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LA CONJECTURE DE HODGE POUR LES VARIÉTÉS ABÉLIENNES
DE DIMENSION AU PLUS 5

[d’après Markman]

par Claire Voisin

1. Introduction

La conjecture de Hodge concerne les variétés algébriques projectives lisses X définies
sur le corps des nombres complexes et leurs contre-parties analytiques Xan, qui sont des
variétés complexes, c’est-à-dire des variétés différentiables munies d’un atlas de cartes
holomorphes. Dans chaque carte, on dispose de coordonnées locales à valeurs complexes
z1, . . . , zn, n = dimX, dites holomorphes, telles que les changements de coordonnées
z′

i = ϕi(z1, . . . , zn) sur l’intersection de deux cartes soient holomorphes. Si X ⊂ PN est
définie par des équations algébriques et donc localement dans la topologie de Zariski
par des équations polynomiales, la variété Xan est la sous-variété complexe de CPN

définie localement par les mêmes équations polynomiales, vues comme des fonctions
holomorphes. Un théorème important dû à Chow (1949) dit qu’inversement toute sous-
variété complexe fermée de CPN est algébrique, c’est-à-dire est l’analytisée Xan d’une
sous-variété algébrique X de PN , définie par des équations polynomiales homogènes.

La variété Xan est aussi un espace topologique auquel on associe ses groupes de
cohomologie de Betti H i(Xan,Z). Les théorèmes de de Rham permettent de calculer les
groupes

H i(Xan,C) = H i(Xan,Z) ⊗ C
via les formes différentielles

H i(Xan,C) ∼=
Ker (d : Ai(Xan) → Ai+1(Xan))
Im (d : Ai−1(Xan) → Ai(Xan)) ,

où Ai(Xan) est l’espace des formes différentielles de degré i, de classe C∞ et à coeffi-
cients complexes sur la variété différentiable sous-jacente à Xan. La structure de variété
complexe de Xan permet de définir les formes de type (p, q) sur Xan. Ce sont celles qui
s’écrivent localement dans des coordonnées holomorphes sous la forme

α =
∑

|I|=p,|J |=q

αI,JdzI ∧ dzJ ,

où les fonctions αI,J sont de classe C∞ à valeurs complexes.
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Le théorème fondamental de décomposition de Hodge est le résultat suivant. La
variété X étant projective lisse complexe, soit

Hp,q(Xan) ⊂ Hp+q(Xan,C)

le sous-espace des classes de formes différentielles fermées de type (p, q) sur Xan. Alors

Hk(Xan,C) = Hk(Xan,C) =
⊕

p+q=k

Hp,q(Xan).(1)

Définition 1.1. — L’espace Hdg2k(X,Q) des classes de Hodge rationnelles de X de
degré 2k est l’intersection

Hdg2k(X,Q) := H2k(Xan,Q) ∩Hk,k(Xan),

prise dans l’espace vectoriel complexe H2k(Xan,C).

Si X est une variété projective lisse complexe et Z ⊂ X est un fermé algébrique de
codimension c, donc défini localement par des équations algébriques et tel qu’un ouvert
de Zariski dense de Z soit une sous-variété algébrique lisse de codimension c de X, on
dispose d’un fermé analytique correspondant

Zan ⊂ Xan.

(Toujours d’après Chow, les fermés analytiques de Xan sont en fait en bijection avec
les fermés algébriques de X.) Même lorsque Z est singulier, on sait depuis Borel et
Haefliger (1961) construire la classe de cycle

[Z] := [Zan] ∈ H2c(Xan,Z)

et a fortiori la classe de cohomologie rationnelle correspondante qui nous intéressera
ici. Le point important est que [Z] est une classe de Hodge, ce qui se voit soit en
introduisant suivant Lelong (1957) le courant d’intégration sur Z, soit en utilisant
la résolution d’Hironaka, qui donne une variété algébrique lisse Z̃ et un morphisme
τ : Z̃ → Z propre, holomorphe et birationnel. On a alors un morphisme composé

j̃ : Z̃ → Z → X,

tel que
[Z] = j̃∗(1Z̃

) dans H2c(Xan,Z),

où j̃∗ : H0(Z̃an,Z) → H2c(Xan,Z) est le morphisme de Gysin.
La conjecture de Hodge est l’énoncé suivant.

Conjecture 1.2. — Toute classe de Hodge rationnelle sur une variété projective
lisse complexe X est une combinaison à coefficients rationnels de classes [Z] de fermés
algébriques de X.
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De telles classes seront appelées des classes de cycles et dites « classes algébriques ».
Dans la suite de ce texte, on ne distinguera plus la variété projective X sur C et la variété
complexe associée Xan, et on notera H i(Xan,C) =: H i(X,C). Grâce au principe GAGA
de Serre (1955b) les constructions de géométrie algébrique (telles que les faisceaux
cohérents et leur cohomologie ou plus généralement leurs images directes) peuvent se
faire de façon équivalente dans le cadre analytique, ce qui autorise cette confusion.

Le travail présenté ici concerne la conjecture de Hodge pour une classe très particulière
de variétés projectives lisses, à savoir les variétés abéliennes (de dimension ≤ 5). La
définition la plus simple consiste à dire que ce sont les variétés projectives également
munies d’une structure de groupe commutatif compatible avec la structure de variété
algébrique. Les variétés complexes correspondantes sont alors des tores complexes.

Le théorème présenté ici et dû à Eyal Markman (2025) est le suivant.

Théorème 1.3. — La conjecture de Hodge est satisfaite par les variétés abéliennes de
dimension ≤ 5.

Une variété abélienne “très générale” ne possède pas de classes de Hodge autres que
les puissances de la classe d’une section hyperplane, qui sont évidemment algébriques.
Le sujet des contraintes (dites de Mumford–Tate) imposées aux variétés abéliennes
par l’existence d’autres classes de Hodge a été abondamment étudié, en particulier par
Deligne (1982), Tankeev (1982) et Moonen et Zarhin (1995, 1999). Le travail de Markman
concerne en fait les variétés abéliennes de Weil, qui sont des variétés abéliennes possédant
un automorphisme satisfaisant certaines conditions. Une construction formelle permet
d’en déduire l’existence de classes de Hodge exceptionnelles, dites de Weil, dans la
cohomologie de telles variétés. Les travaux mentionnés ci-dessus permettent de ramener
le théorème 1.3 à l’énoncé suivant.

Théorème 1.4 (Markman, 2025). — La conjecture de Hodge est satisfaite par les
classes de Weil sur les variétés abéliennes de Weil de dimension 6 et de discriminant 1.

Les variétés abéliennes de Weil admettent l’action par isogénies d’un corps quadra-
tique K. Leur discriminant est un invariant numérique lié à leur polarisation (choisie
compatible avec l’action de K et généralement unique à un coefficient multiplicatif près).
Je renvoie à la section 2 (voir aussi van Geemen, 1994) pour la définition des variétés
abéliennes de Weil, leurs classes de Weil et leur discriminant.

Des résultats similaires antérieurs avaient été obtenus par Markman (2023), établissant
l’analogue du théorème 1.4 pour les variétés abéliennes de Weil de dimension 4 et
discriminant 1. Une autre démonstration de ce résultat, reposant également sur la
géométrie hyper-kählérienne, a été obtenue ultérieurement par Floccari et Fu (2025).
Ce même énoncé avait été établi par Schoen (1988, 2007) pour des corps K spécifiques.

Dans les paragraphes qui suivent, je présente quelques résultats classiques sur la
conjecture de Hodge, de façon à situer l’énoncé de Markman par rapport à l’ensemble
du sujet.
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1.1. Classes de cycles, classes de Chern et classes de Hodge
Soit X une variété projective lisse sur C et F un fibré vectoriel algébrique sur X. On

peut considérer les classes de Chern ci(F ) ∈ H2i(X,Q). La donnée d’un tel fibré F est
équivalente à celle de son faisceau F de sections locales, qui est cohérent et localement
libre. On peut également considérer les classes de Chern de faisceaux cohérents (non
nécessairement localement libres) sur X. Les faisceaux cohérents F sur X admettent
des résolutions finies par des faisceaux cohérents localement libres

0 → Fn → . . . → F0 → F → 0,
et on a l’égalité de classes de Chern totales (voir Borel et Serre, 1958)

c(F) :=
∏

i

c(Fi)ϵi , ϵi := (−1)i.

Ceci montre que les classes de Chern de faisceaux cohérents et celles des fibrés vectoriels
sur X engendrent le même Q-sous-espace vectoriel de H2i(X,Q) pour tout i.

Il est connu depuis Grothendieck (1958), Borel et Serre (1958) que pour formuler la
conjecture de Hodge, on peut remplacer les classes de cycles par les classes de Chern
introduites ci-dessus. Cette construction est cruciale dès la codimension 1, où l’on
associe classiquement à une hypersurface D ⊂ X un fibré en droites OX(D) muni d’une
section sD, dont D est le lieu des zéros. Partant d’un fibré vectoriel E sur X de rang k,
quitte à le tordre par un fibré en droites suffisamment ample, on peut supposer qu’il
est engendré par N sections globales, et donc provient d’un fibré vectoriel sur une
Grassmannienne G(k,N) via un morphisme ϕE : X → G(k,N). La cohomologie entière
de G(k,N) étant engendrée par des classes de cycles algébriques (variétés de Schubert),
les classes ci(E) sont donc des classes algébriques sur X.

Dans l’autre direction, si on part d’un fermé algébrique Z ⊂ X de codimension k, le
faisceau cohérent OZ a la propriété que ci(OZ) = 0 pour i < k, et

ck(OZ) = (−1)k−1(k − 1)![Z] dans H2k(X,Z).
On voit donc qu’à coefficients rationnels ces différentes constructions engendrent les

mêmes classes de Hodge. Le point de vue des faisceaux est souvent plus performant
comme on le verra ci-dessous et dans toute la suite.

1.1.1. Faisceaux tordus. — Soit E un faisceau cohérent sans torsion de rang r ou un
fibré vectoriel sur une variété projective complexe X. Si le fibré en droites det E est
divisible par r dans PicX, c’est-à-dire qu’il existe un fibré en droites L sur X tel que
L⊗r ∼= det E , le faisceau cohérent ou fibré vectoriel

F := E ⊗ L−1

satisfait det F = OX . De plus les classes de Chern à coefficients rationnels de F ne
dépendent pas du choix de L et sont calculées formellement à partir de celles de E du
fait que le caractère de Chern est multiplicatif sous le produit tensoriel, ce qui donne

ch(F) = ch(E)ch(L−1) = ch(E)exp
(

−c1(E)
r

)
.(2)
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On observe maintenant que le terme de droite fournit en général un élément de
H2∗(X,Q), qui a son terme de degré 2 nul, définissant

ch(E ⊗ (det E)−1
r ) := ch(E)exp(c1(E))−1

r

sans l’hypothèse de divisibilité de det E . Sans cette hypothèse, le fibré en droites L
n’existe que de façon “fractionnaire”, c’est-à-dire dans (PicX) ⊗ Q. Pour donner un
sens géométrique à E ⊗ L−1, pensons à L comme à une racine r-ième de det E . Le fibré
en droites det E−1 admet des trivialisations holomorphes

ti : det E−1
|Ui

∼= OUi

dans des ouverts (pour la topologie analytique) Ui couvrant X, et les fonctions inversibles
tij := ti ◦ t−1

j sur Ui ∩ Uj satisfont la condition de cocycle

tijtjktki = 1

sur Ui ∩Uj ∩Uk. Quitte à restreindre les ouverts Ui, on peut choisir des racines r-ièmes
sij de tij sur Ui ∩ Uj, et on obtient

sijsjkski = αijk(3)

sur Ui ∩Uj ∩Uk, où les αijk sont des racines r-ièmes de l’unité et fournissent un 2-cocycle
à valeurs dans le groupe µr des racines r-ièmes de l’unité, soit une “classe de Brauer”

α ∈ H2(X,µr).

Étant donnée une classe α ∈ H2(X,µr), on a la notion de « faisceau tordu par α » :
les faisceaux cohérents localement libres de rang s tordus par α sont trivialisés dans les
ouverts Ui d’un recouvrement ouvert adéquat de X, et leurs matrices Mij de transition
sur Uij = Ui ∩ Uj, doivent satisfaire la condition de cocycle tordue

Mij ◦Mjk ◦Mki = αijk1s,

où (αijk) est un cocycle représentant la classe α pour ce recouvrement.
Ce formalisme permet de donner un sens à E⊗L−1 comme faisceau tordu par α lorsque

L = (det E) 1
r n’existe que de façon fractionnaire : les matrices de transition Mij de E

sont remplacées par sijMij. On dispose d’une catégorie des faisceaux cohérents tordus
par α, et on peut faire la théorie de leurs déformations. Notons que la description a été
donnée ici dans le contexte analytique (du fait de la nécessité de trivialiser localement
et de prendre des racines r-ièmes de fonctions holomorphes), mais l’utilisation de la
topologie étale aurait permis de définir la classe de Brauer et les faisceaux cohérents
tordus dans le contexte algébrique (un principe GAGA s’applique également ici). Les
classes de Chern d’un faisceau tordu F relativement à une classe de Brauer α sont
données par la formule (2) lorsque F = E ⊗ (det E)− 1

r comme ci-dessus. En général on
peut utiliser une variété de Brauer–Severi f : X ′ → X sur laquelle la classe de Brauer
devient triviale, de sorte que le tiré en arrière f ∗F est un faisceau cohérent sur X ′, et
définir les classes de Chern de F en utilisant celles de f ∗F , qu’on descend sur X par
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une formule de projection. Ces classes de Chern sont des classes de Hodge rationnelles
qui sont en fait algébriques à coefficients rationnels.

Bien que cette construction puisse paraître artificielle, elle est essentielle pour amélio-
rer le champ d’application de la théorie de la semi-régularité décrite dans la section 5,
intervenant dans l’approche variationnelle de la conjecture de Hodge. En effet, le fais-
ceau tordu E ⊗ (det E)− 1

r est à déterminant trivial. Il peut donc très bien se déformer
avec X sans que la classe de Chern c1(E) reste algébrique, ce qui n’est évidemment
pas le cas de E . Cette observation est particulièrement importante dans la théorie des
variétés hyper-kählériennes (voir Charles et Markman, 2013, Markman, 2020).

