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RELATIVE LANGLANDS DUALITY
[after Ben-Zvi, Sakellaridis and Venkatesh]

by Wee Teck Gan

1. Introduction

The purpose of this article is to explain a vision of the relative Langlands program
put forth in the recent paper Ben-Zvi, Sakellaridis, and Venkatesh (2024), building upon
the foundations laid by its prequel Sakellaridis and Venkatesh (2017) (hereafter these
two references will be mentioned by BZSV and SV respectively). Given the length of
these two references, it will not be possible to cover all aspects of the envisioned theory.
Rather, after explaining the main problems to be addressed by the relative Langlands
program and some background in the usual Langlands program, we shall attempt to
describe the big picture and new perspectives offered by SV and BZSV and to highlight
a new conjectural duality that emerges naturally from these perspectives. In particular,
the focus will be on describing the evolution and implications of this vision rather than
on highlighting theorems. Our hope is that this will inspire and equip the reader to
tackle SV and BZSV on their own.

1.1. The problem

The main problem addressed by the relative Langlands program can be formulated at
the level of local fields or global fields. More precisely, suppose that G is a (connected)
reductive linear algebraic group defined over a field F and H ⊂ G is a (not necessarily
reductive) subgroup. Then the general problem studied in the relative Langlands
program can be loosely described as follows:

– (smooth local setting) For F a local field, one is interested in studying the natural
G(F )-representation

C∞(H(F )\G(F )) = IndG(F )
H(F )C.

More generally, one could consider a character χ : H(F ) −→ C× and the induced
representation

C∞((H(F ), χ)\G(F )) = IndG(F )
H(F )χ.
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In particular, one is interested in classifying the irreducible representations
of G(F ) which embed into C∞((H(F ), χ)\G(F )). By Frobenius reciprocity, for
π ∈ Irr(G(F )),

HomG(F )(π, IndG(F )
H(F )χ) ∼= HomH(F )(π, χ)

and the irreducible representations π of G(F ) for which HomH(F )(π, χ) ̸= 0 are
often called the (H,χ)-distinguished representations. One is especially interested in
those cases when the above space of (H,χ)-invariant functionals has dimension ≤ 1.

– (unitary local setting) Over a local field F , one can also study this representation
theoretic problem in the framework of unitary representations. For this, assume
that H(F )\G(F ) admits a G(F )-invariant measure. Then one may consider the
unitary representation L2(H(F ), χ\G(F )) and one is interested in its spectral
decomposition:

L2(H(F ), χ\G(F )) ∼=
∫
Ĝ(F )

π⊕m(π) dµH,χ(π)

where Ĝ(F ) is the unitary dual of G(F ) and dµH,χ is some measure on Ĝ(F ).
– (global setting) For k a global field, with associated ring of adèles A, one considers

the space A(G) of automorphic forms on
[G] := G(k)\G(A).

Let Acusp(G) ⊂ A(G) be the G(A)-stable subspace of cusp forms. Suppose that
χ : [H] = H(k)\H(A) −→ C×

is an automorphic character of H(A). Then one has a linear form (the (H,χ)-period
integral)

PH,χ : Acusp(G) −→ C
defined by integration over [H]:

PH,χ(f) =
∫

[H]
f(h) · χ(h) dh

where dh refers to the Tamagawa measure on [H]. Clearly, one has
PH,χ ∈ HomH(A)(π, χ).

The basic problem is then to characterize those cuspidal representations π =
⊗′
vπv ⊂ Acusp(G) for which PH,χ ̸= 0 when restricted to π.
As mentioned above, one is especially interested in the case where for all places v

of k, one has
dim HomH(kv)(πv, χv) ≤ 1.

Clearly the nonvanishing of these local Hom spaces is a necessary condition for the
nonvanishing of PH,χ on π. When the local nonvanishing holds, one should then
expect an Euler product factorization:

PH,χ|π =
∏
v

ℓχv
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where ℓχv is some nonzero element of HomH(kv)(πv, χv). This formula often allows
one to compute an explicit formula for PH,χ by expressing it as the special value
of an automorphic L-function.

1.2. Some classical examples
As concrete illustrations, we mention some classical examples of the above problems

that have been studied in the literature:
(i) (Group case) Over a local field, one may consider the group G = H×H containing

the diagonally embedded subgroup H∆; this is typically called the group case. Then
L2(H(F )\G(F )) = L2(H(F )) is equipped with the natural action of H(F )×H(F )
(by left and right translation). The spectral decomposition of this is the Plancherel
theorem of Harish-Chandra:

L2(H(F )) ∼=
∫
Ĥ(F )

π∨ ⊠ π dµH(π)

where the support of the Plancherel measure dµH is defined to be the subset
Irrtemp(H(F )) of tempered irreducible representations of H(F ).

In the smooth setting, for π1, π2 ∈ Irr(H(F )), one has

dim HomH(F )∆(π1 ⊠ π∨
2 ,C) ≤ 1 with equality if and only if π1 ∼= π2,

so that the H(F )∆-distinguished representations are of the form π∨ ⊠ π and their
classification amounts to the classification of Irr(H(F )). The classification of
Irr(H(F )) is precisely the problem addressed by the usual Langlands program, so
that one may view the relative Langlands program as an extension of the usual
Langlands program.

(ii) (Symmetric subgroups) Over an archimedean local field F = R or C, there is an
extensive literature on the spectral decomposition of L2(H(F )\G(F )) when H is a
symmetric subgroup of G, i.e. H is the fixed-point subgroup of an involution of G.
We can mention the papers of Oshima and Matsuki (1984), Delorme (1998) and
Ban and Schlichtkrull (1997).

(iii) (Whittaker case) Over a local field F , consider a maximal unipotent subgroup
contained in a Borel subgroup U ⊂ B = AU ⊂ G (where we assume that G is split
for simplicity). Let χ : U(F ) −→ C× be a unitary character in general position
(i.e. whose stabilizer in the maximal torus A(F ) is the center of G(F )). Then it is
a classic result (due to Shalika (1974) and Ramakrishnan (1982)) that

dim HomU(F )(π, χ) ≤ 1 for any π ∈ Irr(G(F )).

The representations π for which equality holds are called the χ-generic representa-
tions. Moreover, in the L2-setting, one has

L2(U(F ), χ\G(F )) ∼=
∫
Ĝ(F )

dim HomU(F )(π, χ) · π dµG(π)

where dµG is the Plancherel measure from (i). The spectral support of this unitary
representation is thus the set of χ-generic tempered representations of G(F ).
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(iv) (Tate, Godement–Jacquet) Consider G = GLn × GLn acting on the space Mn of
n× n matrices by left and right translation. This is a slight enhancement of the
group case discussed above; indeed, since GLn ⊂ Mn, one sees the group case
modelled on an open dense subset in Mn. The monoid Mn can thus be regarded
as a GLn ×GLn-equivariant partial compactification of GLn.

In the local setting, the problem is to study the spectral decomposition of
S(Mn(F )) (the space of Schwarz–Bruhat functions on Mn(F )). Godement and
Jacquet (1972) constructed an GLn(F )×GLn(F )-invariant linear form

Z(s) : S(Mn(F ))⊗ π ⊗ π∨| det |s+
n−1

2 −→ C

by the integral

Z(s, ϕ, f, f∨) =
∫

GLn(F )
ϕ(g) · ⟨π(g)f, f∨⟩| det(g)|s+

n−1
2 dg

for ϕ ∈ S(Mn(F )), f ∈ π and f∨ ∈ π∨. This is called the Godement–Jacquet
local zeta integral. It converges when Re(s) is sufficiently large and admits a
meromorphic continuation to C.

In the global setting, they introduced the analogous global zeta integral for a
cuspidal automorphic representation π = ⊗′

vπv of GLn(A), defined by:

Z(s, ϕ, f, f∨) =
∫

GLn(A)
ϕ(g) · ⟨π(g)f, f∨⟩| det(g)|s+

n−1
2 dg.

for ϕ ∈ S(Mn(A)), f ∈ π and f∨ ∈ π∨. This integral converges for all s ∈ C and is
clearly the Euler product of the local zeta integrals. For appropriate choices of ϕ,
f and f∨, one has

Z(s, ϕ, f, f∨) = L(s, π)
where the RHS refers to the standard automorphic L-function of π.

The case n = 1 is the subject of Tate’s influential thesis (Tate, 1967).
(v) (Waldspurger, Gross–Prasad) Suppose G = SOn+1 × SOn and H = SO∆

n is diag-
onally embedded. Over a local field, for π ⊠ π′ ∈ Irr(SOn+1 × SOn), one knows
(Aizenbud, Gourevitch, Rallis, and Schiffmann, 2010; Sun and Zhu, 2012) that

dim HomSO∆
n

(π ⊠ π′,C) ≤ 1.

The Gross–Prasad conjecture (Gross and Prasad, 1992) gives a precise criterion
for when this multiplicity is 1 when π ⊠ π′ is tempered and has been proved by
Waldspurger (2012a,b,c) over nonarchimedean fields.

Over a global field k, Gross and Prasad (1992) conjectured that the following
are equivalent for tempered π ⊠ π′ ⊂ Acusp(G):
(a) The period integral PH is nonzero when restricted to π ⊠ π′;
(b) For all places v, HomH(kv)(πv ⊠ π′

v,C) ̸= 0 and in addition,

L(1/2, π × π′) ̸= 0,

where L(s, π × π′) is a certain (Rankin–Selberg) L-function attached to π ⊠ π′.
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In fact, a refinement of the above conjecture by Ichino and Ikeda (2010) gives
an identity of the form

PH ⊗ PH = c · L(1/2, π × π′)
L(1, π, Ad) ·

∏
v

ℓv ⊗ ℓv,

where c is an explicit constant depending on H ⊂ G but not on π⊠ π′, L(s, π, Ad)
is the so-called adjoint L-function of π and ℓv is a certain carefully chosen vector
in HomH(kv)(πv ⊠ π′

v,C).
The global conjectures have been resolved for n ≤ 3 but are still open in general.

(vi) (Shalika period) Suppose that G = GL2n and H = GL∆
n ⋉N is a subgroup of the

maximal parabolic subgroup P = (GLn×GLn) ·N , where N ∼= Mn is the unipotent
radical of P and GL∆

n is diagonally embedded into the Levi subgroup GLn ×GLn.
Given a global field k, fix a nontrivial additive character ψ : k\A→ C× and define
a character χ : [H]→ C× by

χ :
(
A 0
0 A

)
·
(

1 X

0 1

)
7→ ψ(Tr(X)).

Then the resulting period integral PH,χ is called the Shalika period. It was shown
by Jacquet and Shalika (1990) that, for π ⊂ Acusp(GL2n), the following statements
are equivalent:

(a) PH,χ is nonzero on π;
(b) the exterior square L-function L(s, π,∧2) has a pole at s = 1;
(c) π is a Langlands functorial lift from G′ = SO2n+1.

The last assertion above is a prototypical statement that one is aiming for. In
summary, one might say that the main problem in the relative Langlands problem
is ultimately to understand the relation between automorphic periods PH,χ, special
values of L-functions and Langlands functorial lifting, as well as the local analog of this
relation.

