Z] reste de Hodge sous la déformation Z — B. Si celle-ci reste de Hodge,
les obstructions successives a tous les ordres a étendre Z lui-méme sont donc annulées
par dz. Les démonstrations de ces théorémes ont été rendues plus conceptuelles et
élégantes par la théorie du relevement T de Ran (1995).

Bien que le théoréme 5.2 puisse paraitre enthousiasmant, il est limité par la difficulté
de construire des sous-variétés semi-régulieres. Pour les diviseurs, la semi-régularité est
satisfaite lorsque les diviseurs sont suffisamment amples (la condition précise est 1’an-
nulation H'(X, Ox(D)) = 0, qui est satisfaite par (Serre, 1955a), quitte & remplacer D
par D + kH ou k >> 0 et H est une section hyperplane de X). Par contre, on peut
remarquer que si X est une variété de dimension n > 4 a fibré canonique trivial ou de
dimension n > 3 & fibré canonique ample, et telle que H?(X,Ox) = 0, une courbe lisse

CcCcX

de genre > 2 n’est pas semi-réguliere. En effet comme H?(X,Ox) = 0, la semi-régularité
signifierait dans ce cas que H'(C, N¢yx) = 0. Or la formule de Riemann-Roch et la
formule d’adjonction donnent

X(C,Ne/x) = —deg Kxjc+29—2+ (n—1)(1 — g) = —deg Kxjc + (n — 3)(1 — g).

Sous les hypothese indiquées, on trouve x(C, No/x) < 0 et donc h'(C, No/x) # 0, de
sorte que C' n’est pas semi-réguliere dans X. Si on prend par exemple une hypersurface
tres générale de dimension > 3 et de degré d > 2n — 1 dans P" avec n > 4, on sait grace
a Clemens (1986) que toutes les courbes C' C X sont de genre au moins 2 et toutes
les hypotheses ci-dessus sont satisfaites. Cette absence de courbes semi-régulieres est
cohérente avec le fait que la conjecture de Hodge variationnelle a coefficients entiers
n’est pas satisfaite par de telles variétés, au moins pour des degrés adéquats, voir Kollar
(1990).

Le succes de la stratégie de Markman repose directement sur le fait suivant, qui
concerne les variétés abéliennes de dimension 3 principalement polarisées (en particulier
a fibré canonique trivial).
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LEMME 5.3. — Soit C une courbe lisse de genre 3 et non-hyperelliptique et X = J(C)
sa jacobienne. Alors C C X est semi-réguliére au sens de Bloch.

Démonstration. — Ecrivons la suite exacte normale

0—Tc — Txic — Neyx — 0.
Il en résulte que

HY(C, Neyx) = HY(C, TX|C)/H1(C’, Tc).
Or comme T est trivial et H' (X, Ox) = H'(C,O¢), on a
H'(C,Tx|c) = H'(X, Tx).
Comme C' est de genre 3 et n’est pas hyperelliptique, 'application
H'(C,Tc) - H'(X,Tx) = H'(X,Ox) ® H(X,Tx) = H'(X,0x) @ H'(X, Ox),

ot I'isomorphisme H°(X,Tx) = H'(X,Ox) est donné par le produit intérieur avec la
classe Ox € H'(X,Qx) du diviseur © de X, a exactement pour image Sym*H' (X, Ox).
Son conoyau H'(C, N¢/x) est donc naturellement isomorphe a A* H'(X, Ox). On vérifie
finalement que le composé

2
H*(X,0x) = \ H'(X, 0x) = H'(C, Neyx) % H*(X, Qx)

est I'isomorphisme de Lefschetz H?*(X, Ox) = H3(X,Qx) donné par le cup-produit par
la classe #x. Donc 'application de semi-régularité oo est injective. O]

5.2. Semi-régularité de Buchweitz—Flenner

Nous présentons une transposition due a Buchweitz et Flenner des résultats de Bloch
a un autre probleme de déformation des paires, qui concerne cette fois les déformations
des paires (X, E), ou E est un faisceau cohérent sur une variété projective lisse X. Etant
données une telle paire et une déformation de X donnée par un morphisme projectif
lisse
f: X =B, =X,

existe-t-il un faisceau cohérent &£ sur X, plat sur B, tel que &y, = E'7 La discussion
concernant la base B (munie du point 0) est la méme que dans la section précédente.
L’étude se concentre donc sur le cas formel. Une condition nécessaire est que les classes de
Chern de E restent des classes de Hodge sur les fibres &, (ce qui comme précédemment
a un sens méme lorsque la base est artinienne, a 1’aide des variations de structures de
Hodge). La vraie question est donc :

Question 3. Etant donnés une variété projective compleze lisse X, un faisceau
cohérent E sur X, et une déformation de X donnée par un morphisme projectif lisse

fiX =B, XX,
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telle que toutes les classes de Chern c¢;(E) restent de Hodge sur les fibres X;, t € B,
existe-t-il un faisceau cohérent € sur X, plat sur B, tel que & x, = E ?