1.2. Cas connus de la conjecture de Hodge et exemples classiques de classes
de Hodge

On peut dire qu’à part les cas triviaux k = 0, où H0(X,Q) est engendré par la classe
de X lui-même, et k = n := dimX, où H2n(X,Q) est engendré par la classe d’un point
de X, le seul cas connu de la conjecture de Hodge est celui où k = 1, pour lequel le
point de vue des faisceaux est fondamental.

Théorème 1.5 (Théorème de Lefschetz sur les classes (1, 1))
Soit X une variété projective lisse complexe et γ ∈ Hdg2(X,Z) une classe de Hodge

entière. Alors γ est algébrique sur X et plus précisément :
(i) Il existe un fibré en droites algébrique L sur X tel que c1(L) = γ.
(ii) Il existe un cycle à coefficients entiers D = ∑

i niDi, où les Di ⊂ X sont des
fermés algébriques de codimension 1 de X, tel que [D] := ∑

i ni[Di] = γ.

Il se trouve que ce cas entraîne grâce à l’isomorphisme de Lefschetz un second cas, à
savoir celui des classes de courbes :

Théorème 1.6. — Soit X une variété projective lisse complexe de dimension n et soit
γ ∈ Hdg2n−2(X,Q) une classe de Hodge rationnelle de degré 2n− 2. Alors il existe un
cycle Z = ∑

i niZi de codimension n−1 de X, où ni ∈ Q et les Zi ⊂ X sont des courbes,
tel que [Z] := ∑

i ni[Zi] = γ.

A priori, il est difficile de construire des classes de Hodge intéressantes sur les variétés
algébriques, qui ne soient pas évidemment algébriques. Cependant, il existe des classes
de Hodge construites par des opérations formelles sur la cohomologie des variétés algé-
briques. Les classes de Weil étudiées par Markman entrent dans cette catégorie, mais
aussi d’autres classes que nous décrivons ci-dessous. L’algébricité de certaines de ces
classes fait l’objet des conjectures standard (voir Kleiman, 1968), très importantes dans
la théorie des motifs.

Exemple 1.7 (Conjecture de Künneth standard). — Soit X une variété projective lisse
complexe de dimension n et soit ∆X ⊂ X × X sa diagonale. La diagonale ∆X est un
fermé algébrique de X × X et sa classe δX := [∆X ] ∈ H2n(X × X,Z) est donc une
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classe algébrique, et en particulier de Hodge. La cohomologie à coefficients rationnels
H2n(X ×X,Q) admet la décomposition de Künneth

H2n(X ×X,Q) ∼=
⊕

p+q=2n

Hp(X,Q) ⊗Hq(X,Q)

et on voit formellement que chaque composante de Künneth δp,q ∈ Hp(X,Q)⊗Hq(X,Q)
de δX est une classe de Hodge sur X ×X. Lorsque n ≥ 3, la conjecture de Hodge pour
ces classes n’est pas connue en général.

Exemple 1.8. — Soit X une variété projective lisse complexe et k ≥ 0 un entier. Soit
bk := dimHk(X,Q). On a une inclusion composée

bk∧
Hk(X,Q) ⊂ Hk(X,Q)⊗bk ⊂ Hkbk(Xbk ,Q)

et on voit de façon formelle que le sous-espace de rang 1
bk∧
Hk(X,Q) ⊂ Hkbk(Xbk ,Q)

est engendré par une classe de Hodge. L’algébricité de cette classe n’est pas connue en
général.

Exemple 1.9 (Conjecture de Lefschetz standard). — Si X est une variété projective
lisse complexe de dimension n et L est un fibré en droites ample sur X, la première
classe de Chern l = c1(L) ∈ H2(X,Q) est une classe de Kähler sur Xan et le théorème
de Lefschetz difficile dit que pour tout k ≤ n, on a un isomorphisme donné par le
cup-produit

ln−k∪ : Hk(X,Q) → H2n−k(X,Q).(4)

Le morphisme ln−k∪ est un morphisme de structures de Hodge et fournit par dualité
de Poincaré et décomposition de Künneth une classe de Hodge γk ∈ Hdg4n−2k(X×X,Q)
telle que pour tout α ∈ Hk

B(X,Q)

ln−k ∪ α = γk∗(α) := pr2∗(pr∗
1α ∪ γk).

Supposant L très ample, il est immédiat de voir que la classe γk peut être construite
comme la classe du cycle Zk ⊂ ∆X ⊂ X × X défini comme l’intersection, dans ∆X

∼=
X, de n − k hypersurfaces de X de classe l. Considérons maintenant l’isomorphisme
réciproque

(ln−k∪)−1 : H2n−k(X,Q) → Hk(X,Q)(5)

de (4). Cet isomorphisme est donné par l’action d’une classe de Hodge

γk ∈ Hdg2k(X ×X,Q).

La conjecture de Hodge prédit donc que cet isomorphisme est induit par l’action de la
classe [Zk] = γk d’un cycle de codimension k dans X ×X. Cette conjecture est d’une
importance capitale dans la théorie des motifs et est essentiellement ouverte, bien que
connue pour certains types de variétés algébriques, telles que les variétés abéliennes
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(Lieberman, 1968) et certaines variétés hyper-kählériennes (Charles et Markman, 2013,
Voisin, 2022, Ancona, Cavicchi, Laterveer et Saccà, 2025).

1.3. Déformations des variétés algébriques et lieux de Hodge
La plupart des variétés projectives lisses complexes X admettent des déformations,

c’est-à-dire qu’elles apparaissent comme fibre X0 ∼= X au-dessus de 0 ∈ B d’un mor-
phisme projectif lisse f : X → B, où X et B sont quasi-projectives et B est irréductible.
(Un fait remarquable dû à la théorie des variétés de Chow, ou du schéma de Hilbert, est
qu’il existe un ensemble dénombrable de tels morphismes f : X → B, tel que toute va-
riété projective lisse soit isomorphe à une fibre de f pour au moins un f .) Soit f : X → B

un tel morphisme et supposons maintenant que X = X0 admet une classe de Hodge
γ ∈ Hdg2k(X,Q). Le morphisme correspondant fan : Xan → Ban de variétés complexes
étant propre et lisse, le théorème d’Ehresmann dit que c’est une fibration C∞, et en
particulier topologique. La classe γ admet donc dans un voisinage Ban,0 de 0 ∈ Ban une
extension γ̃0 ∈ Γ(Ban,0, R

2kfan∗Q) et on peut définir le lieu de Hodge

Bγ,0 = {t ∈ Ban,0, γ̃0,t ∈ Hdg2k(Xt,Q)}.

Grâce aux travaux de Griffiths sur les variations de structures de Hodge, il est facile
de voir que Bγ,0 est un fermé analytique de Ban,0 (Voisin, 2002b, section 17.3.1). Un
résultat majeur, qui constitue un argument fort en faveur de la conjecture de Hodge,
est le suivant.

Théorème 1.10 (Cattani, Deligne et Kaplan, 1995). — Le germe d’espace analytique
Bγ,0 ⊂ Ban est ouvert dans une branche d’un fermé algébrique Bγ de B. De plus, il
existe un morphisme algébrique fini r : B̃γ → Bγ tel que la section locale r∗γ̃0 s’étende
en une section globale γ̃ du système local tiré en arrière r−1(R2kfan∗Q). La section γ̃ est
partout de Hodge, au sens où, pour tout t ∈ B̃γ, γ̃t ∈ Hdg2k(Xr(t)).

Les travaux de Deligne (1971) sur la théorie de Hodge mixte permettent de donner
une version plus forte de la seconde assertion. En effet, ils entraînent le résultat suivant.

Théorème 1.11. — Dans la situation du théorème 1.10, soit f̃ : X̃γ → B̃γ le produit
fibré X ×B B̃γ et soit Y une compactification lisse projective de X̃γ. Alors il existe une
classe de Hodge γY ∈ Hdg2k(Y,Q) induisant la section γ̃, i.e. γ̃t = γ

Y |X̃t
pour tout t

dans B̃γ.

Ces résultats constituent la première étape de l’étude variationnelle de la conjecture
de Hodge. Soit X une variété projective lisse complexe et soit γ ∈ Hdg∗(X) une classe
de Hodge sur X. Soit f : X → B un morphisme propre et lisse de fibre X0 = X, et
avec les notations ci-dessus, soit fγ : Xγ,0 → Bγ,0 la restriction de f au-dessus du lieu
de Hodge Bγ,0.

Conjecture 1.12 (Conjecture de Hodge variationnelle). — Si la classe γ est algébrique
sur X, alors pour tout t ∈ Bγ,0, la classe de Hodge γ̃0,t est algébrique sur Xt.



1248–09

Grâce aux théorèmes 1.10 et 1.11, la conjecture de Hodge variationnelle est en fait
équivalente à la conjecture suivante.

Conjecture 1.13. — Soit f : Y → S un morphisme projectif, avec Y lisse projective
et S irréductible. Soit S0 ⊂ S l’ouvert au-dessus duquel f est lisse. Soit γ ∈ Hdg2k(Y,Q).
S’il existe un point t0 ∈ S0 tel que γ|Yt0

est algébrique, alors pour tout point t ∈ S0, γ|Yt

est algébrique.

La conjecture 1.12 est presque complètement ouverte mais nous présenterons dans la
section 5 la théorie de la semi-régularité, qui fournit des critères permettant de l’établir.
On sait par des généralités sur les variétés de Chow relatives que l’ensemble S0

γ−alg
des points t ∈ S0 tels que γ|Yt est algébrique, est une union dénombrable de fermés
algébriques de S0. On sait, grâce à la construction par Kollár de contre-exemples à la
conjecture de Hodge entière (voir Kollár, 1990), que la conjecture 1.12 devient fausse si
on la formule pour les classes de Hodge entières. On sait aussi (voir par exemple André,
2006) que la conjecture de Lefschetz standard (Exemple 1.9) entraîne la conjecture
1.13 et donc la conjecture de Hodge variationnelle 1.12. Finalement Deligne (1982) et
André (1996) étudient systématiquement les classes de Hodge γ|Yt apparaissant dans
la conjecture 1.13, qui ont par hypothèse la propriété de se spécialiser en une classe
algébrique sur au moins une fibre. Ces classes sont généralisées par André sous la forme
des “classes de Hodge motivées”, et par Deligne sous la forme des “classes de Hodge
absolues”. Il est montré par Deligne (1982) que les classes de Hodge sur les variétés
abéliennes sont engendrées par des classes de Hodge satisfaisant cette propriété.

1.4. Stratégie de la démonstration
Je renvoie à la section 2.3 pour la réduction du théorème 1.3 au théorème 1.4. Pour

la preuve du théorème 1.4, Markman utilise la spécialisation déjà utilisée par Deligne
(1982). Une variété abélienne de Weil de dimension 2n se spécialise sur un produit
X ×X, où X est une variété abélienne de dimension n très générale (voir section 3.1).
De plus, sous cette spécialisation, les classes de Weil deviennent algébriques (comme le
sont toutes les classes de Hodge sur un produit X×X, avec X très générale). Markman
étudie alors la conjecture de Hodge variationnelle (conjecture 1.12) pour les classes de
Weil spécialisées. Dans le cas qui nous intéresse, on a n = 3 et les variétés abéliennes X
(qu’on peut choisir principalement polarisées grâce à l’hypothèse de discriminant 1) sont
donc des jacobiennes de courbes. La variété abélienne X étant principalement polarisée
et donc isomorphe à sa duale X̂, Markman construit explicitement sur un quotient Y de
X × X̂ un faisceau cohérent sans torsion de rang r tordu EY ⊗ (det EY )−1

r qui satisfait
la condition de semi-régularité de Buchweitz–Flenner, et dont les classes de Chern en
degré 6 sont des classes de Hodge–Weil, c’est-à-dire des combinaisons des classes de
Weil et des puissances de la polarisation. Ce sont aussi les classes de Hodge sur X ×X

qui restent de Hodge lorsque X ×X se déforme comme variété abélienne de Weil. On
notera HW(A) l’espace des classes de Hodge–Weil pour une variété abélienne de Weil A
projective.
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La théorie de la semi-régularité (voir section 5) a été initiée par Bloch (1972). C’est
a priori l’outil idéal pour attaquer la conjecture de Hodge variationnelle mais elle a été
quelque peu délaissée du fait du manque d’objets semi-réguliers fournissant des applica-
tions. Si on prend le cas le plus simple d’une sous-variété Z ⊂ W , où W est projective
lisse, la semi-régularité de Z introduite par Bloch est une condition cohomologique
garantissant que pour toute déformation d’ordre fini, c’est-à-dire toute déformation
WA → SpecA de W paramétrée par un schéma de longueur finie, telle que la classe
[Z] de Z ⊂ W reste une classe de Hodge sur WA, il existe un sous-schéma ZA ⊂ WA

plat au-dessus de SpecA et étendant Z ⊂ W . Cela permet donc d’établir une version
formelle de la conjecture de Hodge variationnelle pour γ = [Z]. On conclut finalement
par le théorème d’algébrisation d’Artin (1969) que la conjecture de Hodge variationnelle
est satisfaite par γ = [Z]. Markman a recours à la théorie analogue de la semi-régularité
développée par Buchweitz et Flenner (2003) pour les faisceaux et l’étend au cas des
faisceaux tordus, au moins sur les variétés abéliennes. La preuve de la propriété de
semi-régularité pour le faisceau EY sur le quotient Y de X × X̂ repose sur le fait que X
est la jacobienne d’une courbe C de genre 3, et que l’idéal de C dans X est semi-régulier
(lemme 5.3).

Les variétés de Weil spécialisées X × X̂ possèdent beaucoup plus de classes de Hodge
que les classes de Hodge–Weil. Les classes de Hodge–Weil sont caractérisées par leur
invariance sous un certain groupe de spineurs agissant sur H∗(X × X̂,Q). L’invariance
des classes de Chern du faisceau tordu EY ⊗(det EY )−1

r sous ce groupe de spineurs résulte
de l’étude cohomologique du foncteur d’Orlov (voir section 3.2) utilisé par Markman
pour construire EY en partant d’un faisceau très simple sur X ×X. Cette construction
sera présentée dans la section 3.3.