1.3. Some natural questions

For a long time, the relative Langlands program consists of the detailed study of
families of examples as highlighted above, using various techniques such as Rankin–
Selberg integrals, theta correspondence and the relative trace formula developed by
Jacquet and his collaborators. There is however a lack of clarity on the following
natural fundamental questions:

– What is the natural context for the relative Langlands program, which would
encompass all the above examples? Another way to ask the same question is: what
is a natural class of subgroups H of G to consider? Example (ii) above suggests that
this class of subgroups should include all the symmetric subgroups, but should be
strictly larger, since examples (iii), (v) and (vi) include non-symmetric examples.
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– How can one formulate a uniform answer to the local and global problems high-
lighted above? The above examples suggest that answers should be formulated in
terms of the usual Langlands program. Indeed, the Langlands program postulates
a classification of Irr(G(F )) in the local setting and of irreducible automorphic rep-
resentations in the global setting, thus providing a language to express an answer.
However, in the context of the equivalent conditions in example (vi) above, one
may ask what is the relation between H and G′?

What the book SV and the paper BZSV achieve is to provide a perspective and
framework to formulate conceptual conjecutural answers to these natural questions.
The periods highlighted above will serve as the standard illustrating examples as we
discuss the material in SV and BZSV below.

1.4. The book SV
Sakellaridis and Venkatesh (2017) proposed a natural context for the relative Lang-

lands program. Firstly, they slightly altered the perspective by de-emphasizing the role
of the subgroup H ⊂ G and instead focused their discussion on the G-variety X = H\G.
This slight change in perspective turns out to be profitable as it allows them to consider
more general G-varieties, not just the G-homogeneous ones. They then proposed that
the natural context for the relative Langlands program should be that of spherical
G-varieties.

A spherical G-variety X is a normal G-variety for which any Borel subgroup B has
an open Zariski dense orbit. When H is a symmetric subgroup, then X = H\G is
spherical. The subgroups H encountered in examples (iii), (v) and (vi) are all spherical
(i.e. X = H\G is spherical). Further, example (iv) (Godement–Jacquet) is an instance
of a non-homogeneous spherical variety. There is a substantial structure theory for the
geometry of spherical varieties, developed in the work of Brion, Knop, Luna, Lust and
others, which is closely related to the root theoretic classification of reductive groups.

The main reason for singling out spherical varieties is the expectation that the spectral
decomposition of L2(X(F )) will be multiplicity-free; it was in fact shown in SV that the
multiplicities in L2(X(F )) are finite (for X wavefront). In the spirit of the Langlands
philosophy and exploiting the structure theory of spherical varieties, SV associated to
the spherical G-variety X the following dual data:

– a Langlands dual group X∨ and a map

ιX : X∨ × SL2(C) −→ G∨.

– a (graded) finite-dimensional (typically symplectic) representation VX of X∨.
It was then conjectured that the X-distinguished representations should be Langlands
functorial lift from a group GX with Langlands dual group X∨ via the map ιX . This thus
gives a systematic way to figure out the group from which the Langlands functorial lifting
originates. The representation VX of X∨, on the other hand, is the main ingredient that
goes into the definition of the automorphic L-function related to the period in question.
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1.5. The paper BZSV

The proposal of SV already gives a conceptual and elegant framework for the relative
Langlands program. So what motivates the further investigations of BZSV?

One possible motivation (among several others) is the following. In example (iv) above,
we considered the GLn×GLn-variety Mn, which gives rise to the unitary representation
L2(Mn). This unitary representation of GLn × GLn is in fact an instance of the Weil
representation of a reductive dual pair in the theory of theta correspondence. But there
are other examples of reductive dual pairs in the theory of theta correspondence and
each has an associated Weil representation. A standard example is O2m × Sp2n whose
Weil representation can be realized on the space L2(V ) where V is a F -vector space of
dimension 2mn. As realized in Sakellaridis (2017), the spectral decomposition of this
Weil representation is multiplicity-free and can be expressed in a similar form as the
answer proposed for L2(X(F )) for spherical X.

This suggests that perhaps the context of the relative Langlands program can be
enlarged, which is exactly what Ben-Zvi, Sakellaridis, and Venkatesh (2024) have pro-
posed. According to their new proposal, the basic objects considered by the relative
Langlands program should be a class of Hamiltonian G-varieties M called hyperspher-
ical varieties. From this point of view, instead of considering spherical varieties X as
in SV, one should consider instead their cotangent varieties M = T ∗(X), which are
naturally Hamiltonian G-varieties. By the (philosophical) process of quantization, these
hyperspherical G-varieties should give rise to unitary G-representations whose spectral
decomposition is what the relative Langlands program should be concerned with.

A key result shown in BZSV is a structure theorem for these hyperspherical varieties.
It turns out that any hyperspherical G-variety can be built out of the following initial
data:

– a map
ι : H × SL2 −→ G

with H ⊂ ZG(ι(SL2)) a spherical subgroup;
– a finite-dimensional (graded) symplectic representation S of H.

Given these initial data, the corresponding Hamiltonian G-variety M is built up by a
process called ‘Whittaker induction’. This enlarged framework captures the example of
theta correspondence mentioned above.

1.6. BZSV Duality

Observe that the initial data

(ι : H × SL2 → G,S)

used in the construction of a hyperspherical variety is very similar to the dual data

(ιX : X∨ × SL2 → G∨, VX)
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used in the formulation of the conjectures of SV mentioned above. If one were to apply
the process of Whittaker induction to the latter data (assuming VX is symplectic), one
may potentially get a hyperspherical G∨-variety M∨.

Now another novel realization in BZSV is that the conjectures of SV on the clas-
sification of X-distinguished representations can be elegantly reformulated in terms
of M∨. Pursuing this train of thought further, BZSV suggested that there should exist
an involutive theory of duality of such hyperspherical varieties,

G ⟳M ←→M∨ ⟲ G∨,

relating two a priori unrelated instances of the relative Langlands program. This
purported duality between certain hyperspherical G-varieties and certain hyperspherical
G∨-varieties is undoubtedly one of the deepest insights to emerge from BZSV and is
the duality referred to in the title of this paper (and BZSV).

Here is a summary of the main new perspectives and insights of BZSV:
– The basic objects in the relative Langlands program should be a class of Hamilto-

nian varieties called hyperspherical varieties. These hyperspherical varieties extend
the realm of the relative Langlands program beyond spherical varieties, to include
for example the theory of theta correspondence.

– By the process of “quantization”, one can attach to a hyperspherical G-variety M
two invariants: a period invariant and a spectral invariant. The period invariant is,
in the local setting, a unitary representation G(F ) associated to M . For example,
if M = T ∗(X), then the resulting period invariant is L2(X(F )). In particular, it
produces the central object of study from the viewpoint of representation theory.
On the other hand, the spectral invariant is a Galois representation associated
to M , from which one can obtain an L-function. In other words, it produces the
main object that we are using to describe the answer to the period problem (albeit
on the dual side).

Hence, one sees that automorphic periods and L-functions have a common origin:
hyperspherical varieties. To some extent, this demystifies why these two objects
are related.

– Finally, it is conjectured that there is a duality exchanging hyperspherical G-
varieties and hyperspherical G∨-varieties: M ←→ M∨. Under this purported
duality, one should have:

period invariant of M = spectral invariant of M∨,

spectral invariant of M = period invariant of M∨.

1.7. Geometric and physical setting
In our introduction above, we have proceeded from a rather classical viewpoint and

worked over a local or global field. In BZSV, the authors take a more high-brow approach.
Namely:
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– Just as the classical Langlands program has a geometric analog (‘the geometric
Langlands program’), much of the discussion in BZSV happens at the geometric
level, where vector spaces of (automorphic) functions in the classical setting are
replaced by (derived) categories of sheaves on geometric spaces. The various local
and global conjectures of SV and BZSV are formulated at this geometric/categorical
level and their implications for the classical context are explicated. In other words,
what BZSV has initiated is really the geometric/categorical relative Langlands
program.

– We have observed that the basic problems of the relative Langlands program
can be discussed in parallel fashion at various levels (local, global or geomet-
ric/categorical). BZSV suggested that a framework to organize this different level
of problems and data is through the lens of TQFT (topological quantum field
theory). This viewpoint is emphasized in the introduction of BZSV and informs
some of the investigations pursued in the paper. The connection is partly moti-
vated by Kapustin–Witten’s interpretation (Kapustin and Witten, 2007) of the
geometric Langlands program as the electro-magnetic duality in the theory of 4d
supersymmetric TQFT and the subsequent investigation by Gaiotto and Witten
(2009) of the induced duality of boundary conditions of these 4d TQFT.

In this survey article, we have not emphasized the above two aspects but choose
to focus our discussion on more classical grounds. One reason is the complete lack of
competence of the author in these more geometric and physical settings; the reader can
do no better than referring to BZSV itself for such geometric and physical discussion.
Another reason is that the discussion at the geometric level in BZSV is more speculative
than in the classical case, as some foundational material (such as the correct category
of sheaves with the expected properties in the setting of derived algebraic geomety) has
not been fully developed.

Let us also remark that it is expected in BZSV that the duality theory should extend to
a much wider class of Hamiltonian spaces, such as non-smooth spaces, stacks, or derived
schemes. In this paper, we have restricted ourselves to the definition of ‘hyperspherical’
as given in BZSV, for which there exists a reasonable structure theory and formulation of
expectations for the duality. Investigation of the duality phenomenon for more general
spaces has been pursued in Chen and Venkatesh (2024).

1.8. Summary of content

We conclude this long introduction with a summary of the content of the subsequent
sections. We begin by recalling the pertinent notions from the usual Langlands program
in §2, before moving on to discuss SV in greater detail in §3. In particular, we will
describe the construction of the dual group X∨ and the representation VX associated to
a spherical variety X. In §4, we discuss some basic constructions in symplectic geometry,
culminating in the definition of Whittaker induction and hyperspherical varieties, as
well as the structure theorem for them. This discussion leads us naturally to the
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formulation of the BZSV duality in §5. Finally, we discuss the “automorphic” and
“spectral” quantizations which produce the period and spectral invariants in §6 before
concluding with a very coarse formulation of how these invariants are related by the
relative Langlands duality.

2. The Classical Langlands Program

The relative Langlands program should be thought of a structure built upon the
foundation of the classical Langlands program. As such, it is necessary for us to recall
some pertinent objects and notions from the classical Langlands program, which will
be needed for the discussion in the relative setting.

Two basic goals of the Langlands program are:
– to provide a classification of the set Irr(G(F )) of the irreducible smooth represen-

tations of G(F ) for local fields F ;
– to provide a classification of the irreducible summands of the space Adisc(G) of

square-integrable automorphic forms over a global field k.
On the one hand, these can be viewed as a generalisation of the Cartan–Weyl theory

of highest weights which classifies the irreducible representations of a connected compact
Lie group. On the other hand, they can be considered as a generalisation of class field
theory, which classifies the abelian extensions of a local or number field. In this section,
we briefly review the salient features and objects of the Langlands correspondence.