La réponse apportée par Buchweitz et Flenner (2003) fait intervenir la classe d’Atiyah
de E. Supposons d’abord que E est localement libre (i.e. E est le faisceau des sections
d’un fibré vectoriel). La classe d’Atiyah at'(E) € Ext'(E, E ® Qx) a été introduite a
I'origine par Atiyah. Dans le contexte analytique, F admet une connexion V de Chern,
dont la courbure Ry est une forme fermée de type (1,1) a coefficients dans End E,
fournissant une classe de cohomologie de Dolbeault at'(F) € H'(X,Qx ® End E). En
fait la construction peut se faire de fagcon beaucoup plus formelle et algébrique, en
introduisant le faisceau P;(F) des jets de sections de E a l'ordre 1. On a une suite
exacte

0-Qy®FE— P(F)— FE—Q0,

qui fournit la classe d’extension voulue at'(E) € Ext!'(F, Qx ® E). Cette construction
s’étend ensuite a tout complexe et donc tout faisceau cohérent sur une variété projective
lisse. On note
at(E) = exp(at'(E)) € PExt(E, Q% @ E).
7

La classe d’Atiyah at(E) permet de calculer les classes de Chern ¢;(E) (ou du moins leur
version « Dolbeault »dans H'(X, Q% ). (Il faut en principe préter attention a la différence
entre les versions algébrique et analytique des classes de Chern dans H'(X, Q% ), qui
différent par des puissances de 2im, du fait de la compatibilité voulue dans le second
cas avec les classes de Chern en cohomologie de Betti, mais nous n’entrerons pas dans
ces détails ici). On a en effet la formule suivante (voir Buchweitz et Flenner, 2000) :

(59) ch(E) = Tr(exp(at'(E))) = Tr(at(E)) dans @Hi(X, Q%).

Le caractére de Chern ch(FE) € @; H'(X, Q%) d’un fibré vectoriel E de rang r et somme
directe de fibrés en droites Ly @ ... @ L, étant défini par

ch(F) = iexp(cl(Li)) dans @Hi(X, %),

avec c1(L;) = at’(L;), on obtient immédiatement la formule (59).
Buchweitz et Flenner (2000) construisent 1’application de semi-régularité
op: Ext*(E,E) — € H™(X,QY),
i>0
pour un faisceau cohérent E. L’application dz est obtenue par composition avec la classe
at(F) suivie de la trace. On dira que E' est semi-régulier (au sens de Buchweitz—Flenner)
si 0g est injective. On a alors

THEOREME 5.4 (Buchweitz et Flenner, 2003). — Soit E un faisceau cohérent semi-
régqulier sur une variété projective lisse X. Alors la réponse a la question 3 est affirmative,
au, moins sur toute base formelle.
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Une petite déformation Xy de X sur laquelle les classes de Chern c¢;(E) restent de
Hodge, possede donc un faisceau cohérent qui est une déformation E; de E. En particulier
les classes de Chern c¢;(E) restent algébriques sur X;.

Le passage du cas formel au cas analytique local (dans la seconde partie de I’énoncé)
ou au cas algébrique (apres revétement fini) se fait par les méthodes de Kodaira (1963)
ou Artin (1969).

On utilisera le résultat suivant :

LEMME 5.5. — Soit C une courbe de genre 3 non hyperelliptique et soit X = J(C),
de sorte que C est plongée dans X par Uapplication d’Abel. Alors le faisceau cohérent
d’idéaur I sur X est semi-régulier (Markman, 2025, Lemma 8.3.7(3)).

Ceci se montre en effet en utilisant le lemme 5.3. Il faut noter cependant que la
semi-régularité d’une sous-variété Y C X n’est pas en général équivalente a celle du
faisceau d’idéaux Zy C Ox. L’exemple le plus simple est celui des diviseurs D C X.
Pour qu’un tel diviseur soit semi-régulier, il faut que H'(X, Ox (D)) = 0, tandis qu'un
fibré vectoriel de rang 1, et en particulier le faisceau Ox(—D), est toujours semi-régulier
au sens de Buchweitz—Flenner.