Remarque 1.14. — Il est nécessaire ici de travailler avec les classes de Hodge–Weil et
pas seulement avec les classes de Weil. Il n’est pas possible en effet de construire des
faisceaux tordus semi-réguliers sur X× X̂ dont les classes de Chern soient des classes de
Weil. Ceci entraînerait que les classes de Weil sur X × X̂ restent des classes de Chern
de faisceaux analytiques tordus sur une déformation générale de X × X̂ comme tore
complexe de Weil. Or il est prouvé par Voisin (2002a) que les classes de Weil sur un
tore complexe de Weil très général de dimension ≥ 4 ne sont pas analytiques.

Remerciements. Je remercie Eyal Markman pour sa patience et la clarté de ses
réponses à mes questions parfois très naïves au cours de la préparation de cet exposé.

2. Variétés abéliennes de Weil et classes de Weil

2.1. Tores complexes

Soit A une variété abélienne de dimension n sur C, qu’on voit ici comme une variété
complexe. Le point de vue de la géométrie analytique permet d’appliquer l’uniformisation
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et de conclure que A est un tore complexe

A ∼= Cn/Γ,

où Γ ⊂ Cn est un réseau cocompact, donc Γ ∼= Z2n. Ce point de vue permet de
décrire explicitement la topologie de A et la décomposition de Hodge sur ses groupes
de cohomologie. En effet on a des isomorphismes canoniques

Γ ∼= H1(A,Z), H i(A,Z) ∼=
i∧

Γ∗,

et l’inclusion Γ ⊂ Cn s’étend en une application surjective

β : ΓC := Γ ⊗ C → Cn

d’espaces vectoriels complexes, de noyau Γ′. On a alors

Γ∗
C = H1(A,C), H1,0(A) = (Γ′)⊥ = β∗((Cn)∗) ⊂ H1(A,C),(6)

et (Γ′)∗ ∼= H0,1(A) = H1,0(A). Finalement

H1(A,C) = H1,0(A) ⊕H0,1(A)(7)

Hp,q(A) =
p∧
H1,0(A) ⊗

q∧
H0,1(A) ⊂

p+q∧
H1(A,C) = Hp+q(A,C).(8)

La principale difficulté de ce point de vue est que les objets et constructions décrits ici
ne voient pas la structure algébrique de A, mais seulement sa structure de tore complexe.
L’algébricité de A se traduit, grâce au théorème de plongement de Kodaira (1954), par
l’existence d’une classe de Kähler entière θ ∈ H2(A,Z) ∼=

∧2 Γ∗, qui fournit donc une
forme d’intersection alternée non dégénérée sur Γ, satisfaisant des conditions, dites
de Hodge–Riemann, de positivité et de compatibilité avec la décomposition (7). Cette
donnée, appelée une polarisation, introduit un invariant discret, le type de la polarisation
qui décrit la classe d’isomorphisme de la forme d’intersection alternée entière sur Γ (voir
Debarre, 1999, Chapitre IV.1). En fait, lorsqu’on s’intéresse aux variétés abéliennes
seulement à isogénie près, ce qui est le cas pour l’étude de la conjecture de Hodge pour
les variétés abéliennes, on remplace les données précédentes par le Q-espace vectoriel
ΓQ := Γ ⊗ Q munie de sa forme alternée à coefficients rationnels, et le seul invariant
discret qui subsiste est le discriminant, un nombre rationnel bien défini modulo les
carrés.

2.2. Variétés abéliennes de Weil, classes de Weil et polarisations

Une variété abélienne de Weil est une variété abélienne A de dimension paire 2n
admettant un endormorphisme ϕ : A → A tel que ϕ2 = −d IdA pour un entier d > 0 et
satisfaisant de plus une condition que nous décrivons maintenant. L’endomorphisme ϕ
agit par tiré en arrière sur la cohomologie de degré 1 de A. L’endomorphisme

ϕ∗ : H1(A,C) → H1(A,C)
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préserve le sous-espace H1,0(A) ⊂ H1(A,C) qui est de dimension 2n, et satisfait l’équa-
tion

(ϕ∗)2 = −d IdH1(A,C).

La condition de Weil est que ϕ∗ agissant sur H1,0(A) ait exactement n valeurs propres
égales à i

√
d et n valeurs propres égales à −i

√
d. Soit W+ ⊂ H1(A,C) le sous-espace

propre de ϕ∗ associé à la valeur propre i
√
d et soit W− ⊂ H1(A,C) son conjugué

complexe, qui est le sous-espace propre de ϕ∗ associé à la valeur propre −i
√
d. Ces deux

espaces vectoriels sont de dimension 2n.

Lemme 2.1. — Sous la condition de Weil, les sous-espaces vectoriels de dimension 1
2n∧
W+ ⊂

2n∧
H1(A,C) = H2n(A,C),

2n∧
W− ⊂

2n∧
H1(A,C) = H2n(A,C)

sont contenus dans H2n,2n(A).

Démonstration. — En effet comme ϕ∗ préserve la décomposition de Hodge (7), on a
W+ = W+1,0 ⊕W+0,1, où W+1,0 := W+ ∩H1,0(A), et W+0,1 := W+ ∩H0,1(A). On sait
par hypothèse (condition de Weil) que chacun des deux espaces W+1,0, W+0,1 est de
dimension n. En effet W+1,0 est l’espace propre associé à la valeur propre i

√
d pour

l’action de ϕ∗ sur H1,0(A). Donc
2n∧
W+ =

n∧
W+1,0 ⊗

n∧
W+0,1 ⊂ Hn,n(A),

et de même ∧2n W− ⊂ Hn,n(A).

Soit K le corps de nombres Q(
√

−d). On verra K comme contenu dans C,
√

−d ∈ K

étant envoyé sur i
√
d ∈ C. On note que les espaces ∧2n W+,

∧2n W− ci-dessus sont en
fait définis sur K dans le sens suivant :

Lemme 2.2. — Il existe un K-sous-espace vectoriel W+
K de rang 1 de ∧2n H1(A,K) tel

que

W+
K ⊗ R =

2n∧
W+ ⊂

2n∧
H1(A,C) =

2n∧
H1(A,K) ⊗ R.

Cela résulte en effet du fait que les espaces W+ et W− sont définis sur K, étant des
espaces propres de ϕ∗ pour des valeurs propres qui sont dans K.

Corollaire 2.3. — Il existe un sous-espace vectoriel

WQ ⊂ Hdg2n(A,Q)

de dimension 2, tel que

WQ ⊗ C =
2n∧
W+ ⊕ 2n∧

W−.
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Démonstration. — On prend pour WQ la trace TrK/QW
+
K , qui est de dimension 2 par le

lemme 2.2. Par le lemme 2.1, WQ est contenu dans H2n,2n(A) et donc est contenu dans
l’espace des classes de Hodge.

La construction décrite ci-dessus n’a fait intervenir que le tore complexe A, et on
peut donc parler de tores complexes de Weil et de leurs classes de Weil. Les variétés
abéliennes de Weil sont des variétés projectives, admettant donc un fibré en droites
ample L de classe θ = c1(L) ∈ Hdg2(A,Q). Comme ϕ2 = −d IdA, l’action

ϕ∗ : H2(A,Q) → H2(A,Q)

de ϕ sur H2(A,Q) = ∧2 H1(A,Q) satisfait

(ϕ∗)2 = d2IdH2(A,Q).

L’espace vectoriel H2(A,Q) est donc la somme directe

H2(A,Q) = H2(A,Q)d

⊕
H2(A,Q)−d

des espaces propres associés aux valeurs propres d et −d. Chacun de ces sous-espaces
est une sous-structure de Hodge de H2(A,Q), c’est-à-dire, est stable sous la décomposi-
tion (1).

Lemme 2.4. — Pour toute variété abélienne de Weil, il existe une polarisation ω de A
qui est dans H2(A,Q)d, c’est-à-dire satisfait

ϕ∗ω = dω.(9)

Démonstration. — Si θ0 = c1(L) est une polarisation, ω := d θ0 + ϕ∗θ0 est aussi une
polarisation, qui satisfait (9).

Une telle polarisation ω sera dite compatible avec l’action de K. On peut montrer
(voir van Geemen, 1994) que le nombre de Picard d’une variété abélienne de Weil très
générale est égal à 1, c’est-à-dire que la polarisation ω ci-dessus est unique à un multiple
près. Le discriminant d’une telle variété abélienne polarisée est un élément (positif) de
Q∗/Nm(K∗), où Nm(K∗) est le sous-groupe de Q∗ constitué des normes d’éléments de
K∗. Il est obtenu en associant à la polarisation ω ∈ H2(A,Q) invariante sous ϕ la forme
hermitienne hω sur l’espace vectoriel H1(A,Q) vu comme un K-espace vectoriel, définie
par

hω(u, v) = −ω(u, ϕ∗v) +
√

−dω(u, v).
Le discriminant est défini comme le déterminant de la matrice de cette forme her-
mitienne dans une K-base de H1(A,Q). Le corps K étant donné, le discriminant est
l’unique invariant discret des variétés abéliennes de Weil pour K à isogénie près (la
classification à isomorphisme près étant évidemment plus compliquée). Si on fixe d, n,
ϕ∗ agissant sur Γ et la classe d’isomorphisme à coefficients entiers de la polarisation
compatible ω, il existe une famille connexe paramétrant les variétés abéliennes de Weil A
avec action de ϕ∗ sur le réseau H1(A,Z) et polarisation compatible ω du type fixé. En
effet, comme variété projective, A est déterminée par la variété complexe A munie de sa
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polarisation ω et comme tore complexe, A est déterminée par le sous-espace vectoriel
de dimension n complexe H1,0(A) ⊂ H1(A,C) (noté Γ′ dans (6)), qui doit être invariant
sous ϕ∗. Introduisant comme ci-dessus les espaces propres

W+, W− ⊂ H1(A,C)

pour ϕ∗, A est déterminée par le choix des deux sous-espaces vectoriels complexes de
dimension n,

W+(1,0) ⊂ W+, W−(1,0) ⊂ W−(10)

puisque
H1,0(A) = W+(1,0)

⊕
W−(1,0).

Les deux espaces (10) déterminent respectivement par conjugaison complexe

W−(0,1) ⊂ W−, W+(0,1) ⊂ W+.

Mais par ailleurs la condition que ω polarise A entraîne que W+(1,0) est orthogonal à
W−(1,0) ⊂ W− relativement à ω ∈ ∧2 H1(A,C). Donc W+(1,0) détermine W−(1,0) par la
formule

W−(1,0) = W− ∩W⊥ω
+(1,0),

du fait que par l’invariance (9), les deux espaces W+ et W− sont lagrangiens et duaux
pour ω. Finalement, l’espace W+(1,0) n’est pas arbitraire dans la grassmannienne
G(n,W+), car

W+(1,0)
⊕

W−(1,0) = H1,0(A) ⊂ H1,B(A,C)
doit satisfaire également les secondes relations bilinéaires de Hodge–Riemann (voir
Debarre, 1999, Chapitre IV.1 ou Voisin, 2002b, section 7.2.2) relatives à ω, disant que la
forme hermitienne h′

ω(u, v) := iω(u, v) est définie positive sur H1,0(A). Cette condition
définit un ouvert de la grassmannienne G(n,W+). On obtient de cette manière une
uniformisation de l’espace de modules des variétés abéliennes de Weil relatives à K par
une variété complexe connexe, les invariants numériques entiers de la polarisation étant
fixés.

2.3. Réduction aux classes de Weil
Une variété abélienne complexe A a une algèbre de cohomologie très riche, à savoir

H∗(A,Q) ∼=
∗∧
H1(A,Q).

L’ensemble des classes de Hodge

Hdg2∗(A,Q) ⊂ H2∗(A,Q)

est une sous-algèbre, qui contient par ailleurs au minimum les puissances θi, i = 1, . . . , g
d’une polarisation θ = c1(L). Les classes de Hodge γ agissent par cup-produit sur
H∗(A,Q) et les morphismes induits

γ∪ : H i(A,Q) → H i+2c(A,Q), 2c = deg γ,
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sont des morphismes de structure de Hodge (i.e. sont compatibles avec la décompo-
sition de Hodge (1)), réduisant fortement le groupe de Mumford–Tate MT(A) (voir
Deligne, 1982). On peut définir ce dernier comme le plus petit sous-groupe algébrique
de End(H1(A,Q)) contenant (après extension à R) la copie du sous-groupe S1 ⊂ C∗ des
nombres complexes de module 1, agissant sur a = a1,0 + a0,1 ∈ H1(A,R) par

z · a = za1,0 + za0,1

et donc déterminant la décomposition de Hodge (7, 8). Son lien avec les classes de Hodge
est que les classes de Hodge de A sont clairement invariantes sous MT(A) (puisqu’elles le
sont sous S1) et qu’inversement MT(A) peut être défini comme le sous-groupe algébrique
de End(H1(A,Q)) laissant invariantes les classes de Hodge sur les puissances Ak pour
tout k. L’étude du groupe de Mumford–Tate MT(A) a donné lieu à de nombreux
résultats (voir entre autres Tankeev, 1982, Moonen et Zarhin, 1995, Hazama, 1989). Par
exemple, Tankeev (1982) montre le résultat suivant :

Théorème 2.5. — Soit A une variété abélienne simple sur C, dont la dimension g est
un nombre premier. Alors la Q-algèbre des classes de Hodge de A est engendrée par les
classes de Hodge de degré 2 de A.

On dit ici que A est simple si elle n’est pas isogène à un produit non trivial de
variétés abéliennes. Comme la conjecture de Hodge est connue en degré 2 (théorème
1.5), il en résulte que sous les hypothèses du théorème 2.5, A satisfait la conjecture
de Hodge. En dimension 5, seules les variétés abéliennes non simples nécessitent une
analyse supplémentaire. Pour les applications au théorème de Markman, l’article de
Moonen et Zarhin (1999) fournit exactement la réduction désirée de la conjecture de
Hodge au cas des classes de Weil.

Théorème 2.6 (Moonen et Zarhin, 1999, Theorem 0.1 et Theorem 0.2)
Soit X une variété abélienne sur C, avec dimX ≤ 5. Alors la Q-algèbre des classes

de Hodge rationnelles de X est engendrée par les classes de Hodge de degré 2 et par des
classes de Weil sur certains facteurs de X admettant un endomorphisme quadratique.

Remarque 2.7. — Dans loc. cit., les auteurs donnent également la liste des groupes
de Mumford–Tate possibles, ce qui revient à analyser les classes de Hodge sur les
puissances Ak.