2.1. Weil–Deligne group
For a local or global field F , let WF denote the Weil group of F . When F is a p-adic

field, one has a commutative diagram of short exact sequences:
1 −−−→ IF −−−→ Gal(F/F ) −−−→ Ẑ −−−→ 1∥∥∥∥ x x
1 −−−→ IF −−−→ WF −−−→ Z −−−→ 1

where IF is the inertia group of Gal(F/F ), and Ẑ is the absolute Galois group of the
residue field of F , equipped with a canonical generator (the arithmetic or geometric
Frobenius element FrobF ). This exhibits the Weil group WF as a dense subgroup of the
absolute Galois group of F . When F is archimedean, we have

WF =

C
× if F = C;

C× ∪ C× · j, if F = R,

where j2 = −1 ∈ C× and j · z · j−1 = z for z ∈ C×. Set the Weil–Deligne group to be

WDF =

WF if F is archimedean;
WF × SL2(C), if F is nonarchimedean.
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In the nonarchimedean case, one has a distinguished character of WDF defined by

(2.1) ωF : WDF → WF → Z→ C×

where the last map sends 1 ∈ Z to q−1/2, with q equal to the cardinality of the residue
field of F .

2.2. Dual groups and L-groups

One of Langlands’ key insights is to associate to G a complex Lie group
LG = G∨ ⋊WF

known as the L-group, whose identity component G∨ is called the Langlands dual group.
In this article, we will assume that G is split and B = A · U is a fixed Borel subgroup
with maximal torus A and unipotent radical U . In this case, one has the based root
datum

(X∗(A),∆, , X∗(A),∆∨)

where X∗(A) = Hom(A,Gm), X∗(A) = Hom(Gm, A), ∆ is the set of simple roots
relative to B and ∆∨ the set of simple coroots. Then the root datum of G∨ is obtained
from that of G by exchanging the role of roots and coroots and the role of character
and cocharacter groups. Moreover the action of WF on G∨ is trivial, so that we have a
direct product LG = G∨×WF . In this split setting, we may just work with G∨ in place
of LG. Moreover, we may assume that G∨ is defined over Z.

The following table gives some instances of G∨ for various G.

G GLn SO2n+1 Sp2n SO2n G2

G∨ GLn Sp2n SO2n+1 SO2n G2

2.3. L-parameters

By an L-parameter (or Langlands parameter) of G, we mean a G∨-conjugacy class of
FrobF -semisimple homomorphisms

ϕ : WDF −→ G∨.

Let Φ(G,F ) denote the set of such L-parameters of G. We introduce some distinguished
subsets of Φ(G,F ):

– An L-parameter ϕ is said to be tempered if ϕ(WF ) is bounded. This gives the
subset Φtemp(G,F ) ⊂ Φ(G,F ) of tempered L-parameters.

– Over a nonarchimedean local field F , an L-parameter ϕ is unramified if ϕ is
trivial on IF × SL2(C). This gives the subset Φur(G,F ) ⊂ Φ(G,F ) of unramified
L-parameters.
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2.4. Local Langlands conjecture
We can now formulate the local Langlands conjecture for a split group G:

Local Langlands Conjecture (LLC)
There is a natural surjective map

LG : Irr(G(F )) −→ Φ(G,F )

with finite fibers.
This map LG should be characterized by some natural list of properties, though

a definitive list is not available for general G. Minimally, the map LG should send
an unramified representation π to the unramified L-parameter ϕπ determined by
ϕπ(FrobF ) = sπ, where sπ ∈ G∨ is the Satake parameter of π.

Given an L-parameter ϕ ∈ Φ(G,F ), we let Πϕ be the finite fiber of LG over ϕ. This
is called the L-packet with L-parameter ϕ. Hence.

Irr(G) =
⊔
ϕ

Πϕ.

For a given ϕ, the finite set Πϕ can also be parametrized by some extra data η (which
we will not discuss here). Denoting Φen(G,F ) to be the set of such (ϕ, η)’s (which will
be called enhanced L-parameters), one has a conjectural bijection

LG : Irr(G(F ))←→ Φen(G,F ).

2.5. Status
The LLC has been established for the group GL(n) by Harris and Taylor (2001) and

Henniart (2000). The case of quasi-split classical groups was shown by Arthur (2013)
and Mok (2015), though at the moment this may still be conditional on the twisted
weighted fundamental lemma. The case of G2 was recently shown in W. T. Gan and
Savin (2023), with the same caveat.

2.6. Automorphic discrete spectrum
Suppose now we are working over a global field k. Then we are interested in the

decomposition of the unitary representation L2[G] := L2(G(k)\G(A)) of G(A). This
unitary representation decomposes as a direct sum

L2[G] = L2
disc[G]⊕ L2

cont[G]

of its discrete spectrum and continuous spectrum. The continuous spectrum L2
cont[G]

can be understood in terms of the discrete spectrum of Levi subgroups of G (through the
theory of Eisenstein series), and hence the fundamental problem is the understanding
of the discrete spectrum L2

disc[G].
Now we may first decompose L2

disc[G] into near equivalence classes, where two irre-
ducible representations π = ⊗′

vπv and π′ = ⊗′
vπ

′
v of G(A) are nearly equivalent if their

local components πv and π′
v are isomorphic for almost all v. One may ask how one can

index the near equivalence classes in L2
disc[G].
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2.7. A-parameters
According to Arthur’s conjectures, they should be indexed (to a first approximation)

by elliptic global A-parameters

ψ : Lk × SL2(C) −→ G∨

where Lk is the conjectural Langlands group of k, which is supposedly a variant of the
absolute Galois group Gal(k/k). Indeed, over a global function field, one can simply
take Lk = Gal(k/k). Over a number field, the key expected properties of Lk are:
(a) there is a surjection Lk −→ Wk;
(b) for each place v, there is a natural conjugacy class of embeddings Lkv := WDkv ↪→ Lk;
(c) there is a natural bijection

{irreducible n-dimensional representations of Lk} ←→ {cuspidal representations of GLn}.

This bijection is basically the global Langlands correspondence for GLn.
We denote the set of G∨-conjugacy classes of global A-parameters of G by Ψ(G, k).

The subset Ψell(G, k) of elliptic A-parameters consists of those which do not factor
through a proper Levi subgroup of G∨, or equivalently whose centralizer in G∨ is finite
(modulo Z(G∨)). Hence, one has a decomposition

L2
disc[G] =

⊕̂
ψ∈Ψell(G,k)L

2[ψ]

where each L2[ψ] is a near equivalence class.
Let us highlight some further constructs one can obtain from a global A-parameter ψ:
– By (b), a global A-parameter ψ gives rise by restriction to a local A-parameter

ψv : WDkv × SL2(C) −→ Lk −→ G∨

for each place v. One requirement for ψ is that ψv|WDkv
belongs to Φtemp(G,F ). We

denote by Ψ(G, kv) the set of G∨-conjugacy classes of all such local A-parameters
(regardless of whether they arise by restriction from a global A-parameter or not).

– to a local A-parameter ψv, one can attach a local L-parameter ϕψv as follows.
Define an embedding

ι : WDkv −→ WDkv × SL2(C)

by

ι(x) =
(
x,

(
ωkv(x) 0

0 ωkv(x)−1

))
,

where ωkv is as defined in (2.1), at least in the nonarchimedean case. Then via
pulling back by ι, one sets

ϕψv = ψv ◦ ι : WDkv −→ G∨.

One thus has a map
Ψ(G, kv) −→ Φ(G, kv).
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A basic observation is that this natural map is injective. We call its image
Φart(G, kv) the subset of L-parameters of Arthur type and observe that

Φtemp(G, kv) ⊂ Φart(G, kv) ⊂ Φ(G, kv).

2.8. A-packets
For a given (elliptic) global A-parameter ψ, one now needs to describe the decom-

position of L2[ψ]. For this purpose, Arthur’s conjecture postulates that to each local
A-parameter ψv, one can attach a finite (multi-)set Πψv of irreducible unitary represen-
tations of G(kv). We will not discuss the internal parametrization of Πψv , but merely
remark that

Πψv ⊃ Πϕψv
.

For almost all places v, ϕψv ∈ Πur(G, kv) and in this way, ψ gives rise to a near equiva-
lence class of representations of G(A), determined by the system of Satake parameters

s(ψv) := ϕψv(Frobkv) ∈ G∨ for almost all v.

We note also that if ψ is trivial on SL2(C), then ψv = ϕψv ∈ Φtemp(G, kv) for all v. In
this case, Πψv is simply the L-packet Πϕψv

.
With the local A-packets at hand, the global A-packet is

Πψ = {π = ⊗′πv : πv ∈ Πψv for all v}.

Then L2[ψ] is (conjecturally) a sum of the representations in Πψ with some multiplicities
determined by the so-called Arthur multiplicity formula.

2.9. Automorphic L-functions
Suppose that ϕ : Lk −→ G∨ is a global L-parameter and we are given a finite-

dimensional complex algebraic representation

R : G∨ −→ GL(V ),

then we obtain by composition a representation of Lk on V and hence a collection

R ◦ ϕv : WDkv −→ Lk −→ G∨ −→ GL(V )

of local Galois representations. Then, following a recipe of Artin, one can attach local
L-factors L(s, R ◦ ϕv) for each place v. When ϕv is unramified, the local L-factor is
given by

L(s, R ◦ ϕv) := 1
det(1− q−s

v R(ϕv(Frobkv))|V ) .

The Euler product
L(s, R ◦ ϕ) :=

∏
v

L(s, R ◦ ϕv)

converges for Re(s) sufficiently large and it is a basic problem in number theory to
prove that it has a meromorphic continuation to C and satisfies a standard functional
equation as the Riemann zeta function.
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On the other hand, let π = ⊗vπv be an automorphic representation of G(A). Then
outside of a finite set S, πv is unramified and one has a collection of unramified local
L-parameters ϕπv for v /∈ S. Given the representation R as above, one then defines the
(partial) R-automorphic L-function of π by

LS(s, π,R) :=
∏
v/∈S

L(s, R ◦ ϕπv).

where the Euler product above is known to converge for Re(s) sufficiently large.
One of the challenges of the Langlands program is to give an independent definition

of these local L-factors on the automorphic side, for all πv ∈ Irr(G(kv)) and without
recourse to L-parameters. Then one envisioned property of the LLC map LG is that it
should preserve the L-factors independently associated to R on both sides.

3. Relative Langlands Program à la SV

We now come to the relative Langlands program, as envisioned in SV. Recall that
we have assumed that the group G is split over the base field. We fix once and for all a
Borel subgroup B = A ·U over the base field, with U its unipotent radical and A ⊂ B a
fixed maximal torus. This gives a based root datum (X∗(A),∆, X∗(A),∆∨) for G, with
∆ ⊂ X∗(A) the set of simple roots relative to B, and ∆∨ the set of simple coroots. In
this split setting, it suffices to work with the Langlands dual group G∨ instead of the
L-group LG, and G∨ may be regarded as defined over Z.