5.3. Cas des faisceaux tordus

La classe d’Atiyah et 'application de semi-régularité sont définies pour un faisceau
cohérent tordu relativement & une classe o € H?(W, p1,) sur une variété W, de la méme
maniére que pour le cas non tordu décrit dans la section précédente (Markman, 2025,
Definition 7.3.5), c’est-a-dire via la classe d’extension du faisceau tordu des 1-jets associé.

LEMME 5.6. — Soit £ un faisceau cohérent sans torsion de rang r sur une variété
projective lisse W. Alors £ est semi-réqulier si et seulement si le faisceau tordu € ®
(det 5)’% est semi-réqulier. Plus généralement, £ est semi-réqulier si et seulement si le
faisceau tordu € ® H est semi-régulier pour tout fibré en droites fractionnaire H (voir
section 1.1.1).

Démonstration. — On a
(60) at'(E @ H) = at'(€) + at' (H)Idg
dans Ext'(£,£ @ Qw) = Ext'(E @ H,E ® H ® Q) et
(61) at & = exp(at'(£)), at(é ® H) = exp(at' (€ @ H)).
Notons que at'(H) = ¢;(H) € H' (W, Q). Par ailleurs
Ext*(€,6) = Ext*(E @ H,E @ H).

Par (60) et (61), les applications de semi-régularité ¢ pour & et dggn pour € ® H
satisfont
deon = (exp(ci(H))U) o 0 Ext*(E,€) — @ H™ (W, Q).
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L’application exp(c;(H))U: @; H (W, QY,) — @ H (W, ) est clairement un iso-
morphisme et donc dgnpy est injective si et seulement si d¢ 'est. O

Markman montre dans son article 'analogue du théoreme 5.4 pour les faisceaux tordus
1 s sz /1 .
E ® (det £)~+, dans le cas des variétés abéliennes. Rappelons la notation

k(E) = ch(&)exp (—ichl (5)) :

THEOREME 5.7 (Markman, 2025, Section 7.4). — Si un faisceau cohérent £ est semi-
régulier sur une variété abélienne X, les déformations du faisceau tordu & = € ®
(det 5)_% sont non obstruées le long d’une déformation de X préservant les classes de
Hodge k;(E). Une petite déformation X; de X sur laquelle les classes k;(E) restent de
Hodge posséde donc un faisceau tordu qui est une déformation &/ de £ @ det E 7. En
particulier les classes k;(E) restent algébriques le long d’une telle déformation (supposée
projective).

Remarque 5.8. — Sidet & =7 est un fibré en droites, E®det € ~7 est un faisceau cohérent
semi-régulier par le lemme 5.6 et le théoréme 5.7 est obtenu en appliquant le théoreme
5.4 a ce dernier.

Remarque 5.9. — Le théoréme 5.7 n’est pas entrainé par le théoreme 5.4. En effet,
les déformations de X considérées dans ces théoremes ne sont pas les mémes. Dans le
théoreme 5.4, on considere les déformations de X pour lesquelles toutes les classes de
Chern de € restent de Hodge. Dans le théoreme 5.7, 'hypothese ne concerne que les
ki(€), et en particulier, on ne demande pas que la premiere classe de Chern ¢; (&) reste
de Hodge. Les déformations de £ ® det € ~+ obtenues grace au théoréme 5.7 ne sont pas
en général induites par une déformation de &.

6. Conclusion de la preuve et une remarque

6.1. Semi-régularité du faisceau tordu &y

Dans la section 3.3, nous avons construit suivant Markman un faisceau cohérent
semi-régulier &y sur une variété abélienne de Weil Y obtenue comme un quotient

X x X\/Gmg,

ou X = J(C) est une variété abélienne principalement polarisée générale de dimension 3.
Le faisceau &y satisfait ’équation

(62) '€y =D®E

ot le faisceau & sur X x X est construit dans le théoréme 3.1, ¢g: X X X = Y est
I’application quotient, et D est un fibré en droites sur X x X tel que D® € est G X G-
linéarisé. L’application ¢ est une isogénie, Y est donc une variété abélienne de Weil de



1248-37

dimension 6 et discriminant 1, 'application ¢*: H*(Y,Q) — H*(X x X, Q) induisant
un isomorphisme entre les espaces de classes de Hodge—Weil. D’apres le théoréme 4.1
et (62), le caractere de Chern corrigé x(Ey) de &y satisfait

k(Ey) € HW*(Y).
Pour pouvoir appliquer le théoreme 5.7, il suffit donc de montrer le résultat suivant.

THEOREME 6.1 (Markman, 2025, Lemma 9.3.11). — Le faisceau Ey est semi-réqulier
au sens de Buchweitz—Flenner.