Corollaire 2.8. — La conjecture de Hodge pour les variétés abéliennes de dimension
au plus 5 est entraînée par la conjecture de Hodge pour les classes de Weil sur les variétés
abéliennes de Weil de dimension ≤ 4.

Comme on l’a vu plus haut, une variété abélienne de Weil a un corps de nombres
K = Q(

√
−d) associé et un discriminant δ ∈ Q∗+/Nm(K∗).
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Lemme 2.9. — Le produit A1 × A2 de deux variétés abéliennes de Weil de même
corps K associé et de discriminants respectifs δ1, δ2 est une variété abélienne de Weil
de discriminant δ1δ2. De plus, si la conjecture de Hodge est satisfaite par les classes de
Weil sur A1 et par les classes de Weil sur A1 ×A2, alors elle l’est par les classes de Weil
sur A2.

Démonstration. — L’ensemble des classes de Weil sur A1 ×A2 est un sous-espace vec-
toriel W (A1 × A2) de dimension 2 non dégénéré de W (A1) ⊗W (A2). La restriction de
la forme d’intersection de H2g1(A1,Q), g1 := dimA1, à l’espace W (A1) des classes de
Weil sur A1 est non dégénérée. Partant d’une classe de Weil w2 ∈ W (A2), on peut donc
écrire w2 de la façon suivante

w2 = pr2∗(pr∗
1w1 ∪ w),

où w ∈ W (A1 × A2), et w1 ∈ W (A1). Dans cette formule, les classes w1 et w sont par
hypothèse algébriques, et donc w2 est algébrique.

On déduit de ce corollaire, en utilisant le théorème de Lefschetz sur les classes (1, 1)
(Théorème 1.5) lorsque dimA1 = 2, le résultat suivant.

Corollaire 2.10. — Le corps K étant donné, la conjecture de Hodge pour les classes
de Weil sur les variétés abéliennes de Weil pour le corps K, de dimension 6 et de
discriminant 1, entraîne la conjecture de Hodge pour les classes de Weil sur les variétés
abéliennes de Weil pour le corps K, de dimension 4 et de discriminant arbitraire. Elle
entraîne donc également la conjecture de Hodge pour les variétés abéliennes de dimension
≤ 5 par le corollaire 2.8.

3. Foncteur d’Orlov et faisceaux sur X × X̂

3.1. Spécialisation des variétés abéliennes de Weil
Soit X une variété abélienne de dimension n et soit K := Q(

√
−d). Soit A := X ×X.

Soit ϕ l’endomorphisme de A défini par

ϕ(a, b) = (−b, d a).(11)

De toute évidence, on a ϕ2 = −d IdA. Vérifions que A est une variété abélienne de Weil.
L’action de ϕ∗ sur H1,0(A) = pr∗

1H
1,0(X) ⊕ pr∗

2H
1,0(X) est donnée par la formule

ϕ∗(α, β) = (d β,−α).

L’espace propre associé à la valeur propre i
√
d de ϕ∗ agissant sur H1,0(A) est donc

isomorphe à H1,0(X) et de dimension n. La variété abélienne A est donc une variété
abélienne de Weil, associé au corps K. Ces variétés abéliennes de Weil sont des spé-
cialisations de variétés abéliennes de Weil générales. C’est la spécialisation utilisée par
Markman en dimension 6, X étant alors de dimension 3. Notons que cette spécialisation
est utilisée également par Deligne (1982) pour montrer que les classes de Hodge sur
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les variétés abéliennes se spécialisent sur des classes algébriques. En effet, lorsque la
variété X est une variété abélienne très générale, toutes les classes de Hodge sur X ×X

sont algébriques. L’action ϕ∗ de ϕ sur
H2(A,Z) = pr∗

1H
2(X,Z) ⊕ pr∗

2H
2(X,Z) ⊕ pr∗

1H
1(X,Z) ⊗ pr∗

2H
1(X,Z)

est donnée par
ϕ∗(pr∗

1ω) = pr∗
2ω, ϕ

∗(pr∗
2ω) = d2pr∗

1ω, ϕ
∗(pr∗

1α ∧ pr∗
2β) = −d pr∗

2α ∧ pr∗
1β.(12)

Si X est très générale de polarisation θX , il résulte de (12) que les polarisations inva-
riantes de A = X ×X sont de la forme

ω = d pr∗
1θX + pr∗

2θX .(13)
Si de plus θX est unimodulaire (de sorte que (X, θX) est une variété abélienne principa-
lement polarisée), le discriminant de ω est une puissance de d, qui est une norme de K
et donc les variétés abéliennes de Weil obtenues en partant d’une variété abélienne X
principalement polarisée sont de discriminant 1. Dans ce cas, X est aussi isomorphe à
sa variété abélienne duale X̂ = Pic0(X).

Une variété abélienne de Weil A pour le corps Q(
√

−d) et de discriminant 1 se
spécialise (après isogénie) sur un produit X ×X comme ci-dessus. On connaît l’algèbre
des classes de Hodge sur le produit X × X pour X très générale. Elle est engendrée
par Hdg2(X × X,Q), qui est de dimension 3. Nous aborderons dans la section 4 la
question suivante : quelles sont les spécialisations sur X ×X des classes de Weil sur A ?
En fait, comme déjà mentionné, c’est l’espace HW(X ×X) des classes de Hodge–Weil,
combinaisons linéaires des classes de Weil et des puissances de la polarisation qui nous
intéresse pour cette question.

3.2. Foncteur d’Orlov
Soit X une variété abélienne complexe, et X̂ = Pic0(X) sa variété abélienne duale. Les

tores complexes correspondants X et X̂ sont donc duaux au sens où les décompositions
de Hodge sur H1(X,Z) et H1(X̂,Z) = H1(X,Z)∗ sont duales. Soit

P ∈ Pic(X × X̂)
le fibré de Poincaré, c’est-à-dire le fibré en droites uniquement déterminé par le fait que

P|X×{ô} = OX , P|{o}×X̂
= O

X̂
,

où o, ô sont les origines des variétés X, X̂, et c1(P) ∈ Hdg2(X × X̂,Z) est donnée par
IdH1(X,Z)∗ ∈ Hom(H1(X,Z)∗, H1(X,Z)∗) = H1(X,Z) ⊗H1(X̂,Z) ⊂ H2(X × X̂,Z).

La restriction de P à la fibre X × {L}, L ∈ X̂, est (avec un abus de notation) le fibré
en droites L. On note Db(Y ) la catégorie dérivée d’une variété algébrique lisse Y . C’est
la catégorie des complexes de faisceaux cohérents bornés à gauche de Y , considérés à
quasi-isomorphisme près. Le foncteur de Fourier–Mukai P

Db(X) → Db(X̂)
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associé à P est une équivalence de catégories définie par Mukai (1981) comme

ΦP(E) = Rpr2∗(pr∗
1E ⊗ P).(14)

Le foncteur de Fourier–Mukai agit sur la cohomologie à coefficients rationnels par la
formule

ΦP∗(α) = pr2∗(pr∗
1α ∪ exp(c1(P)).(15)

Il n’est pas difficile de voir que ΦP∗ préserve la structure entière et est en fait l’isomor-
phisme

H∗(X,Z) ∼= H∗(X,Z)∗ ∼= H∗(X̂,Z)
où le premier isomorphisme est donné par la dualité de Poincaré. Notons que par le
théorème de Grothendieck–Riemann–Roch (Borel et Serre, 1958), les formules (14) et
(15) sont compatibles au sens où

ch(ΦP(E)) = ΦP∗(ch(E)).

Le foncteur d’Orlov est une équivalence de catégories

Φ: Db(X ×X) → Db(X × X̂)

introduite par Orlov (2002) et définie de la façon suivante. Soit µ̃ : X × X → X × X

l’automorphisme défini par
µ̃(u, v) = (u+ v, v).

Soient pr12, pr13, pr23 les trois projections de X ×X × X̂ sur X ×X et X × X̂.

Φ(F) = Rpr13∗(pr∗
12(µ̃∗F) ⊗ pr∗

23P).(16)

Partons du cas (qui sera celui qui nous intéresse) où F est un faisceau cohérent de la
forme

F1 ⊠ F2 := pr∗
1F1 ⊗ pr∗

2F2.

Alors la restriction du faisceau pr∗
12(µ̃∗(F)) à la fibre {u} ×X × {L} de pr13 au-dessus

de (u, L), est égale à
tu∗F1 ⊗ F2

et la restriction de pr∗
23P à cette même fibre est isomorphe à L. Le complexe Φ(F) sur

X × X̂ encode donc la cohomologie des faisceaux

tu∗F1 ⊗ F2 ⊗ L, u ∈ X, L ∈ X̂(17)

sur X.
Le foncteur Φ est une équivalence de catégories car il est aussi la composée des

équivalences de catégories µ̃∗ : Db(X×X) → Db(X×X) et du foncteur de type Fourier–
Mukai

Db(X ×X) → Db(X × X̂)
associé à pr∗

23P sur X × X × X̂, qui est aussi une équivalence de catégories par les
mêmes arguments que dans Mukai (1981).
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3.3. Construction d’un faisceau tordu

Soit C une courbe de genre 3 non hyperelliptique. Choisissons un plongement C ⊂
X := J(C), où J(C) est la jacobienne de C. Soient G1, G2 deux sous-groupes cycliques
d’ordre d+ 1 de J(C), agissant sur X par translation. Le nombre d qui apparaît ici est
celui qui déterminera le corps K = Q(

√
−d) plus tard. Pour des choix génériques de C,

de son plongement dans X et de G1, G2, les translatés

Ci := C + si ⊂ X, G1 = {o, s1, . . . , sd}

sont disjoints deux à deux et les translatés

C ′
j := −C + tj ⊂ X, G2 = {ô, t1, . . . , td}

sont disjoints deux à deux. De plus Ci ∩ C ′
j = ∅ pour tous i, j.

Avec ces notations, soient

F1 := I∪d
i=0Ci

(Θ) ⊂ OX(Θ), F2 := I∪d
j=0C′

j
(Θ) ⊂ OX(Θ),(18)

où Θ est un diviseur Thêta fixé de J(C). Considérons l’objet

G := Φ(F1 ⊠ F2) ∈ Db(X × X̂).

A priori c’est un complexe, mais sous des hypothèses de généricité, c’est en fait le dual
(au sens dérivé) d’un faisceau cohérent et même réflexif sur X × X̂.

Théorème 3.1 (Markman, 2025, Proposition 9.2.2). — Si C et les groupes Gi sont
génériquement choisis, les faisceaux de cohomologie Gi de G satisfont aux propriétés
suivantes : G0 = 0, G3 = 0, le faisceau G2 est de torsion supporté sur un fermé de
codimension 4 de X × X̂ et, notant E := (G1)∗, on a

i) Le faisceau cohérent E est réflexif et G1 ∼= E∗.
ii) Le complexe G est quasi-isomorphe à Ext(E ,O

X×X̂
)[1]. En particulier

G1 ∼= E∗, G2 ∼= Ext1(E ,O
X×X̂

),

et Exti(E ,O
X×X̂

) = 0 pour i ≥ 2.

Commentons tout d’abord les conditions de généricité. Elles concernent les intersec-
tions entre la courbe C• := ⋃d

i=0 Ci et les translatés de la courbe C ′
• := ⋃

j C
′
j. On notera

C ′
u = tu(C ′) le translaté de C ′ par u ∈ J(C).

Lemme 3.2. — Si l’intersection C ∩ C ′
u, pour u ∈ J(C), est non vide, alors elle est

constituée de deux points (ou d’un point de multiplicité 2). Cette condition est satisfaite
pour u dans un diviseur ΘCC′ ⊂ J(C).

Démonstration. — En effet, soit z ∈ Pic1(C) donnant le plongement C ⊂ J(C) =
Pic0(C). Pour u ∈ J(C) = Pic0(C), un point de C ∩ C ′

u est un point x ∈ C tel que

x− z = −x′ + z + u dans Pic0(C),
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pour un point x′ de C. Ceci équivaut au fait que x+x′ = 2z+u dans Pic2(C), équation
symétrique en x et x′, et réalisée pour u dans une hypersurface de J(C), qui est un
diviseur Thêta (c’est-à-dire un translaté de C(2) ⊂ J(C)).

La première condition est la suivante
(A) (Markman, 2025, Assumption 9.1.1) On a H0(X, IC•(2Θ + L)) = 0 pour tout

L ∈ Pic0(X).
Cette hypothèse est évidemment satisfaite si d est suffisamment grand, ce qu’on peut

supposer quitte à remplacer d par m2d pour m grand.
Une autre condition imposée est que les courbes translatées Ci soient disjointes deux

à deux, ce qui est facile à réaliser, au moins pour C générique.
La seconde condition est la suivante
(B) (Markman, 2025, Assumption 9.2.1.) Les (d+1)2 surfaces Θij := Ci −C ′

j (qui sont
des translatés de diviseurs Thêta comme expliqué ci-dessus) sont en position générale, au
sens où leurs intersections triples sont de dimension 0 et leurs intersections quadruples
sont vides.

Une dernière condition facile à réaliser est que le groupe G1 ×G2 s’injecte dans X.
Preuve du théorème 3.1. — Rappelons que par (16) et (18), on a

G = Rpr13∗(pr∗
12µ̃

∗(F) ⊗ pr∗
23P),(19)

où le faisceau F sur X ×X est défini par

F = pr∗
1IC•(Θ) ⊗ pr∗

2IC′
•(Θ).(20)

Soit F̃ := pr∗
12µ̃

∗(F)⊗pr∗
23P . Le faisceau F̃ est plat au-dessus deX×X̂, via le morphisme

pr13. Pour tout t = (u, L) ∈ X × X̂, notons Xt la fibre {u} ×X × {L} de pr13 au-dessus
de t.

En un point t = (u, L) ∈ X × X̂ tel que tu(Ci) ∩ C ′
j = ∅ pour tous i, j, on a

F̃|Xt = Itu(C•)∪C′
•(Θ + Θu + L),(21)

où Θu := tu(Θ). On montre en utilisant (21) et la condition (A) que l’on a

h0(F̃|Xt) = 0, h3(F̃|Xt) = 0

pour t ∈ X × X̂ général, mais il n’est pas difficile d’établir en fait ces annulations
pour tout t ∈ X × X̂. Il en résulte immédiatement que G0 = 0 = G3. Par la théorie
du changement de base, il existe alors deux fibrés vectoriels K1, K2 sur X × X̂ et un
morphisme

δ : K1 → K2(22)

tels que

G1 ∼= Ker δ, G2 ∼= Coker δ.(23)

En utilisant la condition (B) et (21), on va montrer ensuite que h2(F̃|Xt) = 0 pour tout
t = (u, L) ∈ X × X̂ en dehors d’un fermé Σ de codimension 4 de X × X̂. Il résulte alors
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de la théorie du changement de base que le faisceau G2 est de torsion, supporté sur le
fermé Σ que nous décrivons maintenant.