3.1. The setting

In the introduction, we have already mentioned that SV takes a quasi-affine spherical
G-variety X over a local or global field as a starting point. We may also fix a G(F )-
equivariant complex line bundle L on X(F ). This typically arises as a G-equivariant
Ga-bundle Ψ → X, followed by a reduction of the structure group via a character
ψ : F → C× in the local setting or a character k\A→ C× in the global setting. If the
Ga-bundle Ψ and the character ψ are trivial, we will call it the untwisted case; otherwise
we will call it the twisted case and write XΨ for (X,Ψ).

For example, if X = U\G, one may consider a homomorphism

λ : U −→ Ga

which is nontrivial when restricted to each simple root subgroup Uα for α ∈ ∆. If
U0 = ker(λ), then

Ψ := U0\G −→ X = U\G
is an equivariant Ga-bundle. In the local setting, we may pushout this bundle via a
nontrivial character ψ : F → C× to obtain a C×-bundle LΨ over X, which we may
regard as a complex line bundle. The data XΨ is called the Whittaker variety.
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3.2. The problem

With the above setup, we recall the main problems to be addressed given XΨ:
– (L2-setting) For a local field F , determine the spectral decomposition of the unitary

representation L2(X(F ),LΨ) of G(F ) on the space of L2-sections of the line bundle
LΨ.

– (Smooth setting) Still over a local field F , consider theG(F )-module C∞(X(F ),LΨ)
of smooth sections of LΨ and classify the set

IrrX,Ψ(G(F )) = {π ∈ Irr(G(F )) : HomG(π,C∞(X(F ),LΨ)) ̸= 0}

of (X,Ψ)-distinguished irreducible smooth representations of G(F ). Moreover,
determine the function

(3.1) PX,Ψ : π 7→ dim HomG(π,C∞(X(F ),LΨ))

defined on Irr(G(F )) and produce a natural basis of this Hom space if possible.
A special case of particular interest is when there is a multiplicity-at-most-one
situation, where the above dimension is ≤ 1. Hence, this is just the smooth version
of the L2-problem above.

– (Global setting) If X = H\G is homogeneous and χ : [H] −→ S1 is an automorphic
character of H, we consider the automorphic period integral

PH,χ : Acusp(G) −→ C

defined by
PH,χ(f) =

∫
[H]
f(h) · χ(h) dh.

Then we would like to classify the (H,χ)-distinguished cuspidal representations, i.e.
those π ⊂ Acusp(G) such that PH,χ is nonzero on π. Further, in the multiplicity-
at-most-one setting, we would like to have a factorization of |PH,χ|2 as an Euler
product of natural local functionals (supplied by the L2-setting).

One may reformulate the above in a slightly different way, so that the global
question can be raised even when X is not homogeneous, taking χ = 1 for simplicity.
For ϕ ∈ C∞

c (X(A)), one may form an X-theta series by

θX(ϕ)(g) =
∑

x∈X(k)
(g · ϕ)(x),

so that one has a G(A)-equivariant map

θX : C∞
c (X(A)) −→ C∞[G].

The global problem is equivalent to classifying those π which contribute to the
spectral expansion of θX(ϕ) (as ϕ varies), i.e. those π such that the Petersson inner
product

⟨θX(ϕ), f⟩[G] ̸= 0 for some ϕ ∈ C∞
c (X(A)) and f ∈ π.
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Indeed, when X = H\G, putting in the definition of θX(ϕ), one has

⟨θX(ϕ), f⟩[G] =
∫

[G]

∑
x∈X(k)

ϕ(g−1 · x) · f(g) dg

=
∫
H(k)\G(A)

ϕ(g−1 · x) · f(g) dg

=
∫
X(A)

ϕ(x) · PH(f)(x) dx.

The nonvanishing of PH(f) is thus equivalent to the existence of some ϕ such that
the inner product of θX(ϕ) and f is nonzero. The problem of Euler factorization
of the global H-period of π can also be expressed in terms of the X-theta series.

As we mentioned in the introduction, SV proposes a conceptual answer to the above
problems in terms of the Langlands correspondence and the following two basic invariants
associated to XΨ:

– a Langlands dual group X∨
Ψ with a map

ιX,Ψ : X∨
Ψ × SL2(C) −→ G∨.

– a (graded) finite-dimensional (typically) symplectic representation VX,Ψ of X∨
Ψ.

Going forward, we shall focus our discussion on the untwisted case and hence suppress Ψ
from the notation for simplicity. Our next goal is to explain the construction of these
two invariants.

3.3. Root system of spherical varieties
We begin by recalling some basic facts from the structure theory of spherical G-

varieties over a field k of characteristic zero. These are largely due to Brion (1990)
and Knop (1990, 1991, 1994). In particular, we shall first explain how to attach a root
system and a Weyl group to a spherical G-variety X (with G acting on the right).

Recall that we have fixed a Borel subgroup B = A · U ⊂ G. By definition, X has an
open dense B-orbit X◦, so that there is an open dense G-orbit X• ⊃ X◦. Assuming
that X◦(k) is nonempty (for example, when k is algebraically closed), let us fix a point
x0 ∈ X◦(k) and let H denote its stabilizer in G. Then X• = H\G and H · B is open
dense in G.

Let PX ⊃ B be the stabilizer of the B-orbit X◦, so that PX is a parabolic subgroup.
Its unipotent radical UX acts freely on X◦ and hence one has an induced transitive
action of the Levi quotient LX = UX\PX on X◦/UX . This action factors through a
surjection LX ↠ AX followed by a faithful action of the quotient torus AX . Indeed,
there is a choice of a Levi subgroup LX ↪→ PX such that one has an isomorphism of
PX-spaces X◦ ∼= AX × UX .

If k(X) denotes the function field of X, then B acts naturally on k(X) and we let
k(X)(B) denote the multiplicative group of nonzero B-eigenfunctions in k(X). Then
one has a short exact sequence

0 −−−→ k× −−−→ k(X)(B) −−−→ X∗(AX) −−−→ 0
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where the last map sends a nonzero B-eigenfunction in k(X) to its eigencharacter, which
is trivial on U and descends to a character of AX , via the natural surjection A↠ AX .
The associated map of cocharacter groups X∗(A) −→ X∗(AX) induces a surjective map
of R-vector spaces X∗(A)⊗ R ↠ X∗(AX)⊗ R.

Consider any B-invariant valuation k(X)× → Z which is trivial on k×. Restricting
to the multiplicative subgroup k(X)(B), such a B-invariant valuation factors to X∗(AX)
and hence gives rise to an element of X∗(AX). Now let VX ⊂ X∗(AX)⊗ R be the cone
generated by the G-invariant valuations trivial on k×. We can now introduce a based
root datum associated to X.

– Consider the cone

{χ ∈ X∗(AX)⊗ R : ⟨χ,VX⟩ ≤ 0}.

Let ∆X be the set of generators of the intersection of its extremal rays with X∗(AX).
Then ∆X is called the set of simple spherical roots of X: it forms a set of simple
roots for a root system in X∗(AX) ⊗ R. This root system is called the spherical
root system associated to X.

– Let WX be the Weyl group of this spherical root system; this WX is called the little
Weyl group of X. One has in fact a natural embedding WX ↪→ W such that WX

normalizes and intersects trivially with WLX (the Weyl group of the Levi subgroup
LX). In other words, one has WX ⋉WLX ⊂ W .

– The cone VX is a fundamental domain for the action of WX on X∗(AX)⊗ R; it is
the negative Weyl chamber relative to the set ∆X of simple spherical roots. Under
the surjection X∗(A)⊗R ↠ X∗(AX)⊗R, the image of the negative Weyl chamber
of G with respect to B is contained in VX . One calls the spherical variety X

wavefront if this containment is an equality. For example, all symmetric varieties
are wavefront. An example of a non-wavefront spherical variety is GLn\SO2n+1,
where GLn is a Levi subgroup of a maximal parabolic subgroup of SO2n+1.

3.4. The dual group of X

The above construction provides a based root datum (X∗(AX),∆X , X∗(AX),∆∨
X) for

a spherical variety X. By dualizing this based root datum, one obtains the dual group
X∨ of X equipped with a natural map X∨ −→ G∨, with maximal torus A∨

X −→ A∨.
Moreover, one has the dual Levi subgroup L∨

X ↪→ G∨. Because WX normalizes WLX

in W , one deduces that X∨ centralizes the principal SL2 → L∨
X . As such, one obtains a

natural map
ιX : X∨ × SL2 −→ G∨.

We shall let GX denote the split connected reductive group over k whose Langlands
dual group is X∨.

In SV, the definition of the dual group X∨ was made under a technical hypothesis
that X “does not have Type N roots” (a notion we will see later in this section), but
we have ignored such technical conditions in our discussion above. We should also
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mention that Gaitsgory and Nadler (2010) have defined by a Tannakian formalism in
the style of the Geometric Satake isomorphism the dual group X∨ = G∨

X . Moreover, in
the pioneering work of Sakellaridis (2008, 2013) on the unramified spectrum of X in
the local nonarchimedean setting, the relevance of a dual group X∨ and the map ιX to
representation theory can already be glimpsed. A general definition of the dual group
of a spherical variety was finally given by Knop and Schalke (2017).

3.5. The representation VX

We now introduce the (graded) algebraic representation VX of X∨. This representa-
tion first made its appearance in the article Sakellaridis (2013). There, over a nonar-
chimedean local field F , Sakellaridis proved the spherical Plancherel theorem, i.e. the
spectral decomposition of L2(X(F ))K as a module over the unramified Hecke algebra
H(G(F ), K), where K is a hyperspecial maximal compact subgroup of G(F ). Roughly,
he showed that, for some (graded) representation VX of X∨, one has

L2(X(F ))K ∼=
∫
A∨,1
X /WX

πKtX ·s ·
L(0, ϕs, VX)

L(1, ϕs,Lie(X∨)) ds

where

– A∨,1
X is the maximal compact subgroup of the complex torus A∨

X ,
– for s ∈ A∨,1

X , ϕs : WF → X∨ is the unramified L-parameter sending FrobF to s;
– ds is the pushforward of a Haar measure on A∨,1

X ;
– the element tX ∈ G∨ is given by:

tX = ιX

(
1,
(
q−1/2 0

0 q1/2

))
∈ A∨ ⊂ G∨,

where q is the size of the residue field of F .

More precisely, Sakellaridis found an explicit expression of the spherical Plancherel
measure given in terms of a finite WX-stable multiset of characters of A∨

X . Such a
WX-stable collection certainly determines a virtual representation of X∨, and the ex-
plicit expression can then be interpreted as a ratio of two L-functions, attached to a
representation VX and the adjoint representation of X∨. As Sakellaridis himself pointed
out, this rather combinatorial description of VX is not too illuminating, even though it
can in principle be explicitly determined in many cases, using the geometry of X. What
is currently lacking but would be highly desirable is a more direct geometric definition
of VX .