Le théoreme 5.7(i) entraine alors que la classe r3(Ey ) reste algébrique sur une déforma-
tion générale Y; de Y comme variété abélienne de Weil projective. Comme r3(Ey) n’est
pas proportionnelle & w? par le théoréme 4.1(ii), il en résulte (en considérant l'action
du corps K sur HW(Y')) que toutes les classes de Hodge—Weil sur Y sont algébriques,
ce qui conclut la preuve du théoreme 1.4.

Preuve du théoreme 6.1. — On note que comme ¢ est une isogénie, I’application
¢ @HY,Q) > @HTHX < X, 0 ¢)
>0 i>0

est un isomorphisme. Par ailleurs, grace a (62) et au lemme 5.6, I'application
¢ Ext?(&y, &) — Ext*(&,€)
induit un isomorphisme
¢ Ext?(Ey, &) — Ext?(£, £)G1xC

ou l'action de Gl/x\Gg sur le terme de droite est induite par celle de G; x Gy sur
DY(X x X), décrite dans la proposition 3.4. La compatibilité des applications ¢* ci-
dessus avec les applications de semi-régularité g, et oz montre alors que 'injectivité

de dg, résulte du lemme 6.2 ci-dessous. ]
LEMME 6.2. — L’application de semi-régqularité og, restreinte a Ext2(€,5)Gl/X\G2, est
mjective.

Démonstration. — Rappelons avec les notations de la section 3.3 que £* = G[1], avec

G=0(FWF) =V, KIc),

ot U: DP(X x X) — DY(X x X) est I'équivalence de catégories introduite dans (27). Le
lemme 6.2 résulte alors de I’énoncé analogue pour le faisceau Z¢,, M Z¢:, qui est invariant
sour le groupe GG1 X Gy : La restriction de I'application de semi-régularité oz rz., a la

partie invariante Ext2(IC. XZcr, Ze, &Zg;)GlXG? est injective. Ce dernier énoncé résulte
du lemme 5.5. O
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6.2. Remarque sur la conjecture de Hodge généralisée
Considérons un tore complexe 7' de dimension n muni d’'un endomorphisme
¢o: T =T
satisfaisant une équation quadratique ¢?> = —d Idy, pour un certain entier d > 0. L’action
¢*: HY(T,C) — H'(T,C)
donne une décomposition
HYT,C)=Wte W,

en SOUs-espaces propres associés aux valeurs propres respectives iv/d, —iv/d. Chacun de
ces espaces est de dimension n et stable sous la décomposition de Hodge

(63) W+ — W+1,0 D W+0’1, W = W*l,O ey W70,17

ou (du fait de la symétrie de Hodge) la seconde décomposition se déduit de la premiere
par conjugaison complexe. La condition de Weil est que n = 2m est pair et que

dim W0 = m = dim W+,

On discute dans cette section ce qui se passe lorsqu’on omet cette condition et les
conséquences du théoreme de Markman. Notons

(64) k= dim W0 = dim W%
d’ou
n—k=dim W = dim W0,
On peut bien stir supposer n — k > k, quitte a changer le choix des valeurs propres. On
dit qu’une structure de Hodge de poids m sur un Q-espace vectoriel L, donnée par une
décomposition
L¢c = @ LPe [9P = [pa,

pt+q=m
est de niveau < r si on a LP? = 0 pour |p — ¢| > r. Le niveau est le plus petit nombre
positif 7 tel que, quitte a décaler tous les bidegrés par un bidegré (s, s) tel que r = m—2s,
on ait
Le=L0@ . @ L',

avec L™0 £ 0.

Une sous-structure de Hodge L; C Lo est la donnée d’un Q-sous-espace vectoriel
stable sous la décomposition de Hodge, i.e.

ngc = @Llfzg, Lzl)(’g = Ll(C N Lg(’g

LEMME 6.3. — Le sous-espace vectoriel de dimension 2

(65) Lg = /n\Hl(T, Q) c HY(T, Q)
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tel que

(66) Lic= AW @ AW,

et introduit dans le lemme 2.2 est une sous-structure de Hodge de H"(T,Q), de niveau

n — 2k.

Démonstration. — En effet, d’apres (63), A" W est de type de Hodge (k,n — k) et
A" W~ est de type de Hodge (n — k, k). Donc Lg est une sous-structure de Hodge par
(66), et ses nombres de Hodge non nuls sont en bidegrés (k,n — k) et (n — k, k). ]

Une version de la conjecture de Hodge généralisée formulée par Grothendieck (1969)
est la suivante.