Comme sur chaque composante Ci ou C ′
j de l’union tu(C•)∪C ′

•, le degré de Θu +Θ+L
est 6, on a

H1(tu(C•) ∪ C ′
•, L(Θu + Θ)|tu(C•)∪C′

•) = 0,

en tout point t = (u, L) ∈ X × X̂ tel que tu(Ci) ∩ C ′
j = ∅ pour tous i, j, et donc on a

sous cette hypothèse

H2(Xt, F̃|Xt) = H2(Xt, Itu(C•)∪C′
• ⊗ L(Θu + Θ)) = 0.

La situation est plus compliquée quand tu(Ci) ∩ C ′
j ̸= ∅ pour une paire (i, j). Dans

ce cas, F̃|Xt a de la torsion (supportée aux points d’intersection des courbes tu(C•)
et C ′

•) mais l’isomorphisme (21) reste vrai modulo la torsion de F̃|Xt . Le fermé Σ
supportant G2 paramètre les paires (u, L) ∈ X × X̂ telles que pour au moins un couple
(i, j), tu(Ci) ∩ C ′

j ̸= ∅ (donc u ∈ Θij) et L ∈ Pic0(X) a la propriété que

H1(tu(Ci) ∪ C ′
j, L(Θu + Θ)|tu(Ci)∪C′

j
) ̸= 0.(24)

La courbe réductible mais connexe tu(Ci) ∪ C ′
j étant de genre 7 par le lemme 3.2, et

le degré de Θu + Θ + L sur cette courbe étant 12, le fibré L ∈ Pic0(X) est uniquement
déterminé par la condition (24) qui implique que L(Θ + Θu)|tu(Ci)∪C′

j
= Ktu(Ci)∪C′

j
.

On obtient donc dans X × X̂ une réunion finie de surfaces Θ̂ij, chacune isomorphe
au diviseur Θij. En fait, il faut aussi étudier ce qui se passe sur les intersections de
deux surfaces Θij, c’est-à-dire lorsque le couple (i, j) n’est pas unique, ce qui est fait
soigneusement par Markman (2025). Le fermé Σ ⊂ X × X̂ est donc ⋃

ij Θ̂ij qui est de
codimension 4.

Le morphisme δ de (22) est donc surjectif génériquement et son transposé
tδ : (K2)∗ → (K1)∗

est un morphisme injectif de conoyau E . En écrivant la suite exacte

0 → (K2)∗ tδ→ (K1)∗ → E → 0(25)

et en utilisant (23), on voit que G ∼= Ext(E ,O
X×X̂

)[1]. La réflexivité de E résulte de (25)
et du fait que Ext1(E ,O

X×X̂
) ∼= G2 est supporté en codimension ≥ 4.

Le faisceau E a les premières propriétés numériques suivantes.

Lemme 3.3. — Le rang de E est 8d.

Démonstration. — D’après la démonstration précédente, le rang de E est égal à celui
de G1 qui par la théorie du changement de base et par (21) pour t = (o, ô) (qui sous nos
hypothèses n’est pas dans le fermé Σ) est égal à

h1(F̃|Xt) = h0(C• ∪ C ′
•,OC•∪C′

•(2Θ)) − h0(X,OX(2Θ)).(26)
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On a h0(X,OX(2Θ)) = 8 et

h0(C• ∪ C ′
•,OC•∪C′

•(2Θ)) = 2(d+ 1) · 4

puisqu’on a 2d+ 2 courbes disjointes de genre 3 sur lesquelles le diviseur Thêta est de
degré 3. Donc le rang de E est 8d par (26).

Comme on le verra dans la section 4, le caractère de Chern tordu

κ(E) := ch(E ⊗ det(E)− 1
r )

du faisceau tordu E ⊗ det(E)− 1
r est fait de classes de Hodge–Weil, qui restent donc de

Hodge pour toute déformation de X × X̂ comme variété abélienne de Weil. Cependant
le faisceau tordu E ⊗ det(E)− 1

r n’est pas encore l’objet géométrique cherché. En effet,
il ne satisfait pas la condition de semi-régularité énoncée dans la section 5 (voir la
sous-section 5.3), qui garantirait que ses classes de Chern restent algébriques le long de
ces déformations.

Markman corrige ce défaut de la façon suivante. Rappelons qu’à un décalage près, le
dual au sens dérivé de E est le complexe

G := Φ(F1 ⊠ F2) ∈ Db(X × X̂),

où Φ: Db(X ×X) → Db(X × X̂) est le foncteur d’Orlov et

F1 = IC•(Θ), F2 = IC′
•(Θ).

En particulier E = (G1)∗. On peut aussi écrire

G = Ψ(IC• ⊠ IC′
•),(27)

où l’équivalence de catégories Ψ est la composition de Φ et de l’autoéquivalence de
catégories de Db(X ×X) donnée par le produit tensoriel avec OX(Θ) ⊠ OX(Θ).

Or par construction le faisceau IC• sur X est invariant sous l’action de G1 par
translations et le faisceau IC′

• sur X est invariant sous l’action de G2 par translations.
Donc le faisceau IC• ⊠ IC′

• sur X × X est invariant sous l’action de G1 × G2 par
translations. Il en résulte que G ∈ Db(X × X̂) est invariant sous l’action de G1 ×G2 sur
Db(X × X̂) donnée pour u ∈ G1 ×G2 par

M 7→ Tu(M) := Ψ ◦ tu∗ ◦ Ψ−1(M),(28)

où tu∗ est l’action induite par la translation tu sur Db(X × X). L’action (28) n’est
pas induite par une action de translation sur la base X × X̂. Markman la calcule
explicitement :

Proposition 3.4 (Markman, 2025, Equation (9.3.1)). — Pour u = (u1, u2) ∈ G1 ×G2,
F ∈ Db(X × X̂), on a

Tu = ((pr∗
1Lu1 ⊗ pr∗

2Pu2)⊗) ◦ (tu1−u2 , tLu1 +Lu2
)∗,(29)

où pour u ∈ Gi ⊂ X, Lu := OX(Θu − Θ) ∈ Pic0(X), la translation tLu est la translation
par Lu sur X̂, et Pu = P|{u}×X̂

∈ Pic(X̂).
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Corollaire 3.5. — Si G1 ∩G2 = {0}, l’action de G1 ×G2 sur X × X̂ induite par T
est fidèle.

On notera Ĝ1 ×G2 le groupe G1 × G2 agissant par translations sur X × X̂, par la
formule

(u1, u2) 7→ t ̂(u1,u2) := (tu1−u2 , tLu1 +Lu2
).

Le faisceau EY qui va nous intéresser est grosso modo obtenu en descendant E sur le
quotient

Y := X × X̂/Ĝ1 ×G2.(30)

La formule (29) et l’invariance de G1 = E∗ sous Tu, pour u ∈ G1 ×G2, disent que pour
tout u = (u1, u2) ∈ G1 ×G2, on a canoniquement

t ̂(u1,u2)∗(E) ∼= pr∗
1Lu1 ⊗ pr∗

2Pu2 ⊗ E .(31)

Ceci ne dit pas cependant que E est invariant sous les translations tû1,u2 du fait du
coefficient multiplicatif apparaissant à droite. Pour obtenir un objet Ĝ1 ×G2-invariant
à partir de E , Markman demande que d soit pair (ce qu’on peut toujours supposer vu
que Q(

√
−d) = Q(

√
−4d)). Il montre alors :

Lemme 3.6 (Markman, 2025, Lemma 9.3.5). — Si d est pair, il existe un fibré en
droites D sur X × X̂ tel que D ⊗ E soit Ĝ1 ×G2-linéarisable.

Le fibré en droites D est tel que pour (u1, u2) ∈ G1 ×G2,

t ̂(u1,u2)∗(D) = (pr∗
1Lu1 ⊗ pr∗

2Pu2)−1 ⊗D.(32)

Les formules (31) et (32) montrent que D ⊗ E est invariant par translations sous
Ĝ1 ×G2, et en fait il est même Ĝ1 ×G2-linéarisable. Il descend donc en un faisceau
cohérent EY sur la variété Y , tel que, notant q : X × X̂ → Y l’application quotient,

q∗EY
∼= E .(33)

Le faisceau EY sur Y , ou plus précisément le faisceau tordu associé EY ⊗ (detEY )− 1
8d ,

fournit la paire désirée.

4. Les classes de Chern de E ⊗ (det E)− 1
r sont de Hodge–Weil

Rappelons que nous appelons classes de Hodge–Weil les classes de Hodge existant
sur une variété abélienne de Weil très générale, pour un corps K = Q(

√
−d) fixé et

de discriminant 1, ou leurs spécialisations X × X̂, vues comme variétés abéliennes de
Weil comme dans la section 3.1. En les degrés 2k ̸= 2n, ces classes sont des puissances
de la polarisation ω compatible avec l’action de K (c’est-à-dire satisfaisant à (9)). En
degré 2n, l’espace des classes de Hodge–Weil est de dimension 3, engendré par les classes
de Weil elles-mêmes et la puissance ωn.
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Théorème 4.1. — Supposons dimX = 3. Soit E le faisceau sur X× X̂ de rang r = 8d
construit dans le théorème 3.1. Alors

(i) (Markman, 2025, Remark 6.2.4) Les classes κi(E) := chi(E ⊗ (detE)− 1
r ) sont de

Hodge–Weil sur X × X̂.
(ii) (Markman, 2025, Lemma 8.3.1) La classe κ3(E) n’est pas proportionnelle à ω3.

Les classes de Hodge sur un produit X × X, où X est une variété abélienne très
générale munie d’une polarisation θ, sont toutes obtenues comme des polynômes en les
trois classes de Hodge de degré 2

θ1 := pr∗
1θ, θ2 := pr∗

2θ, θ3 := µ∗θ,(34)

où µ : X × X → X est l’application somme. Il n’y a pas de relations polynomiales
P (θ1, θ2, θ3) = 0 non triviales dans H2k(X × X,Q) lorsque le degré k de P (supposé
homogène) est ≤ n := dimX. Lorsque k ≤ n, les classes de Hodge–Weil surX×X, munie
d’une structure de variété abélienne de Weil relative à un corps quadratique K, forment
donc un sous-espace de dimension 1 (en degré 2k < 2n) ou 3 en degré 2k = 2n, dans
un espace vectoriel de dimension (k+1)(k+2)

2 . Markman (2025) commence par caractériser
ce sous-espace afin de démontrer le théorème 4.1. Les sections 4.1 et 4.1.2 décrivent
cette caractérisation. La section 4.2 conclut la preuve du théorème 4.1 par l’analyse
cohomologique du foncteur d’Orlov.

4.1. K-sécantes de la variété des spineurs et variétés abéliennes de Weil

Soit (X, θX) une variété abélienne principalement polarisée sur C et soit X̂ sa duale
(qui est donc isomorphe à X). Soit

V := H1(X × X̂,Q) = H1(X,Q) ⊕H1(X,Q)∗(35)

S :=
∗∧
H1(X,Q) = H∗(X,Q).(36)

L’espace vectoriel V est muni de la forme bilinéaire symétrique ( , ) définie par(
(x, e), (x′, e′)

)
= e′(x) + e(x′).

Notons x 7→ x̂ et v 7→ v̂ les isomorphismes

X ∼= X̂, H1(X,Q) ∼= H1(X̂,Q)∗

donnés par la polarisation θX . L’endomorphisme ϕ : X × X → X × X de (11), défini
par ϕ(a, b) = (−b, d a), et satisfaisant

ϕ2 = −d IdX×X

induit un endomorphisme ϕ′ de X × X̂, défini par

ϕ′(x, ŷ) = (−y, d x̂)(37)
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qui satisfait également ϕ′2 = −d Id
X×X̂

. De plus on a la formule suivante pour le tiré
en arrière agissant sur V

ϕ′∗(v, ŵ) = (dw,−v̂).(38)
Soit

W ⊂ H1(X × X̂,C) = H1(X,C) ⊕H1(X,C)∗

le sous-espace propre associé à la valeur propre i
√
d de ϕ′∗.

Lemme 4.2. — W est un sous-espace totalement isotrope maximal de H1(X,C) ⊕
H1(X,C)∗ muni de la forme bilinéaire ( , ).

Démonstration. — Les éléments γ de W sont de la forme

γ = (v, ŵ) + 1
i
√
d
ϕ′∗(v, ŵ)

pour tous v ∈ H1(X,C), ŵ ∈ H1(X,C)∗, c’est-à-dire, en utilisant (38)

γ = (v, ŵ) + 1
i
√
d

(dw,−v̂).(39)

On obtient donc pour γ, γ′ ∈ W

(γ, γ′) =
(

(v, ŵ) + 1
i
√
d

(dw,−v̂), (v′, ŵ′) + 1
i
√
d

(dw′,−v̂′)
)

= ŵ′(v)+ ŵ(v′)+ 1
i
√
d

(−v̂′(v)+d ŵ(w′))+ 1
i
√
d

(d ŵ′(w)− v̂(v′))− 1
d

(−dv̂′(w)−dv̂(w′)).

Ceci vaut 0 du fait que l’isomorphisme H1(X,Q) ∼= H1(X,Q)∗, v 7→ v̂, est alterné,
c’est-à-dire v̂(w) = −ŵ(v) pour tous v, w ∈ H1(X,Q).

On rappelle qu’étant donné un Q-espace vectoriel V muni d’une forme quadratique
q(x) = (x, x), l’algèbre de Clifford C(V ) est définie comme le quotient

C(V ) = V ⊗∗/I

où I est l’idéal de l’algèbre tensorielle V ⊗∗ engendré par les tenseurs
x1 ⊗ x2 + x2 ⊗ x1 − (x1, x2)1

pour x1, x2 ∈ V . On note C(V )+ la sous-algèbre engendrée par les tenseurs de degré
pair. L’algèbre C(V ) admet une anti-involution ∗ définie par

(x1 . . . xr)∗ = (−1)rxr . . . x1.