3.6. The representation SX

It turns out that a part of VX can in fact be quite easily described. Consider the map

dιX : g∨
X × sl2 = Lie(X∨)× sl2 −→ g∨,
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induced by ιX , where g∨
X and g∨ denote the complex Lie algebras of G∨

X and G∨

respectively. Let {h, e, f} be the sl2-triple in g∨ associated to ιX |sl2 and consider the
subspace

(g∨
X)⊥ ∩ (g∨)e ⊂ g∨

where (g∨)e denotes the centralizer of e in g∨ and (g∨
X)⊥ is the orthogonal complement

of g∨
X with respect to a fixed nondegenerate G-invariant bilinear form on g∨. This space

is stable by the commuting action of X∨ and ad(h). Moreover, the eigenvalues of the
ad(h)-action provides a grading on it. Then one has

VX = SX ⊕ [(g∨
X)⊥ ∩ (g∨)e]

for some representation SX (whose description is more difficult, as we will see in the
next subsection). The grading on VX is such that SX lives in degree 1, whereas the
grading on the second summand is given by the ad(h)-eigenvalue +2.

Observe that when X∨ = G∨ (i.e. in the so-called strongly tempered case), ιX is
trivial on SL2 and VX = SX . Sakellaridis and J. Wang (2022) gave a more conceptual
construction of SX in the geometric setting. In Ben-Zvi, Sakellaridis, and Venkatesh
(BZSV, §4.3 and §4.4), this description in the strongly tempered case is extrapolated to
the case of a general smooth affine spherical X. We shall next give a description of SX
under the simplifying assumption that X is equal to the affine closure Spec(k[X•]) of
its G-open orbit X• (and another simplifying assumption to be discussed in a while).

3.7. Colors

The main ingredients for the definition of SX are the colors of X. By definition,
a color of X is a B-stable prime divisor of X (which is not G-stable). Such a prime
divisor D determines a B-invariant valuation vD of k(X) trivial on k× which can be
regarded as an element of X∗(AX) by our discussion in §3.3. We denote the set of colors
of X by CX . Then there is a crucial diagram which plays a key role in the definition
of SX :

CX
r−−−→ Power set of ∆ \∆LX

v

y
X∗(AX)

where the horizontal arrow is defined as follows. For a color D ∈ C(X), r(D) consists of
those α ∈ ∆ \∆LX such that D ⊂ X◦ ·Pα, where Pα is the minimal non-Borel parabolic
subgroup whose Levi factor has roots ±α.

For each α ∈ ∆ \∆LX , consider the quotient of X◦ · Pα by the unipotent radical UPα
of Pα. This quotient Xα is then a homogeneous quasi-affine spherical variety for the
group PGL2, i.e

Xα = X◦ · Pα/UPα ∼= Hα\PGL2

for some Hα. Over the algebraic closure k, it follows by classification results that Hα

can only be one of the following types:
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Type U: Hα = U ⋊ Γ for a finite Γ;
Type T: Hα = Gm;
Type N: Hα = NPGL2(Gm);
Type G: Hα = PGL2.

The case with Hα a Borel subgroup of PGL2 (Type B) is omitted here because Xα is
quasi-affine. We shall call α ∈ ∆ \ ∆LX of a certain type if Xα is of that type. The
collection of types can be regarded as the analog of the four DNA bases in the genetic
code of the spherical variety X.

We shall especially be interested in roots of type T . For a root α of type T,

Xα
∼= Gm\PGL2 ∼= SO2\SO3.

In general, one says that a parabolic P ⊂ G is of even spherical type if the pair
(P/UP , X◦P/UP ) is isomorphic to (SO2n+1, SO2n\SO2n+1) or (for some reason)
(G2, SL3\G2).

Now we set

CestX = {colors D: D ⊂ X◦ · P for some P of even spherical type}.

For D ∈ CestX , we also say that the corresponding element vD ∈ X∗(AX) is of even
spherical type. Let DX ⊂ X∗(AX) = X∗(A∨

X) be the set of dominant WX-translates
of elements of v(CestX ) and let DmaxX be its subset of maximal elements (relative to the
standard coroot ordering).

We now impose a further condition:
(†) the (multi-)set {vD : D ∈ CestX } freely generates a direct summand of X∗(AX).

Finally, under the hypothesis that X = Spec k[X•] and (†) holds, one sets:

SX := sum of irreducible representations of X∨ with highest weights in DmaxX .

Note that SX is multiplicity-free, as we regard DmaxX as a set rather than a multiset.
In the general case (i.e. when at least one of the two simplifying conditions does not

hold), one can reduce the construction of SX to the case just treated (see BZSV, §4.4).
Moreover, the twisted case (where there is a Ga-bundle, e.g. the Whittaker case) can
be treated in a similar manner (see BZSV, §4.4.5).

While a definition of SX has been given in BZSV in the style above, one cannot help
but feel that a more natural and conceptual definition remains to be uncovered. Indeed,
as BZSV acknowledged, the definition of SX may still be provisional.

Now the representation SX is easily seen to be self-dual. The main conjecture
about SX is:

Conjecture 3.2. — The representation SX is symplectic.

In BZSV, Lemma 4.3.17, this is proved in the strongly tempered case, with X∨ = G∨.
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3.8. Examples
Let us now revisit some of the examples highlighted in the introduction and describe

their invariants (ιX : X∨ × SL2 → G∨, VX , SX).
(i) (Group case) When X = H\G = H∆\(H ×H), then X∨ = H∨ and the map ιX is

trivial on SL2 and given on H∨ by

ιX : H∨ (id,C)−−−→ H∨ ×H∨

where C denotes the Chevalley involution on H∨. Moreover, SX = 0 and VX = h∨

is the adjoint representation of X∨ = H∨.
(ii) (Whittaker case) When XΨ = (X = U\G,Ψ = U0\G), one has X∨

Ψ = G∨ and ιX,Ψ
is trivial on SL2. Moreover, the set DX is empty and hence VX,Ψ = SX,Ψ = 0.

(iii) (Godement–Jacquet) In this case, G = GLn × GLn acts on X = Mn. One has
X∨ = GLn = GL(V ) and the map ιX is the same as in the group case, i.e. it is
trivial on SL2 and given on X∨ by (id, C). However, in this case, SX = V ⊕ V ∗

and VX = SX ⊕ End(V ).
(iv) (Gross–Prasad) In this case, G = SOn × SOn+1 and X = SO∆

n \(SOn × SOn+1).
Then X∨ = G∨ so that ιX is trivial on SL2. Noting that G∨ is the product of
an even special orthogonal group and a symplectic group, VX = SX is the tensor
product of the standard representations of the two classical groups.

(v) (Shalika case) In this case, G = GL2n, X = GL∆
n ·N\GL2n and one is considering the

equivariant Ga-bundle Ψ over X given by Ψ = GL∆
nN0\GL2n where N0 ⊂ N ∼= Mn

is the subspace of trace zero elements.
One has X∨

Ψ = Sp2n = Sp(W ) and the map

ιX,Ψ : Sp(W )× SL2 −→ GL(W ) = GL2n

is trivial on SL2 and the natural embedding on Sp(W ). Moreover, one has SX = 0
and VX = sp(W )⊥ ∼= ∧2W .

3.9. Conjectures of SV
Now that we have discussed the invariants

(ιX : X∨ × SL2 −→ G∨, VX ∈ Rep(X∨)),

we can explain how they are used to formulate conjectural answers to the problems
highlighted in §3.1.

Let GX be the split reductive group with dual group X∨. Then the map ιX gives rise
to a map

ιX,∗ : Ψ(GX , k) := {A-parameters of GX} −→ {A-parameters of G} = Ψ(G, k),

given by:
ιX,∗(ψ) = ιX ◦ (ψ × idSL2) : LF × SL2(C) −→ G∨.

We shall call a (local or global) A-parameter of G in the image of ιX,∗ an X-distinguished
A-parameter. In particular, one obtains a lifting of tempered L-parameters of GX to
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X-distinguished A-parameters of G; we will call these the basic X-distinguished A-
parameters.

Using these data and notions, Sakellaridis and Venkatesh formulated the following
conjectures:

(a) For the L2-problem, one has the spectral decomposition

L2(X(F )) ∼=
∫

Ψtemp(GX)
Π(ψ) dµ(ψ)

where dµ(ψ) is the (natural) Plancherel measure on the space Ψtemp(GX) of tem-
pered A-parameters of GX(F ) and Π(ψ) is a unitary representation whose sum-
mands belong to the A-parameter ιX,∗(ψ). In particular, the spectral support of
L2(X(F )) is contained in the set of basic X-distinguished A-parameters.

(b) In the smooth local setting, the irreducible representations of G(F ) of Arthur
type which occur as quotients of C∞

c (X(F )) belong to X-distinguished local A-
parameters. Moreover, for a (basic) X-distinguished A-parameter ψ of G, the
quantity ∑

π∈Πψ
dim HomG(F )(π,C∞(X(F ))

should be controlled by the cardinality of the fiber of ιX,∗ over ψ. In particular, the
smooth problem will see the non-basic X-distinguished A-parameters and hence
is more refined than the L2-problem.

(c) Globally, if the global period integral PX is nonvanishing on π ⊂ Acusp(G), then
the A-parameter ψπ of π is X-distinguished. so that ψπ = ιX,∗(ψ′) for a global
A-parameter ψ′ of GX .

Moreover, when ψ is basic, so that ψ′ is tempered, |PX |2 when restricted to π
can be expressed as the product of an explicit global constant and an Euler prod-
uct of canonical local functionals. The global constant is essentially the L-value
L(0, ψ′, VX), whereas the local functionals are inherited from the spectral decom-
position in (a). The precise formulation of this Ichino–Ikeda type conjecture needs
quite a bit of care and we refer the reader to SV, §17 or W. T. Gan and X. Wan
(2021, §1).

Evidently, some of the above statements (e.g. statement (b)) may not yet be as
definitive as one might wish, but they provide a systematic nontrivial constraint
on the spectral support of L2(X) or C∞

c (X) in terms of a dual object ιX : X∨ ×
SL2(C)→ G∨, as the Langlands philosophy dictates. The statement (c) also gives
a systematic prediction on which L-values appear in automorphic periods. Still, it
is clear that a lot remains to be done to make the above conjectures completely
definitive.

Finally, the above framework suggests a relative Langlands functoriality princi-
ple:
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(d) Suppose that X is a spherical G-variety and Y is a spherical H-variety, and there
is a commutative diagram:

Y ∨ × SL2(C) ιY−−−→ H∨y y
X∨ × SL2(C) ιX−−−→ G∨.

Then there should a corresponding Langlands functorial lifting from Y -
distinguished representations of H to X-distinguished representations of G.
A particularly fundamental case of this relative functoriality, where we take H to
be GX and Y to be the Whittaker variety of GX , is the lifting from the Whittaker
variety of GX to the X-distinguished spectrum of G. Indeed, in the L2-setting,
this basic relative functoriality is what was expressed in (a) above, describing
the X-distinguished part of the unitary dual of G in terms of tempered generic
representations of GX .

3.10. Beyond SV
The book SV certainly gives a very satisfactory and elegant conceptual framework for

the relative Langlands program. However, as we remark in the introduction, there are
some good reasons to expand the realm of the relative Langlands program beyond the
case of spherical varieties (including twisted ones). Indeed, one would in particular like
to include the theory of theta correspondence in this framework, because the spectral
decomposition of the Weil representation of a reductive dual pair can be described in a
very similar way to that of L2(X) for a spherical variety X.