CONJECTURE 6.4. — Soit X une variété projective complexe lisse de dimension n et
soit L C H™(X,Q) une sous-structure de Hodge de niveau r, avec m —r = 2¢ (c est
aussi appelé le coniveau de L). Alors il existe une variété projective lisse Y de dimension
r, et un cycle algébrique Z C'Y x X de dimension n — c tel que

(67) L c Im([Z],: H(Y,Q) — H™(X,Q)).

Etant donné une variété abélienne A (i.e. un tore complexe algébrique) de dimension n
munie d’un endomorphisme quadratique ¢ comme ci-dessus, la conjecture 6.4 prédit
I'existence d’une variété projective Y de dimension r = n—2k et d’une correspondance 2
satisfaisant (67), pour la sous-structure de Hodge L C H™(A, Q) de niveau n—2k exhibée
dans le lemme 6.3.

PROPOSITION 6.5. — 57 la conjecture de Hodge est satisfaite pour les classes de Weil sur
les variétés abéliennes de Weil de dimension 2n — 2k, la conjecture de Hodge généralisée
6.4 est satisfaite pour les sous-structures de Hodge L de niveau n — 2k décrites ci-dessus
sur les variétés abéliennes de dimension n munies d’un endomorphisme quadratique ¢,
Uentier k < n — k associé étant défini dans (64).

Démonstration. — Etant donnés A et ¢, on peut construire une variété abélienne B
de dimension n — 2k, munie d’'un endomorphisme quadratique v tel que ¥? = —dId et
la variété abélienne B x A munie de 'endomorphisme (1), ¢) est une variété abélienne
de Weil. 11 suffit pour cela que 'endomorphisme ) agissant par * sur H"°(B) ait la
valeur propre iv/d avec la multiplicité n — 2k (et donc n’ait pas la valeur propre —Z\/E)
Alors (1, ¢) agissant par (1, ¢)* = (¢*, ¢*) sur H"°(B x A) a la valeur propre iv/d avec
la multiplicité n — k, et donc a la valeur propre —iv/d avec la multiplicité n — k, puisque
dim(B x A) = 2n — 2k. La variété B x A munie de ’endomorphisme quadratique (¢, @)
est donc bien une variété abélienne de Weil. Supposant satisfaite la conjecture de Hodge
pour les variétés abéliennes de Weil de dimension < 2n — 2k, on en conclut que les
classes de Weil sur B x A sont algébriques, ce qui donne des sous-variétés algébriques
Z; C B x A de dimension n — k telles que les classes de Weil sur B x A soient des
combinaisons linéaires des [Z;]. On conclut alors la démonstration avec
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LEMME 6.6. — Soit 0 # «a € H*™ (B x A,Q) une classe de Weil. Alors
Im(ov: H"**(B,Q) — H"(A,Q))
contient la sous-structure de Hodge Ly de (65).

Démonstration. — Cela résulte en effet du fait que si I'on adopte la notation
L, LB LBX4 pour les sous-structures de Hodge de rang 2 associées comme dans le
lemme 6.3 aux actions respectives de ¢, 1, (1, ¢), on a par définition

LA C LB oLy c H*" (B x A,Q),

et 'espace LIE;XA est I'espace des classes de Weil de B x A. Le reste de 'argument est

formel et utilise la décomposition de Kiinneth et la dualité de Poincaré. O]
m
Remarque 6.7. — La construction utilisée dans cette démonstration apparait sous une

forme plus générale dans l'article van Geemen (2001).

Lorsque n = 2k, la proposition 6.5 est vide. Lorsque 2k < n, la variété B est de
dimension positive et on peut choisir sa polarisation de fagcon que B x A ait une
polarisation de discriminant 1. De ce fait, on peut améliorer la proposition 6.5 en
supposant 2k < n et en demandant seulement que la conjecture de Hodge soit satisfaite
par les classes de Weil sur les variétés abéliennes de Weil de dimension 2n — 2k et de
discriminant 1. En appliquant le théoréme principal de Markman (théoreme 1.4) qui
concerne les variétés abéliennes de Weil de dimension 6 et de discriminant 1, on obtient
donc les conséquences suivantes du théoreme 1.4.

COROLLAIRE 6.8. — Soit A une variété abélienne de dimension n munie d’un endomor-
phisme quadratique ¢ comme ci-dessus, et soit k < n — k Uentier de (64). Sik <n—k
et 2n — 2k < 6, la conjecture de Hodge généralisée est satisfaite par la sous-structure de
Hodge L de niveau n — 2k du lemme 6.3.

Le cas k = 0 est vide mais les cas k =1, n =4, et k =2, n = 5 sont des énoncés non
triviaux.
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