Le groupe Spin(V ) est défini par
Spin(V ) = {x ∈ C(V )+, xx∗ = 1, et xV x∗ ⊂ V }.(40)

Les Q-espaces vectoriels V et S étant définis comme dans (35) et (36), l’algèbre de
Clifford C(V ) agit sur S : un élément (u, v̂) de V = S1 ⊕ (S1)∗ agit sur S = ∧∗ S1 par
produit extérieur par u et produit intérieur par v̂. On note mv ∈ End(S) l’action de
v ∈ C(V ) sur S. L’algèbre S se décompose selon la parité du degré en S = S+ ⊕ S−.
Le groupe Spin(V ) ⊂ C(V )+ agit d’une part sur V par définition (voir (40)), et donc
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aussi sur ses puissances extérieures (on notera g 7→ ρg cette action) et d’autre part sur
S+ par multiplication de Clifford comme ci-dessus (on notera g 7→ mg cette action). Un
élément ξ ∈ S+

C est appelé un « spineur pair pur »si

mξ : VC → S−, v 7→ mv(ξ)

a pour noyau un sous-espace vectoriel isotrope maximal de VC. Inversement un tel sous-
espace détermine à un coefficient près l’unique spineur pair pur dont il est le noyau. Si
ξ est un spineur pur pair de noyau K, et g ∈ Spin(V ), le noyau de mg(ξ) est ρg(K).
La grassmannienne isotrope IG(2n, 4n) des sous-espaces vectoriels isotropes maximaux
de VC est donc plongée dans P(S+

C ). Le lemme 4.2 combiné avec les considérations
précédentes montre que l’action de K définie ci-dessus sur V fournit un spineur pair
pur ξW (défini sur K) associé à W , son conjugué complexe étant le spineur pair pur ξW .
Le plan

P = ⟨ξW , ξW ⟩ ⊂ S+
C(41)

est clairement défini sur Q. La droite projective associée est une droite sécante de la
variété des spineurs IG(2n, 4n) ⊂ P(S+). Le plan P est calculé explicitement de la façon
suivante.

Lemme 4.3 (Markman, 2025, Equation (2.4.5)). — Soit u := i
√
d θX ∈ Hdg2(X) ⊗ C.

Alors on a

P ⊗ C = ⟨exp(u), exp(u)⟩C(42)

P =
〈

Re(exp(u)), Im(exp(u))√
d

〉
Q
.(43)

Démonstration. — Si η ∈ ∧2 H1(X,C), le cup-produit avec exp(η) est un automor-
phisme de l’algèbre SC = ∧∗ H1(X,C) qui est de la forme mexp(η) pour un élément
exp(η) ∈ Spin(V )C dont la représentation spinorielle ρexp(η) sur VC est donnée par

ρexp(η)(w, ŵ′) = (w − ŵ′⌟η, ŵ′).(44)

Ceci se voit en écrivant η comme une somme de bivecteurs décomposables η′ := x1 ∧ x2.
Supposons pour simplifier que dimH1(X,C) = 2 et x1, x2 est une base deH1(X,C), avec
base duale x∗

i . Alors l’élément de Spin(V ) correspondant est exp(η′) = 1+x1x2 ∈ C(V )+

et on trouve que dans C(V ), (1 + x1x2)xi(1 + x2x1) = xi et

(1 + x1x2)x∗
1(1 + x2x1) = x∗

1 − x1, (1 + x1x2)x∗
2(1 + x2x1) = x∗

2 + x1,

expliquant la formule (44).
En posant η = u = i

√
d θX , on trouve que

ρexp(u)(w, ŵ′) = (w − i
√
dw′, ŵ′)(45)

puisque par définition ŵ′⌟θX = w′.
L’élément 1 ∈ S+ est un spineur pur de noyau H1(X,C)∗. Le spineur exp(u) =

mexp(u)(1) ∈ SC est donc un spineur pur dont le noyau est ρexp(u)(H1(X,C)∗). D’après
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(45), l’espace isotrope maximal W ⊂ H1(X,C) ⊕ H1(X,C)∗ associé au spineur pur
exp(u) est donc

W = ρexp(u)(H1(X,C)∗) = {(−i
√
dw′, ŵ′), ŵ′ ∈ H1(X,C)∗}.(46)

Finalement, on note que l’espace W défini ci-dessus est le même que l’espace W considéré
dans (39), si l’on pose w′ = w − 1

i
√

d
v.

L’importance du lemme 4.3 vient du corollaire suivant. On reprend les notations et
la construction de la section 3.3.

Corollaire 4.4. — Les faisceaux F1 = I∪d
i=0Ci

(Θ) ⊂ OX(Θ) et F2 = I∪d
j=0C′

j
(Θ) ⊂

OX(Θ) de (18) ont la propriété que

ch(Fi) ∈ P.(47)

Démonstration. — Le caractère de Chern est multiplicatif. De plus, les Ci étant dis-
jointes, on a IC• = ⊗

i ICi
et de même pour C ′

•. On a donc

ch(F1) = ch(OX(Θ))
d∏

i=0
ch(ICi

), ch(F2) = ch(OX(Θ))
d∏

j=0
ch(IC′

j
).

On a ch(OX(Θ)) = exp(θX). Par ailleurs, le théorème de Grothendieck–Riemann–Roch
appliqué à l’inclusion iC de C ou C ′ dans X = J(C) donne

ch(OCi
) = iC∗(ch(TCi

)) = θ2
X

2 − 2[pt],

où [pt] est la classe d’un point de X. Comme le caractère de Chern est additif, on en
déduit

ch(ICi
) = 1 − θ2

X

2 + 2[pt],

d’où
ch(F1) = ch(F2) = exp(θX)

(
1 − θ2

X

2 + 2[pt]
)d+1

.

Comme on est en dimension 3, on obtient (1− θ2
X

2 +2[pt])d+1 = 1−(d+1) θ2
X

2 +2(d+1)[pt]
et donc

ch(F1) = exp(θX) − (d+ 1)θ
2
X

2 + 2(d+ 1)[pt] − (d+ 1)θ
3
X

2 .

Comme θ3
X = 6[pt], il vient

ch(F1) = exp(θX) − (d+ 1)θ
2
X

2 − (d+ 1)θ
3
X

6 = 1 + θX − d
θ2

X

2 − d
θ3

X

6 .(48)

Par ailleurs, la formule (43), où u = i
√
d θX , montre que P est engendré sur Q par

1 − d
θ2

X

2 , θX − d
θ3

X

6 .
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4.1.1. Polarisation de X×X̂ comme variété abélienne de Weil. — Les notations précé-
dentes permettent aussi de décrire commodément la polarisation sur la variété abélienne
de Weil sur X × X̂ (relativement au corps K). En effet, l’isomorphisme X ∼= X̂ est
donné par une polarisation θX sur X, c’est-à-dire une 2-forme

θX ∈
2∧
H1(X,Q)

telle que v̂(u) = θX(u, v) pour u, v ∈ H1(X,Q) et satisfaisant les conditions de Hodge–
Riemann

θX(α, β) = 0, ∀α, β ∈ H1,0(X), iθX(α, α) > 0, ∀α ∈ H1,0(X), α ̸= 0.(49)

Considérons la forme bilinéaire ω sur V ∗ = H1(X,Q ⊕H1(X,Q)∗ définie par

ω(w,w′) := (w, ϕ′
∗(w′))(50)

Pour w = (u, v̂), w′ = (u′, v̂′) ∈ V ∗, on a ϕ′
∗w

′ = (−v′, d û′), d’où

ω(w,w′) = (w, ϕ′
∗(w′)) = d û′(u) − v̂(v′)(51)

= d û′(u) + v̂′(v) = d θX(u, u′) + θX(v, v′).

Ainsi la forme ω de (50) est une polarisation K-compatible de X × X̂ qui coïncide
avec la forme donnée en (13).

4.1.2. Caractérisation spinorielle des classes de Hodge–Weil. — Avec les notations de
la section précédente, P = ⟨ξW , ξW ⟩ étant le plan correspondant à une droite K-sécante
de la variété des spineurs IG(2n, 4n) ⊂ P(S+), on définit le groupe Spin(V )P ⊂ Spin(V )
comme étant le sous-groupe des éléments g ∈ Spin(V ) tels que mg(p) = p, ∀p ∈ P .
Rappelons que le groupe Spin(V ) agit par ailleurs sur ∧∗ V = H∗(X × X̂,Q) par la
représentation ρ. Markman établit la caractérisation suivante des classes de Hodge–Weil.

Proposition 4.5. — Les classes de Hodge–Weil de X × X̂ sont les classes invariantes
sous la ρ-action de Spin(V )P .

Cette proposition résulte de l’énoncé suivant.

Lemme 4.6 (Markman, 2025, Lemma 2.2.7). — L’espace (∧∗ V )Spin(V )P des invariants
de ∧∗ V sous Spin(V )P est réduit à 0 en degré ∗ impair, de dimension 1 et engendré
par la puissance ωk de la polarisation compatible ω de (51) en degré 2k ≠ 2n, et de
dimension 3 en degré 2n, engendré sur C par les classes ∧2n W , ∧2n W et ωn.

Ces résultats peuvent être obtenus également en utilisant le groupe de Mumford–Tate
d’une variété abélienne de Weil très générale, déformation de (X × X̂,K, ω) (voir van
Geemen, 1994, Section 6). Ce dernier groupe est en effet le sous-groupe du groupe or-
thogonal SO(V, ( , )) constitué des automorphismes K-linéaires. Le formalisme spinoriel
va par contre être fortement utilisé dans la démonstration du théorème 4.1.
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4.2. Preuve du théorème 4.1
D’après la proposition 4.5, pour démontrer le théorème 4.1(i), il suffit de montrer

l’invariance sous Spin(V )P de κ(E). Rappelons (voir section 3.3) que
E∨ = G[−1], G = Φ(F1 ⊠ F2) = Rpr13∗(pr∗

12(µ̃∗(F1 ⊠ F2)) ⊗ pr∗
23P),

où Φ: Db(X ×X) ∼= Db(X × X̂) est l’équivalence de catégories dérivées d’Orlov et où
le dual E∨ = Ext(E ,O

X×X̂
) doit être pris au sens dérivé puisque E n’est pas localement

libre.
Il suffit donc de montrer que κ(G) est Spin(V )P -invariant. Par le théorème de

Grothendieck–Riemann–Roch, en utilisant le fait que le fibré tangent relatif de pr23
est trivial, on obtient

ch(G) = pr13∗(pr∗
12(µ̃∗(ch(F1 ⊠ F2)))pr∗

23(ch(P))(52)
=: Φcoh(ch(F1 ⊠ F2)).

On a vu dans le corollaire 4.4 que le caractère de Chern de F1 et F2 est un élément
de P ⊂ S et donc invariant sous Spin(V )P × Spin(V )P . Malheureusement le morphisme

Φcoh : S ⊗ S = H∗(X ×X,Q) →
∗∧
V

défini dans (52) n’est pas équivariant sous les diverses actions du groupe Spin(V ). (Plus
précisément, le groupe Spin(V ) agit à gauche sur S par la multiplication de Clifford
g 7→ mg et à droite par sa transposée g 7→ m†

g. Par ailleurs il agit sur ∧∗ V = ⊕
i

∧i V

par la représentation ρ.) Ce défaut d’équivariance est analysé par Markman (2025). Soit

ρ′
g := Φcoh ◦ (mg ×m†

g) ◦ Φ−1
coh :

∗∧
V →

∗∧
V.

La différence entre ρg et ρ′
g mesure le défaut de Spin(V )-équivariance de Φcoh.

La formule suivante est établie par Orlov (2002). Pour tout g ∈ Spin(V ), on a
ρ′

g = exp(c1(Ng)) ∪ ρg,(53)
où Ng est un fibré en droites topologique (c’est-à-dire une classe entière de degré 2) sur
X × X̂.

Markman (2025, Proposition 6.1.2) établit une formule explicite pour c1(Ng) :

c1(Ng) = 1
2(c1(P) − ρg(c1(P))).(54)

Preuve du théorème 4.1(i). — Le caractère de Chern
ch(F1 ⊠ F2) = ch(F1)ch(F2) ∈ S ⊗ S

est invariant sous mg ×m†
g pour g ∈ Spin(V )P et donc

ch(G) = Φcoh(ch(F1 ⊠ F2))
est invariant sous ρ′

g, pour g ∈ Spin(V )P . D’après (53), on conclut que pour tout
g ∈ Spin(V )P ,

exp(c1(Ng)) ∪ ρg(ch(G)) = ch(G).(55)
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Comme ch0(G) = −8d ̸= 0 par le lemme 3.3, on obtient

−8d c1(Ng) = ch1(G) − ρg(ch1(G)).(56)

De plus, d’après (56), on a pour tout g ∈ Spin(V )P ,

κ(G) = exp
(ch1(G)

8d

)
ch(G) = exp(c1(Ng))−1exp

(
ρg

(ch1(G)
8d

))
ch(G)

et donc, en utilisant (55)

ρg(κ(G)) = exp(ρg(c1(Ng)))−1exp
(
ρ2

g

(ch1(G)
8d

))
ρg(ch(G))(57)

= exp(ρg(c1(Ng)))−1exp
(
ρ2

g

(ch1(G)
8d

))
exp(c1(Ng))−1ch(G)

= exp(ρg(c1(Ng)))−1exp
(
ρ2

g

(ch1(G)
8d

))
exp(c1(Ng))−1exp

(ch1(G)
8d

)−1
κ(G).

Finalement, (56) entraîne que

exp(ρg(c1(Ng)))−1exp
(
ρ2

g

(ch1(G)
8d

))
exp(c1(Ng))−1exp

(ch1(G)
8d

)−1
= 1,

et donc κ(G) est Spin(V )P -invariant d’après (57).

Remarque 4.7. — Notons que d’après (56) et (54), c1(E) = ch1(G) n’est pas invariant
sous Spin(V )P , d’où la nécessité de travailler avec le faisceau tordu E ⊗ (detE)−1

8d .