In BZSV, such a larger framework for the relative Langlands program is proposed.
The key insight is to replace the consideration of a spherical variety X by that of its
cotangent variety T ∗X. As is well-known, T ∗X is a symplectic variety. In view of this,
we will give a brief summary of some symplectic geometry in the next section.

4. Symplectic Geometry and Hyperspherical Varieties

In this section, we will introduce some basic constructions in symplectic geometry and
highlight a particular construction known as Whittaker induction. We then introduce
a particular class of Hamiltonian G-varieties known as hyperspherical varieties, which
play a central role in BZSV. In this section, we will work in the context of algebraic
geometry over a base field k (which the reader may assume to be algebraically closed
of characteristic 0).

4.1. Hamiltonian spaces
We first review some preliminaries from symplectic geometry; one good reference is

Chriss and Ginzburg (2010, Chapter 1).
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Definition 4.1 (HamiltonianG-spaces). — A Hamiltonian G-variety is a smooth, sym-
plectic variety (M,ω) with a right G-action by symplectomorphisms and a G-equivariant
moment map

µ : M → g∗.

The moment map µ must satisfy the following:
– Each X ∈ g induces a vector field ρ(X) on M by ‘differentiating’ the G-action,

which further induces a 1-form on M by contracting with the symplectic form ω:

Y 7→ ω(ρ(X), Y ).

On the other hand, X and µ also define a 1-form on M via

d
(
m 7→ (µ(m))(X)

)
.

These two 1-forms are required to coincide.

Definition 4.2 (Poisson bracket). — Given two regular functions f1, f2 on M , we de-
fine the Poisson bracket {f1, f2} as follows: the two 1-forms df1, df2 are the contractions
with ω of some (unique) vector fields Xf1 , Xf2 respectively. Then take

{f1, f2} := ω(Xf1 , Xf2).

This makes the ring of regular functions on M a Poisson algebra.

Example 4.3. — A symplectic vector space (W, ⟨−,−⟩) is naturally a Hamiltonian
Sp(W )-space with the moment map

µ : w 7→
(
X 7→ 1

2⟨Xw,w⟩
)

for w ∈ W and X ∈ g.

Example 4.4. — Any cotangent bundle T ∗X (for X a smooth G-variety) is naturally
a symplectic variety with the symplectic form ω = dλ, where λ is the tautological 1-form
pairing tangent and cotangent vectors. It is then naturally a Hamiltonian variety, with
the moment map

µ : p 7→
(
Y 7→ −λ(ρ(Y ))|p

)
for p ∈ T ∗X and Y ∈ g.

Example 4.5. — The cotangent bundle T ∗G of a reductive algebraic group G will play
an important role below. Note that G is a (right) G × G-variety, with the action of
(gl, gr) ∈ Gl × Gr given by g 7→ g−1

l · g · gr. Here, to distinguish the various copies
of G, we have used the subscripts l and r on G and g to indicate the group or element
acting by left and right multiplication respectively. As a Hamiltonian Gl × Gr-variety,
the cotangent bundle T ∗G can be concretely realized as;

T ∗G ∼= g∗ ×G,

where:
– the natural projection T ∗G→ G is given by the second projection g∗ ×G→ G;
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– the (right) action of (gl, gr) ∈ Gl ×Gr on g∗ ×G is given by

(Y, g) 7→ (Y · gl, g−1
l ggr)

where Y 7→ Y · gl denotes the (right) coadjoint action of G on g∗.
– the moment map µ : T ∗G→ g∗

l × g∗
r is given by

(Y, g) 7→ (Y, Y · g).

4.2. Symplectic reduction and induction

We now review two standard operations in symplectic geometry: symplectic reduction
and symplectic induction. We will use the following notations throughout:

– For two k-varieties X and Y equipped with morphisms to a k-variety Z, X ×Z Y
will denote the fiber product of X and Y over Z.

– With H an algebraic group, X a right H-variety and Y a left H-variety over k,
X×HY will denote the quotient of the product variety X×kY by the diagonal right
action of H via (x, y) 7→ (xh, h−1y) (assuming the quotient exists as a scheme).

– In particular, when X, Y and Z are k-varieties equipped with right actions of H
and given H-equivariant maps from X and Y to Z, we may form the object

X ×HZ Y

where we have regarded Y as a left H-variety via h · y = y · h−1. Indeed, the fiber
product X ×Z Y inherits a natural diagonal H-action with respect to which we
may consider the H-quotient.

With the above notations, we have the following two basic definitions.

Definition 4.6 (Symplectic reduction). — The symplectic reduction of a Hamiltonian
G-space M is defined as

M ×Gg∗ {0}.

In the above definition, one may replace the trivial space {0} with a coadjoint G-orbit
O ⊂ g∗.

Definition 4.7 (Symplectic induction). — We define the symplectic induction of a
Hamiltonian H-space S from H to G as

(4.8) M := S ×Hh∗ T ∗G ∼= (S ×h∗ g∗)×Hk G

Some remarks are in order:
– For the isomorphism in (4.8), we are using the concrete description of the Gl×Gr-

variety T ∗G ∼= g∗ ×G given in example 4.5 (using the notations there). Moreover,
in the formation of M , we are regarding H as a subgroup of Gl and T ∗G as a left
H-variety, with moment map given by

T ∗G ∼= g∗ ×G −→ g∗ −→ h∗
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where the first arrow is the first projection and the second arrow is the natural
restriction map.

– Since T ∗G has a right action by Gr (using again the notations in example 4.5)
which has not been invoked in the definition of M , we see that M inherits the
structure of a right G-variety. The moment map for M is induced by the right
coadjoint action of G on g∗:

[(s, Y ), g] 7→ Y · g

for [(s, Y ), g] ∈ (S ×h∗ g∗)×Hk G.

Example 4.9 (Cotangent bundles). — If X = H\G, then the cotangent bundle M :=
T ∗(H\G) may be identified with the symplectic induction of the trivial H-space {0} from
H to G, which is

{0} ×Hh∗ T ∗G = h⊥ ×H G.
The cotangent bundle T ∗(H\G) may also be thought of as the symplectic reduction of
T ∗G with respect to H (with H now acting from the right via g 7→ h−1g).

Example 4.10 (Twisted cotangent bundles). — Suppose now H = N is a unipotent
subgroup of G and λ : N → Ga is a nontrivial group homomorphism with ker(λ) = N0.
We have seen in §3.1 that these data give rise to an equivariant Ga-bundle Ψ = N0\G
over X = N\G. In the symplectic induction construction of example 4.9 above, we may
shift the moment map of the trivial N-space {0} by dλ ∈ n∗, i.e. replacing the N-orbit
{0} by the N-orbit {dλ}. This gives rise to a twisted cotangent bundle

M := (dλ+ n⊥)×N G→ N\G.

4.3. Whittaker induction
We will now introduce a construction that will play an important role later on:

Whittaker induction. The ingredients for this construction are:
– a homomorphism ι : H × SL2 → G, where H ⊂ G is a reductive subgroup.
– S a symplectic H-vector space (or more generally a Hamiltonian H-space).

Given these ingredients, we shall define the Whittaker induction of S along ι : H×SL2 →
G, which is a Hamiltonian G-space, after some preparation.

Let γ = {h, e, f} be the sl2 triple in g corresponding to ι|SL2 (so that γ is trivial if ι
is trivial on SL2). Under the adjoint sl2-action, g decomposes into sl2 weight spaces

gj = {v ∈ g | ad(h)v = jv}.

for j ∈ Z. Observe that e ∈ g2 and f ∈ g−2. This gives the parabolic subalgebra

p =
⊕
j≥0

gj = l⊕ u,

where l = g0 and u := ⊕j≥1gj. We also set

u+ :=
⊕
j≥2

gj.
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If we fix a nondegenerate G-invariant bilinear form κ on g, then one obtains a symplectic
form on u/u+ ∼= g1 by

(4.11) κ1(v, w) = κ(ad(f)v, w) = κ(f, [v, w]), for all v, w ∈ g1.

Denote also by κf the element of u∗ given by:

(4.12) κf (u) := κ(f, u).

We then obtain corresponding subgroups P = L⋉ U and U+ of G. Note that

L = {l ∈ G | Ad(l)h = h}

is the stabiliser of h. Denote the centraliser of γ = {h, e, f} by

Mγ = {l ∈ L | Ad(l)e = e} = {g ∈ G | Ad(g)e = e, Ad(g)f = f , Ad(g)h = h},

which is a reductive subgroup containing H.
The symplectic form κ1 on u/u+ ∼= g1 is Mγ-invariant. Hence, u/u+ is a Hamiltonian

H-space. We will in fact consider it as a Hamiltonian HU -space where U acts by
translation via the identification U/U+ ∼= u/u+. The moment map µU : u/u+ → u∗ is
shifted by κf (defined in (4.12)):

µU(u) = κ1(u) + κf ,

where κ1 : u/u+ → (u/u+)∗ is the identification induced by the symplectic form.

Definition 4.13 (Whittaker induction). — Given the data

ι : H × SL2 → G and a Hamiltonian H-space S,

the Whittaker induction of S along ι is defined to be the symplectic induction of S×(u/u+)
from HU to G:

(4.14) (S × (u/u+))×HU(h+u)∗ T ∗G ∼= ((S × (u/u+)×(h+u)∗ g∗)×HU G.

Remark 4.15 (Grading). — When S has a grading (i.e. a Gm-action commuting with
the H-action), the Whittaker induction of S can also be given a natural grading. If, for
example, S is a symplectic H-vector space, then S is naturally graded via linear scaling.
Hence, every Whittaker-induced space from a symplectic vector space also carries a
corresponding natural grading.

4.3.1. Simplifying the Whittaker induction. — The definition (4.14) of Whittaker in-
duction may look a bit unwieldy. It is possible, via the theory of Slodowy slices, to
simplify the description somewhat.

More precisely, W. L. Gan and Ginzburg (2002, Lemma 2.1) gives an isomorphism

(4.16) U × (f + ge)→ f + u+,⊥

given by the action map of U on the Slodowy slice (f + ge), where ge is the centraliser
of e (considered as a subspace of g∗ via κ).
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Now note that

(4.17) (S × (u/u+))×(h+u)∗ g∗

may be identified with the set of pairs (s, x) for s ∈ S and x ∈ g∗, such that
– the restrictions of µ(s) and x to h are equal (µ is the moment map for S), and
– x restricts to f on u+, that is, x ∈ f + u+,⊥ (noting that we have used the f - or
κf -shifted moment map for (u/u+)),

since then the corresponding element of (u/u+) is uniquely determined by (s, x).
Combining (4.16) and (4.17), one therefore sees that we have a (H-equivariant)

isomorphism
(S × (u/u+))×(h+u)∗ g∗ ∼= (S ×h∗ (f + ge))× U,

Hence the Whittaker induction can be written as

(4.18) (S ×h∗ (f + ge))×H G

We remark that when S is trivial, we have

S ×h∗ (f + ge) = h⊥ ∩ (f + ge).

Such a rewriting as in (4.18) makes clear the geometric meaning of the Whittaker
induction M : it is always an (affine) bundle over H\G.

4.4. Hyperspherical varieties

We come now to the central objects of study in BZSV: a class of Hamiltonian G-
varieties defined over an algebraically closed field k of characteristic zero, called hyper-
spherical varieties.

Definition 4.19 (Hyperspherical varieties). — A hyperspherical variety is an affine
smooth Hamiltonian G-variety M satisfying the following 4 conditions:

– M is multiplicity-free or coisotropic: the ring of G-invariant functions on M is
Poisson-commutative (see Definition 4.2); equivalently, generic G-orbits (for the
Zariski topology) are coisotropic.

– The image of the moment map of M meets the nilcone (the cone of nilpotent
elements) of g∗ ∼= g.

– the generic stabilizer of the G-action on M is connected.
– M is equipped with a grading, i.e. a Gm-action commuting with G; moreover the
Gm-action is “neutral”.

The notion of “neutrality” is somewhat technical to define, so we shall simply refer
the reader to BZSV, §3.5.4 for the precise definition. We note however that this is a
key property, rather than a technical one. Indeed, the property of “neutrality” plays an
important role in proving the following structure theorem for hyperspherical varieties.
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4.5. Structure theorem

While the classification of hyperspherical G-varieties is not yet known, BZSV, Thm.
3.6.1 establishes the following useful structure theorem:

Theorem 4.20. — Suppose M is a hyperspherical G-variety. Then there is
– a homomorphism ι : H × SL2 → G, such that ι|H is an isomorphism of H with a

reductive spherical subgroup of ZG(ι(SL2)),
– a symplectic H-vector space S,

such that M is the Whittaker induction of S along ι.

Conversely, to check that the Whittaker induction of S along H × SL2 → G is hy-
perspherical, it suffices to check the coisotropic condition and the connected generic
stabiliser condition. We have seen from (4.18) that the Whittaker induction is automat-
ically affine, and it is shown in BZSV, Prop. 3.6.3 that the other technical conditions
of Definition 4.19 are also satisfied.

Remark 4.21 (Rationality). — With the structure theorem in hand, now one defines
(forms of) hyperspherical varieties over non-algebraically closed fields (such as our local
field F ), via the algebraic datum

H × SL2 → G, H → Sp2n.

The expectation is that, for each M , there will be a distinguished ‘split form’ of M
defined over arithmetic fields k. For practical purposes, one may take the above data
with H and G split and declare the M constructed via Whittaker induction to be split.

4.6. Examples
(i) If X = H\G is an affine smooth spherical G-variety which has no Type N roots,

then T ∗X is a hyperspherical G-variety, with the grading given by the squaring
action of Gm along the fibers of the natural projection T ∗X → X. In the context
of the structure theorem, this corresponds to taking S = 0, ι to be trivial on SL2
and H to be itself. The condition of having no type N roots ensures that generic
stabilizers of T ∗X are connected.

(ii) We may also consider the twisted case. Suppose we have an equivariant Ga-bundle
Ψ over a spherical G×Gm-variety X. This means there is an action of G×(Ga⋊Gm)
on Ψ covering the G×Gm-action on X, where Gm acts on Ga via λ 7→ λ2. In this
case, we can attach a twisted cotangent bundle to (X,Ψ) as follows.

Since Ψ is a G×Ga-variety, its cotangent bundle T ∗Ψ is a G×Ga-Hamiltonian
variety. The moment map

µ : T ∗Ψ −→ g∗ × g∗
a

is Gm-equivairant, where the action of Gm on g∗
a is by λ 7→ λ−2. Now let’s twist the

Gm-action on T ∗Ψ, by composing the natural Gm-action with its squaring action
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on the fibers of T ∗Ψ→ Ψ. Then µ is Gm-invariant for this twisted Gm-action and
we define the twisted cotangent bundle T ∗

ΨX by

T ∗
Ψ(X) := T ∗Ψ×Ga

g∗
a
{f}.

where f ∈ g∗
a is such that f(1) = 1. In other words, T ∗

ΨX is obtained from T ∗Ψ
by performing symplectic reduction with respect to Ga by taking the fiber of the
element f . With the twisted action of Gm on T ∗Ψ, Gm continues to act on T ∗

ΨX.
We saw an instance of this construction in example 4.10.

(iii) On the other hand, in the structure theorem, we could take ι to be trivial on SL2
and H = G, so that S is a symplectic representation of G. Then the corresponding
Hamiltonian variety is just S. For this to be hyperspherical, one needs to check
the coisotropic condition. This has been done by Knop (2006).

As a concrete example, one may consider the action of G = GLn × GLn on
M := Mn ⊕M∗

n, where GLn × GLn acts on Mn by left and right translation. As
the reader will have guessed, this hyperspherical variety M is the one related to
the Godement–Jacquet period. Moreover, the map

GLn ×GLn −→ Sp(M)

exhibits (GLn,GLn) as a reductive dual pair in the symplectic group. More gener-
ally, if we have a (connected) reductive dual pair, say

SOm × Sp2n −→ Sp2mn = Sp(M),

then the symplectic vector space M is hyperspherical with respect to SOm × Sp2n.
In particular, taking m = 1, we see that M is a hyperspherical Sp(M)-variety.

(iv) In the structure theorem, one may take ι(SL2) to be the principal SL2 in G and
take H and S to be trivial. Then the corresponding hyperspherical variety is the
Whittaker variety.

(v) Finally, in the structure theorem, one may take ι|SL2 to be arbitrary, H =
ZG(ι(SL2)) and S = 0. By the Jacobson–Morozov theorem, this corresponds
to giving an arbitrary nilpotent orbit in g. In W. T. Gan and B. Wang (2025),
this particular situation was studied and an upper bound was obtained for those e
such that the resulting M is hyperspherical.

In view of the first two examples above, we see that we have a natural map from the
central objects of SV (namely the (twisted) spherical varieties (X,Ψ)) to the central
objects of BZSV.

4.7. Anomaly
We conclude this section with some further properties or conditions one can impose

on a hyperspherical variety. One such property is being anomaly-free.
Recall that if V is a vector bundle over a smooth variety M over C, then one can

associate a Chern class ci(V) ∈ H2i(M,Z) (for i ≥ 1). Suppose M is a Hamiltonian
G-variety. Taking V to be the tangent bundle of M , which is a G-equivariant bundle
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on M , one obtains a G-equivariant Chern class c2(M) ∈ H4
G(M,Z). We now make the

definition:

Definition 4.22. — Say that M is anomaly-free if c2(M) is a square modulo 2, i.e.
there exists c ∈ H2

G(M,Z) such that c2(M) = c2 in H4
G(M,Z)⊗ Z/2Z.

The reason for considering this condition will be clearer later on, when we discuss
quantization. In the setting of a hyperspherical G-variety M , associated to the initial
data (H × SL2 → G,H → Sp(S)), BZSV provides a criterion for verifying anomaly-
freeness in terms of the initial data. Namely, consider the symplectic H-representation

V = S ⊕ u/u+.

One may then consider the Chern class c2(V ) ∈ H4(BH,Z), where BH is the classifying
stack of H. Then BZSV, Prop. 5.1.5 shows that M is anomaly-free if and only if there
is a character χ : H → Gm such that c2(V ) = c1(χ)2 mod 2, where c1(χ) is the first
Chern class of the line bundle on BH determined by χ. One can make this even more
concrete. If T ⊂ H is a maximal (split) torus and wt(V ) ⊂ X∗(T ) denotes the set of
nonzero T -weights of V , then M is anomaly-free if

(4.23)
∑

λ∈wt(V )/(±1)
λ ∈ X∗(T )W + 2X∗(T ),

where W = NH(T )/T is the Weyl group of H.
A simple example of an anomalous hyperspherical variety is the Sp(M)-variety M ,

with M a symplectic vector space of dimension 2n. In this case, H = Sp(M) and if
we use the usual convention for the type C root system, with simple roots ei − ei+1
(1 ≤ i ≤ n− 1) and 2en, then X∗(T ) = ⊕ni=1Zei and X∗(T )W = 0. On the other hand,

wt(M) = {±ei : 1 ≤ i ≤ n}

so that ∑
λ∈wt(M)/(±1)

λ =
n∑
i=1

ei. /∈ 2 ·X∗(T ).

4.8. Distinguished polarization
Another property of a hyperspherical G-variety M is that of having a distinguished

polarization.

Definition 4.24. — Say that a hyperspherical G-variety M , constructed from the data
(ι : H × SL2 → G, S) has a distinguished polarization if u = u+ (so that g1 = 0) and S
admits a H-stable Lagrangian decomposition S = S+ ⊕ S−.

In this case, one can check that the linear form κf ∈ u∗ is generic (in the sense that
it lies in the open L-orbit in u∗). Moreover, one can show that M is isomorphic to a
twisted cotangent bundle. Namely, if we set

X = S+ ×HU G and Ψ = S+ ×HU0 G,
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where U0 = ker(κf ), then one can check that

M ∼= T ∗
ΨX.

Finally, we observe that if M has a distinguished polarization, then M is anomaly-free.
To verify this, we make use of the criterion given by (4.23). Indeed, since S = S+⊕ S−,
the sum in (4.23) is just the determinant of S+ and thus lies in X∗(T )W .

5. BZSV Duality

Before we discuss how hyperspherical varieties extend the realm of the relative Lang-
lands program, let us observe an interesting consequence of the discussion so far.

5.1. Construction of a dual variety
In §3, we saw that to a spherical G-variety X, we may attach a dual group and a

(conjecturally symplectic) graded representation:

(5.1) (X∨ × SL2 −→ G∨, SX).

On the other hand, in the previous section, we saw that:
– X gives rise to a hyperspherical G-variety M = T ∗X;
– assuming Conjecture 3.2, the data in (5.1) serves as ingredients for constructing a

Hamiltonian G∨-variety M∨, via the process of Whittaker induction.
The same holds in the twisted case when we start with (X,Ψ). Hence, we see that to a
hyperspherical M which admits a distinguished polarization, so that M is anomaly free
and is isomorphic to T ∗

Ψ(X) for some (X,Ψ), one can associate a Hamiltonian G∨-variety
M∨. Now this very amusing picture leads BZSV to propose the following expectations:
Expectations:

– The construction M 7→M∨ above is independent of the choice of the distinguished
polarization of M .

– The G∨-Hamiltonian variety M∨ constructed above is an anomaly-free hyperspher-
ical G∨-variety.

– If the M∨ constructed above from M happens to admit a distinguished polarization,
so that one could apply the same construction to M∨ to yield (M∨)∨, then one
has

(M∨)∨ ∼= M.