Preuve du théorème 4.1(ii). — La démonstration du fait que κ3(G) n’est pas propor-
tionnel à ω3 repose sur les calculs précédents et sur l’analyse de l’action d’un groupe
Spin(V )ξW ,ξ

W
légèrement plus gros que Spin(V )P . Le groupe Spin(V )ξW ,ξ

W
est le sous-

groupe de Spin(V ) qui fixe (via la représentation m) chaque élément ξW , ξW à un
coefficient près. Ce groupe agit trivialement (via la représentation ρ) sur les puissances
de la polarisation ω, mais pas sur les classes de Weil. En utilisant (54), Markman montre
que ce groupe ne laisse pas κ3(G) invariant.

5. Semi-régularité

5.1. Semi-régularité de Bloch

La théorie de la semi-régularité pour les sous-variétés ou sous-schémas fournit un
critère permettant d’étudier la question suivante de déformation des paires.

Question 1. Soit X une variété projective lisse et soit f : X → B un morphisme
lisse de fibre X0 ∼= X. Soit Z ⊂ X une sous-variété ou un sous-schéma. Existe-t-il un
sous-schéma Z ⊂ X plat sur B tel que Z0 = Z ?
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Cette question peut être posée dans le cadre analytique complexe ou dans le cadre
algébrique. Dans les deux cas, il est naturel d’étudier ce problème d’abord à l’ordre
fini (arbitrairement grand), c’est-à-dire lorsque B = SpecA est un schéma artinien
local, i.e. de longueur finie supporté en un point. Si l’étude formelle ne rencontre pas
d’obstructions, des méthodes analytiques difficiles permettent de répondre à la question
en géométrie complexe localement sur la base (Kodaira, 1963) et dans le cadre algébrique,
le principe d’algébrisation d’Artin (1969) permet de répondre à la question globalement
mais après un changement de base.

Le critère suivant est établi par Kodaira (1963).

Théorème 5.1. — Soit X une variété complexe compacte et Z ⊂ X une sous-variété
complexe. Supposons que le fibré vectoriel holomorphe NZ/X sur Z satisfait

H1(Z,NZ/X) = 0.

Alors la réponse à la question 1 est oui (dans le cadre formel, ou analytique local).

On note cependant que la question ci-dessus est trop naïve pour avoir une réponse
satisfaisante. En effet, s’il existe une déformation Z ⊂ X de Z, la classe [Z] de Z reste
une classe de cycle et a fortiori de Hodge dans les fibres voisines Xt, pour t ∈ B proche
de 0. Ici, on pense au morphisme lisse f comme à un morphisme analytique qui est
donc localement topologiquement trivial par Ehresmann, ce qui permet de transporter
la classe [Z] ∈ H2c(X,Z) en une classe [Z]t ∈ H2c(Xt,Z), pour t ∈ B. Comme déjà
mentionné, c’est en fait le cas d’une base formelle ou artinienne B qui est intéressant,
mais on peut là aussi donner un sens à la condition que la classe [Z] ∈ H2c(X,Z) reste
une classe de Hodge sur les fibres Xt, grâce à la connexion de Gauss–Manin et aux
fibrés de Hodge (voir Voisin, 2002b, section 17.3 par exemple). Même dans le cas très
simple des surfaces projectives lisses (par exemple les surfaces S de degré d ≥ 4 dans
P3 étudiées par Noether), on sait bien que des classes de courbes C ⊂ S ne restent pas
en général des classes de Hodge dans toutes les déformations St de S.

La semi-régularité de Bloch étudie donc la question raffinée suivante.

Question 2. Soit X une variété projective lisse sur C et soit f : X → B un morphisme
lisse de fibre X0 ∼= X. Soit Z ⊂ X une sous-variété ou un sous-schéma de codimension c.
On suppose que la classe [Z] ∈ H2c(X,Z) reste une classe de Hodge sur les fibres Xt,
t ∈ B. Existe-t-il un sous-schéma Z ⊂ X plat sur B tel que Z0 = Z ?

Supposons que Z ⊂ X est localement intersection complète de codimension c, de
sorte que son fibré normal

NZ/X = (IZ/I2
Z)∗

est localement libre sur Z. L’application de semi-régularité

δZ : H1(Z,NZ/X) → Hc+1(X,Ωc−1
X )(58)
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est introduite par Bloch (1972). Elle est définie comme la transposée, relativement à la
dualité de Serre, de l’application de restriction

Hn−c−1(X,Ωn−c+1
X ) → Hn−c−1(Z,N∗

Z/X ⊗KZ), n := dimX

induite par le morphisme naturel de faisceaux Ωn−c+1
X → N∗

Z/X ⊗ KZ . Le sous-schéma
Z ⊂ X est dit semi-régulier si l’application δZ de (58) est injective. Bloch montre le
résultat suivant.

Théorème 5.2 (Bloch, 1972). — Si l’application de semi-régularité δZ est injective, la
réponse à la question 2 est affirmative pour Z, sur toute base artinienne B.

Le théorème 5.2 est une extension naturelle du théorème 5.1. En effet, la théorie de
Griffiths des variations de structure de Hodge et l’étude des lieux de Hodge montrent
que l’espace Hc+1(X,Ωc−1

X ) contient les obstructions successives à tous les ordres à ce
que la classe [Z] reste de Hodge sous la déformation Z → B. Si celle-ci reste de Hodge,
les obstructions successives à tous les ordres à étendre Z lui-même sont donc annulées
par δZ . Les démonstrations de ces théorèmes ont été rendues plus conceptuelles et
élégantes par la théorie du relèvement T 1 de Ran (1995).

Bien que le théorème 5.2 puisse paraître enthousiasmant, il est limité par la difficulté
de construire des sous-variétés semi-régulières. Pour les diviseurs, la semi-régularité est
satisfaite lorsque les diviseurs sont suffisamment amples (la condition précise est l’an-
nulation H1(X,OX(D)) = 0, qui est satisfaite par (Serre, 1955a), quitte à remplacer D
par D + kH où k >> 0 et H est une section hyperplane de X). Par contre, on peut
remarquer que si X est une variété de dimension n ≥ 4 à fibré canonique trivial ou de
dimension n ≥ 3 à fibré canonique ample, et telle que H2(X,OX) = 0, une courbe lisse

C ⊂ X

de genre ≥ 2 n’est pas semi-régulière. En effet comme H2(X,OX) = 0, la semi-régularité
signifierait dans ce cas que H1(C,NC/X) = 0. Or la formule de Riemann–Roch et la
formule d’adjonction donnent

χ(C,NC/X) = −degKX|C + 2g − 2 + (n− 1)(1 − g) = −degKX|C + (n− 3)(1 − g).

Sous les hypothèse indiquées, on trouve χ(C,NC/X) < 0 et donc h1(C,NC/X) ̸= 0, de
sorte que C n’est pas semi-régulière dans X. Si on prend par exemple une hypersurface
très générale de dimension ≥ 3 et de degré d ≥ 2n− 1 dans Pn avec n ≥ 4, on sait grâce
à Clemens (1986) que toutes les courbes C ⊂ X sont de genre au moins 2 et toutes
les hypothèses ci-dessus sont satisfaites. Cette absence de courbes semi-régulières est
cohérente avec le fait que la conjecture de Hodge variationnelle à coefficients entiers
n’est pas satisfaite par de telles variétés, au moins pour des degrés adéquats, voir Kollár
(1990).

Le succès de la stratégie de Markman repose directement sur le fait suivant, qui
concerne les variétés abéliennes de dimension 3 principalement polarisées (en particulier
à fibré canonique trivial).
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Lemme 5.3. — Soit C une courbe lisse de genre 3 et non-hyperelliptique et X = J(C)
sa jacobienne. Alors C ⊂ X est semi-régulière au sens de Bloch.

Démonstration. — Écrivons la suite exacte normale

0 → TC → TX|C → NC/X → 0.

Il en résulte que
H1(C,NC/X) ∼= H1(C, TX|C)/H1(C, TC).

Or comme TX est trivial et H1(X,OX) ∼= H1(C,OC), on a

H1(C, TX|C) = H1(X,TX).

Comme C est de genre 3 et n’est pas hyperelliptique, l’application

H1(C, TC) → H1(X,TX) = H1(X,OX) ⊗H0(X,TX) = H1(X,OX) ⊗H1(X,OX),

où l’isomorphisme H0(X,TX) ∼= H1(X,OX) est donné par le produit intérieur avec la
classe θX ∈ H1(X,ΩX) du diviseur Θ de X, a exactement pour image Sym2H1(X,OX).
Son conoyau H1(C,NC/X) est donc naturellement isomorphe à ∧2 H1(X,OX). On vérifie
finalement que le composé

H2(X,OX) ∼=
2∧
H1(X,OX) ∼= H1(C,NC/X) δC→ H3(X,ΩX)

est l’isomorphisme de Lefschetz H2(X,OX) ∼= H3(X,ΩX) donné par le cup-produit par
la classe θX . Donc l’application de semi-régularité δC est injective.

5.2. Semi-régularité de Buchweitz–Flenner

Nous présentons une transposition due à Buchweitz et Flenner des résultats de Bloch
à un autre problème de déformation des paires, qui concerne cette fois les déformations
des paires (X,E), où E est un faisceau cohérent sur une variété projective lisse X. Étant
données une telle paire et une déformation de X donnée par un morphisme projectif
lisse

f : X → B, X0 ∼= X,

existe-t-il un faisceau cohérent E sur X , plat sur B, tel que E|X0
∼= E ? La discussion

concernant la base B (munie du point 0) est la même que dans la section précédente.
L’étude se concentre donc sur le cas formel. Une condition nécessaire est que les classes de
Chern de E restent des classes de Hodge sur les fibres Xt, (ce qui comme précédemment
a un sens même lorsque la base est artinienne, à l’aide des variations de structures de
Hodge). La vraie question est donc :

Question 3. Étant donnés une variété projective complexe lisse X, un faisceau
cohérent E sur X, et une déformation de X donnée par un morphisme projectif lisse

f : X → B, X0 ∼= X,
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telle que toutes les classes de Chern ci(E) restent de Hodge sur les fibres Xt, t ∈ B,
existe-t-il un faisceau cohérent E sur X , plat sur B, tel que E|X0

∼= E ?

La réponse apportée par Buchweitz et Flenner (2003) fait intervenir la classe d’Atiyah
de E. Supposons d’abord que E est localement libre (i.e. E est le faisceau des sections
d’un fibré vectoriel). La classe d’Atiyah at1(E) ∈ Ext1(E,E ⊗ ΩX) a été introduite à
l’origine par Atiyah. Dans le contexte analytique, E admet une connexion ∇ de Chern,
dont la courbure R∇ est une forme fermée de type (1, 1) à coefficients dans EndE,
fournissant une classe de cohomologie de Dolbeault at1(E) ∈ H1(X,ΩX ⊗ EndE). En
fait la construction peut se faire de façon beaucoup plus formelle et algébrique, en
introduisant le faisceau P1(E) des jets de sections de E à l’ordre 1. On a une suite
exacte

0 → ΩX ⊗ E → P1(E) → E → 0,
qui fournit la classe d’extension voulue at1(E) ∈ Ext1(E,ΩX ⊗E). Cette construction
s’étend ensuite à tout complexe et donc tout faisceau cohérent sur une variété projective
lisse. On note

at(E) = exp(at1(E)) ∈
⊕

i

Exti(E,Ωi
X ⊗ E).

La classe d’Atiyah at(E) permet de calculer les classes de Chern ci(E) (ou du moins leur
version « Dolbeault »dans H i(X,Ωi

X). (Il faut en principe prêter attention à la différence
entre les versions algébrique et analytique des classes de Chern dans H i(X,Ωi

X), qui
différent par des puissances de 2iπ, du fait de la compatibilité voulue dans le second
cas avec les classes de Chern en cohomologie de Betti, mais nous n’entrerons pas dans
ces détails ici). On a en effet la formule suivante (voir Buchweitz et Flenner, 2000) :

ch(E) = Tr(exp(at1(E))) = Tr(at(E)) dans
⊕

i

H i(X,Ωi
X).(59)

Le caractère de Chern ch(E) ∈ ⊕
i H

i(X,Ωi
X) d’un fibré vectoriel E de rang r et somme

directe de fibrés en droites L1 ⊕ . . .⊕ Lr étant défini par

ch(E) =
r∑

i=1
exp(c1(Li)) dans

⊕
i

H i(X,Ωi
X),

avec c1(Li) = at1(Li), on obtient immédiatement la formule (59).
Buchweitz et Flenner (2000) construisent l’application de semi-régularité

δE : Ext2(E,E) →
⊕
i≥0

H i+2(X,Ωi
X),

pour un faisceau cohérent E. L’application δE est obtenue par composition avec la classe
at(E) suivie de la trace. On dira que E est semi-régulier (au sens de Buchweitz–Flenner)
si δE est injective. On a alors

Théorème 5.4 (Buchweitz et Flenner, 2003). — Soit E un faisceau cohérent semi-
régulier sur une variété projective lisse X. Alors la réponse à la question 3 est affirmative,
au moins sur toute base formelle.
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Une petite déformation Xt de X sur laquelle les classes de Chern ci(E) restent de
Hodge, possède donc un faisceau cohérent qui est une déformation Et de E. En particulier
les classes de Chern ci(E) restent algébriques sur Xt.

Le passage du cas formel au cas analytique local (dans la seconde partie de l’énoncé)
ou au cas algébrique (après revêtement fini) se fait par les méthodes de Kodaira (1963)
ou Artin (1969).

On utilisera le résultat suivant :

Lemme 5.5. — Soit C une courbe de genre 3 non hyperelliptique et soit X := J(C),
de sorte que C est plongée dans X par l’application d’Abel. Alors le faisceau cohérent
d’idéaux IC sur X est semi-régulier (Markman, 2025, Lemma 8.3.7(3)).

Ceci se montre en effet en utilisant le lemme 5.3. Il faut noter cependant que la
semi-régularité d’une sous-variété Y ⊂ X n’est pas en général équivalente à celle du
faisceau d’idéaux IY ⊂ OX . L’exemple le plus simple est celui des diviseurs D ⊂ X.
Pour qu’un tel diviseur soit semi-régulier, il faut que H1(X,OX(D)) = 0, tandis qu’un
fibré vectoriel de rang 1, et en particulier le faisceau OX(−D), est toujours semi-régulier
au sens de Buchweitz–Flenner.

5.3. Cas des faisceaux tordus
La classe d’Atiyah et l’application de semi-régularité sont définies pour un faisceau

cohérent tordu relativement à une classe α ∈ H2(W,µr) sur une variété W , de la même
manière que pour le cas non tordu décrit dans la section précédente (Markman, 2025,
Definition 7.3.5), c’est-à-dire via la classe d’extension du faisceau tordu des 1-jets associé.

Lemme 5.6. — Soit E un faisceau cohérent sans torsion de rang r sur une variété
projective lisse W . Alors E est semi-régulier si et seulement si le faisceau tordu E ⊗
(det E)− 1

r est semi-régulier. Plus généralement, E est semi-régulier si et seulement si le
faisceau tordu E ⊗H est semi-régulier pour tout fibré en droites fractionnaire H (voir
section 1.1.1).

Démonstration. — On a

at1(E ⊗H) = at1(E) + at1(H)IdE(60)

dans Ext1(E , E ⊗ ΩW ) = Ext1(E ⊗H, E ⊗H ⊗ ΩW ) et

at E = exp(at1(E)), at(E ⊗H) = exp(at1(E ⊗H)).(61)

Notons que at1(H) = c1(H) ∈ H1(W,ΩW ). Par ailleurs

Ext2(E , E) = Ext2(E ⊗H, E ⊗H).

Par (60) et (61), les applications de semi-régularité δE pour E et δE⊗H pour E ⊗ H

satisfont
δE⊗H = (exp(c1(H))∪) ◦ δE : Ext2(E , E) →

⊕
i

H i+2(W,Ωi
W ).
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L’application exp(c1(H))∪ : ⊕
i H

i+2(W,Ωi
W ) → ⊕

H i+2(W,Ωi
W ) est clairement un iso-

morphisme et donc δE⊗H est injective si et seulement si δE l’est.

Markman montre dans son article l’analogue du théorème 5.4 pour les faisceaux tordus
E ⊗ (det E)− 1

r , dans le cas des variétés abéliennes. Rappelons la notation

κ(E) := ch(E)exp
(

−1
r

ch1(E)
)
.

Théorème 5.7 (Markman, 2025, Section 7.4). — Si un faisceau cohérent E est semi-
régulier sur une variété abélienne X, les déformations du faisceau tordu E ′ = E ⊗
(det E)− 1

r sont non obstruées le long d’une déformation de X préservant les classes de
Hodge κi(E). Une petite déformation Xt de X sur laquelle les classes κi(E) restent de
Hodge possède donc un faisceau tordu qui est une déformation E ′

t de E ⊗ det E− 1
r . En

particulier les classes κi(E) restent algébriques le long d’une telle déformation (supposée
projective).

Remarque 5.8. — Si det E− 1
r est un fibré en droites, E ⊗det E− 1

r est un faisceau cohérent
semi-régulier par le lemme 5.6 et le théorème 5.7 est obtenu en appliquant le théorème
5.4 à ce dernier.

Remarque 5.9. — Le théorème 5.7 n’est pas entraîné par le théorème 5.4. En effet,
les déformations de X considérées dans ces théorèmes ne sont pas les mêmes. Dans le
théorème 5.4, on considère les déformations de X pour lesquelles toutes les classes de
Chern de E restent de Hodge. Dans le théorème 5.7, l’hypothèse ne concerne que les
κi(E), et en particulier, on ne demande pas que la première classe de Chern c1(E) reste
de Hodge. Les déformations de E ⊗ det E− 1

r obtenues grâce au théorème 5.7 ne sont pas
en général induites par une déformation de E .

6. Conclusion de la preuve et une remarque

6.1. Semi-régularité du faisceau tordu EY

Dans la section 3.3, nous avons construit suivant Markman un faisceau cohérent
semi-régulier EY sur une variété abélienne de Weil Y obtenue comme un quotient

X × X̂/Ĝ1 ×G2,

où X = J(C) est une variété abélienne principalement polarisée générale de dimension 3.
Le faisceau EY satisfait l’équation

q∗EY = D ⊗ E(62)

où le faisceau E sur X × X̂ est construit dans le théorème 3.1, q : X × X̂ → Y est
l’application quotient, et D est un fibré en droites sur X× X̂ tel que D⊗E est Ĝ1 ×G2-
linéarisé. L’application q est une isogénie, Y est donc une variété abélienne de Weil de
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dimension 6 et discriminant 1, l’application q∗ : H∗(Y,Q) → H∗(X × X̂,Q) induisant
un isomorphisme entre les espaces de classes de Hodge–Weil. D’après le théorème 4.1
et (62), le caractère de Chern corrigé κ(EY ) de EY satisfait

κ(EY ) ∈ HW∗(Y ).

Pour pouvoir appliquer le théorème 5.7, il suffit donc de montrer le résultat suivant.

Théorème 6.1 (Markman, 2025, Lemma 9.3.11). — Le faisceau EY est semi-régulier
au sens de Buchweitz–Flenner.

Le théorème 5.7(i) entraîne alors que la classe κ3(EY ) reste algébrique sur une déforma-
tion générale Yt de Y comme variété abélienne de Weil projective. Comme κ3(EY ) n’est
pas proportionnelle à ω3

Y par le théorème 4.1(ii), il en résulte (en considérant l’action
du corps K sur HW(Y )) que toutes les classes de Hodge–Weil sur Y sont algébriques,
ce qui conclut la preuve du théorème 1.4.
Preuve du théorème 6.1. — On note que comme q est une isogénie, l’application

q∗ :
⊕
i≥0

H i+2(Y,Ωi
Y ) →

⊕
i≥0

H i+2(X × X̂,Ωi
X×X̂

)

est un isomorphisme. Par ailleurs, grâce à (62) et au lemme 5.6, l’application

q∗ : Ext2(EY , EY ) → Ext2(E , E)

induit un isomorphisme

q∗ : Ext2(EY , EY ) → Ext2(E , E)Ĝ1×G2

où l’action de Ĝ1 ×G2 sur le terme de droite est induite par celle de G1 ×G2 sur
Db(X × X̂), décrite dans la proposition 3.4. La compatibilité des applications q∗ ci-
dessus avec les applications de semi-régularité δEY

et δE montre alors que l’injectivité
de δEY

résulte du lemme 6.2 ci-dessous.

Lemme 6.2. — L’application de semi-régularité δE , restreinte à Ext2(E , E)Ĝ1×G2, est
injective.

Démonstration. — Rappelons avec les notations de la section 3.3 que E∗ = G[1], avec

G = Φ(F1 ⊠ F2) = Ψ(IC• ⊠ IC′
•),

où Ψ: Db(X×X) → Db(X× X̂) est l’équivalence de catégories introduite dans (27). Le
lemme 6.2 résulte alors de l’énoncé analogue pour le faisceau IC• ⊠IC′

• , qui est invariant
sour le groupe G1 ×G2 : La restriction de l’application de semi-régularité δIC•⊠IC′

•
à la

partie invariante Ext2(IC• ⊠IC′
• , IC• ⊠IC′

•)G1×G2 est injective. Ce dernier énoncé résulte
du lemme 5.5.
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6.2. Remarque sur la conjecture de Hodge généralisée

Considérons un tore complexe T de dimension n muni d’un endomorphisme

ϕ : T → T

satisfaisant une équation quadratique ϕ2 = −d IdT , pour un certain entier d > 0. L’action

ϕ∗ : H1(T,C) → H1(T,C)

donne une décomposition
H1(T,C) = W+ ⊕W−,

en sous-espaces propres associés aux valeurs propres respectives i
√
d, −i

√
d. Chacun de

ces espaces est de dimension n et stable sous la décomposition de Hodge

W+ = W+1,0 ⊕W+0,1, W− = W−1,0 ⊕W−0,1,(63)

où (du fait de la symétrie de Hodge) la seconde décomposition se déduit de la première
par conjugaison complexe. La condition de Weil est que n = 2m est pair et que

dimW+1,0 = m = dimW+0,1.

On discute dans cette section ce qui se passe lorsqu’on omet cette condition et les
conséquences du théorème de Markman. Notons

k := dimW+1,0 = dimW−0,1,(64)

d’où
n− k = dimW+0,1 = dimW−1,0.

On peut bien sûr supposer n− k ≥ k, quitte à changer le choix des valeurs propres. On
dit qu’une structure de Hodge de poids m sur un Q-espace vectoriel L, donnée par une
décomposition

LC =
⊕

p+q=m

Lp,q, Lq,p = Lp,q,

est de niveau ≤ r si on a Lp,q = 0 pour |p− q| > r. Le niveau est le plus petit nombre
positif r tel que, quitte à décaler tous les bidegrés par un bidegré (s, s) tel que r = m−2s,
on ait

LC = Lr,0 ⊕ · · · ⊕ L0,r,

avec Lr,0 ̸= 0.
Une sous-structure de Hodge L1 ⊂ L2 est la donnée d’un Q-sous-espace vectoriel

stable sous la décomposition de Hodge, i.e.

L1C = ⊕Lp,q
1C , L

p,q
1C := L1C ∩ Lp,q

2C .

Lemme 6.3. — Le sous-espace vectoriel de dimension 2

LK :=
n∧
K

H1(T,Q) ⊂ Hn(T,Q)(65)
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tel que

LK,C =
n∧
W+ ⊕

n∧
W−,(66)

et introduit dans le lemme 2.2 est une sous-structure de Hodge de Hn(T,Q), de niveau
n− 2k.

Démonstration. — En effet, d’après (63), ∧n W+ est de type de Hodge (k, n − k) et∧n W− est de type de Hodge (n− k, k). Donc LK est une sous-structure de Hodge par
(66), et ses nombres de Hodge non nuls sont en bidegrés (k, n− k) et (n− k, k).

Une version de la conjecture de Hodge généralisée formulée par Grothendieck (1969)
est la suivante.

Conjecture 6.4. — Soit X une variété projective complexe lisse de dimension n et
soit L ⊂ Hm(X,Q) une sous-structure de Hodge de niveau r, avec m − r = 2c (c est
aussi appelé le coniveau de L). Alors il existe une variété projective lisse Y de dimension
r, et un cycle algébrique Z ⊂ Y ×X de dimension n− c tel que

L ⊂ Im([Z]∗ : Hr(Y,Q) → Hm(X,Q)).(67)

Étant donné une variété abélienne A (i.e. un tore complexe algébrique) de dimension n
munie d’un endomorphisme quadratique ϕ comme ci-dessus, la conjecture 6.4 prédit
l’existence d’une variété projective Y de dimension r = n−2k et d’une correspondance Z
satisfaisant (67), pour la sous-structure de Hodge L ⊂ Hn(A,Q) de niveau n−2k exhibée
dans le lemme 6.3.

Proposition 6.5. — Si la conjecture de Hodge est satisfaite pour les classes de Weil sur
les variétés abéliennes de Weil de dimension 2n− 2k, la conjecture de Hodge généralisée
6.4 est satisfaite pour les sous-structures de Hodge L de niveau n− 2k décrites ci-dessus
sur les variétés abéliennes de dimension n munies d’un endomorphisme quadratique ϕ,
l’entier k ≤ n− k associé étant défini dans (64).

Démonstration. — Étant donnés A et ϕ, on peut construire une variété abélienne B
de dimension n− 2k, munie d’un endomorphisme quadratique ψ tel que ψ2 = −d Id et
la variété abélienne B ×A munie de l’endomorphisme (ψ, ϕ) est une variété abélienne
de Weil. Il suffit pour cela que l’endomorphisme ψ agissant par ψ∗ sur H1,0(B) ait la
valeur propre i

√
d avec la multiplicité n− 2k (et donc n’ait pas la valeur propre −i

√
d).

Alors (ψ, ϕ) agissant par (ψ, ϕ)∗ = (ψ∗, ϕ∗) sur H1,0(B×A) a la valeur propre i
√
d avec

la multiplicité n−k, et donc a la valeur propre −i
√
d avec la multiplicité n−k, puisque

dim(B ×A) = 2n− 2k. La variété B ×A munie de l’endomorphisme quadratique (ψ, ϕ)
est donc bien une variété abélienne de Weil. Supposant satisfaite la conjecture de Hodge
pour les variétés abéliennes de Weil de dimension ≤ 2n − 2k, on en conclut que les
classes de Weil sur B ×A sont algébriques, ce qui donne des sous-variétés algébriques
Zi ⊂ B × A de dimension n − k telles que les classes de Weil sur B × A soient des
combinaisons linéaires des [Zi]. On conclut alors la démonstration avec
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Lemme 6.6. — Soit 0 ̸= α ∈ H2n−2k(B × A,Q) une classe de Weil. Alors

Im(α∗ : Hn−2k(B,Q) → Hn(A,Q))
contient la sous-structure de Hodge LK de (65).

Démonstration. — Cela résulte en effet du fait que si l’on adopte la notation
LA

K , L
B
K , L

B×A
K pour les sous-structures de Hodge de rang 2 associées comme dans le

lemme 6.3 aux actions respectives de ϕ, ψ, (ψ, ϕ), on a par définition
LB×A

K ⊂ LB
K ⊗ LA

K ⊂ H2n−2k(B × A,Q),
et l’espace LB×A

K est l’espace des classes de Weil de B × A. Le reste de l’argument est
formel et utilise la décomposition de Künneth et la dualité de Poincaré.

Remarque 6.7. — La construction utilisée dans cette démonstration apparaît sous une
forme plus générale dans l’article van Geemen (2001).

Lorsque n = 2k, la proposition 6.5 est vide. Lorsque 2k < n, la variété B est de
dimension positive et on peut choisir sa polarisation de façon que B × A ait une
polarisation de discriminant 1. De ce fait, on peut améliorer la proposition 6.5 en
supposant 2k < n et en demandant seulement que la conjecture de Hodge soit satisfaite
par les classes de Weil sur les variétés abéliennes de Weil de dimension 2n − 2k et de
discriminant 1. En appliquant le théorème principal de Markman (théorème 1.4) qui
concerne les variétés abéliennes de Weil de dimension 6 et de discriminant 1, on obtient
donc les conséquences suivantes du théorème 1.4.

Corollaire 6.8. — Soit A une variété abélienne de dimension n munie d’un endomor-
phisme quadratique ϕ comme ci-dessus, et soit k ≤ n− k l’entier de (64). Si k < n− k

et 2n− 2k ≤ 6, la conjecture de Hodge généralisée est satisfaite par la sous-structure de
Hodge L de niveau n− 2k du lemme 6.3.

Le cas k = 0 est vide mais les cas k = 1, n = 4, et k = 2, n = 5 sont des énoncés non
triviaux.
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