While the above expectations remain to be proven, BZSV mentioned that they hold
in all examples that have been checked. Indeed, one is led to formulate the following
more ambitious and speculative expectation:
Expectation:

There is an involutive duality

G ⟳M ←→M∨ ⟲ G∨,
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exchanging anomaly-free hyperspherical G-varieties with anomaly-free hyperspherical
G∨-varieties, such that when M admits a distinguished polarization, M∨ is constructed
by the procedure discussed above. We call this purported duality the BZSV duality. If
M and M∨ are related by the above duality, we say that (M,M∨) is a hyperspherical
dual pair. Of course, one should expect this duality to satisfy some more properties.
We will discuss one key expected property in the next section.

5.2. Examples
We now examine the various examples highlighted in the introduction. In those

examples, we start with a (twisted) spherical variety XΨ and have seen in §3.8 the
dual data (ιX,Ψ : X∨

Ψ × SL2 → G∨, SX,Ψ). This allows us to work out what M∨ is for
M = T ∗

ΨX.
(i) (Whittaker case) In this case, X∨

Ψ = G∨, so that ιX,Ψ is the identity map on X∨
Ψ and

is trivial on SL2. Moreover, SX = 0. Hence, the Whittaker induction construction
produces M∨ = T ∗(G∨\G∨) = {∗}, a singleton set.

On the other hand, M∨ is a cotangent bundle (albeit a rather trivial one) and
so one can consider the dual data associated to it. It turns out that for a point Y ,
Y ∨ is the trivial group (not surprisingly) and the map

ιY : SL2 −→ G

is the principal SL2. Moreover SY = 0. The Hamiltonian G-variety constructed
from (ιY , SY ) is precisely the twisted cotangent bundle T ∗

Ψ(U\G) associated to the
Whittaker variety XΨ.

(ii) (Godement–Jacquet) In this case, X = Mn with the natural GLn × GLn-action.
We have seen that X∨ = GLn = GL(V ) and

ιX = (id, C) : X∨ = GLn −→ GLn ×GLn
where C is the Chevalley involution. Moreover, SX = T ∗V = V ⊕ V ∗. The dual
hyperspherical variety M∨ constructed by Whittaker induction of SX along ιX
admits a distinguished polarization and can be expressed as

M∨ = T ∗Y = T ∗(V ×GLn (GLn ×GLn)).
This M∨ is the hyperspherical variety underlying the integral representation for
the Rankin–Selberg L-function of GLn ×GLn.

For this spherical variety Y , one has
Y ∨ = G = GLn ×GLn and SX = T ∗(Mn) = Mn ⊕M∗

n.

Hence the hyperspherical dual of M∨ is indeed M .
(iii) (Gross–Prasad) When X = SO∆

2n\(SO2n × SO2n+1), ιX is the identity map on
G∨ = SO2n × Sp2n = SO(V )× Sp(W ) and SX = V ⊗W is the tensor product of
the standard representations of the two classical groups. Hence M∨ = V ⊗W .

Now this M∨ does not admit a distinguished polarization and hence is not a
twisted cotangent bundle. In particular, in this case, the purported duality moves
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one beyond the setting of SV. In other words, if one were to remain strictly in
the context of spherical varieties, one would potentially miss the possibility of the
BZSV duality.

(iv) (Shalika) When M = T ∗
ΨX, with X = GL∆

nN\GL2n, one has

ιX,Ψ : X∨
Ψ = Sp2n −→ GL2n and SX,Ψ = 0.

Hence, the associated M∨ is given by

M∨ = T ∗(Sp2n\GL2n) = T ∗(Y ).

In particular, M∨ is the cotangent bundle of the spherical variety Y = Sp2n\GL2n.
Now when one computes the dual data for the spherical variety Y , one obtains

ιY : Y ∨ × SL2 = GLn × SL2 −→ GL2n

where the map is given by the tensor product of the standard representations of
the two factors, and SY = 0. The Whittaker induction of this data is indeed equal
to M = T ∗

ΨX.

It is worth pointing out that so far, there is no known example of hyperspherical
duality where neither M nor M∨ is a twisted cotangent bundle. Obviously, it will be
extremely interesting to exhibit such an example.

6. Period and Spectral Invariants

In this final section, we shall explain how hyperspherical G-varieties extend the
framework of the relative Langlands program, and how the conjectured hyperspherical
duality discussed in the previous section features in this extended relative Langlands
program.

Consider a hyperspherical G-variety M over a local field F or a global field k. We shall
explain how to construct two invariants associated to M , assuming that M is anomaly-
free. One of these invariants will be called the period invariant (on the automorphic
side). It produces from M the period problem which is to be studied in the relative
Langlands program. The other will be called a spectral invariant (on the Galois side).
The role of the spectral invariant is to produce the L-functions which should intervene
in the relative Langlands program.

We shall focus on the local setting in this section and refer the reader to BZSV, §14
for the global setting. We warn the reader that the material in this final section will be
highly imprecise and speculative.
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6.1. Quantization
The period invariant associated to M is defined by the process of “quantization of

Hamiltonian varieties”. Here, the term “quantization” is not a precise mathematical
construction, but refers to the process of passing from a classical mechanical system to
the corresponding quantum mechanical one. More precisely, the phase space of a classical
mechnical system is often taken to be a symplectic manifold M and the symmetries of
the system are represented by the Hamiltonian action of a Lie group G. By passing to a
quantum mechanical description of the system, one replaces the Hamiltonian G-space M
by a Hilbert space with an isometric action of G, i.e. a unitary representation of G.
Such a quantization is thus a time-honored tradition in quantum mechanics.

Here are two standard examples of such a quantization process:

Example 6.1 (Weil representation). — Consider a symplectic vector space M over R
with G := Sp(M) acting on it and choose a polarisation M = X ⊕ Y with X, Y

Lagrangians. The Weil representation, which can be realised on L2(Y ), may be thought of
as a quantization of the Hamiltonian Sp(M)-space M . However, this is a representation
of the nonlinear 2-fold metaplectic cover of Sp(M). The need to invoke a 2-fold cover
is a consequence of M being not anomaly-free.

Example 6.2 (Kirillov orbit method). — For a nilpotent Lie group, Kirillov’s orbit
method gives the construction of a bijection

{G-orbits on g∗} ←→ Irrunit(G).

Since coadjoint G-orbits are naturally Hamiltonian G-spaces (with moment map given
by the natural inclusion of the orbit into g∗), this construction can be regarded as a
realization of quantization. A relevant case of this construction for us below is that for
the Heisenberg group associated to a symplectic vector space.

Ideally, one would have liked “quantization” to be a functor from a category of Hamilto-
nian spaces with Lagrangian correspondences as morphisms to a suitable representation-
theoretic category. But issues with transversality present substantial obstacles to re-
alizing this. Some of these issues can now be handled using the machinery of shifted
symplectic geometry (Pantev, Toën, Vaquié, and Vezzosi, 2013) in the setting of derived
geometry. But on the whole, quantization is still more a philosophy than a science.

Though quantization (as described above) is not a rigorous mathematical construc-
tion, it still provides a useful guiding principle. Indeed, in the early 1980’s Guillemin
and Sternberg (1982, 1984) systematically studied and built up a dictionary between
Hamiltonian G-varieties and representation theory. For example, one has:

Classical Quantization
Symplectic induction induced representation

S ×Hh∗ T ∗G IndGHVS
Symplectic reduction G-coinvariants

M ×Gg∗ {0} (VM)G
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Here, VS and VM are quantizations of S and M respectively. The last line of the table
is often formulated as the yoga: “quantization commutes with reduction”.

Example 6.3 (Cotangent bundles). — If H ⊂ G, then the cotangent bundle M :=
T ∗(H\G) may be identified with the symplectic induction of the trivial H-space {0} from
H to G, which is

{0} ×Hh∗ T ∗G.

By the dictionary in the table, its quantization should be the induced representation
L2(H\G) = IndGHC.

Example 6.4 (Twisted cotangent bundles). — Suppose H = N is a unipotent subgroup
of G and λ : N → Ga a group homomorphism with N0 = ker(λ), giving rise to an
equivariant Ga-bundle Ψ = N0\G over X = N\G. We have seen in example 6.4 the
construction of the twisted cotangent bundle T ∗

Ψ(X) via symplectic induction:

T ∗
ΨX
∼= (dλ+ n⊥)×N G.

By the dictionary in the table, its quantization should be the induced representation

IndGNψ = L2((N,ψ)\G) = {f : G→ C | f(ng) = ψ(n)f(g)}

(the choice of λ corresponds to choice of ψ). In general, a representation induced from a
character can be thought of as the quantization of some twisted cotangent bundle. This
example includes the usual Whittaker case, when N is a maximal unipotent subgroup
of G, in which case L2((N,ψ)\G) is called the (unitary) Gelfand-Graev representation.

6.2. Period invariant
Using the dictionary provided in the table above, one can define the automorphic

quantization of a space M constructed by Whittaker induction from the initial data

(ι : H × SL2 → G,S)

to produce the desired period invariant in the local setting.
More precisely, in the notation of §4.3, M is the symplectic induction of S ⊕ u/u+

from HU to G, where the moment map is shifted by κf in the u∗-component. We
consider two cases:

– If u = u+, then U = U+ and κf (together with the fixed additive character
ψ : F → C×) defines a character ψf : U(F ) −→ C× fixed by H(F ). On the
other hand, S is a symplectic representation of H, and we have seen that the
quantization of the hyperspherical Sp(S)-variety S is the Weil representation ωS,ψ
of the metaplectic double cover Mp(S). However, it was shown in BZSV, Prop.
5.1.1 that under the anomaly free condition, the metaplectic cover splits over H.
Fixing such a splitting, we may regard ωS,ψ as a representation of H. Then by the
dictionary above, one sees that the quantization of M is given by

ΠM = IndGHU(ωS,ψ ⊗ ψf ).
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– If u ≠ u+, then u/u+ is a nonzero symplectic vector space with respect to the
pairing κ1 in the notation of §4.3. Let u+

0 = ker(κf |u+) with associated group U+
0 .

Then H(u/u+) = U/U+
0 is a Heisenberg group with center U+/U+

0
∼= Ga.

As before, we have a nontrivial character ψf : U+/U+
0 → C× fixed by H(F ). By

the representation theory of the Heisenberg group (in particular the Stone-von
Neumann theorem) and the theory of Weil representations, the quantization of
u/u+ is the Heisenberg–Weil representation ωu,ψ of Mp(u/u+) ⋉ H(u/u+). The
anomaly-free hypothesis implies that one can restrict this representation to HU .
Then with the H-representation ωS,ψ (the quantization of the H-module S), one
has

ΠM = IndGHU(ωS,ψ ⊗ ωu,ψ).
Note that the period invariant ΠM is an essentially well-defined object; the philosophy

of quantization was only used to motivate its definition. Observe that when M = T ∗X,
then ΠM = C∞(X(F )), so that ΠM is the main object of study in the context of SV.
We may now define the period invariant PM to be the function on Irr(G(F )) given by:

PM(π) = dim HomG(F )(π,ΠM).

This generalizes (3.1) and we have thus extended the period problem in SV to the
larger context of hyperspherical varieties. The goal of this extended relative Langlands
program (in the local setting) is to determine this function.

One consequence of hyperspherical duality is that period problems come in pairs
(PM ,PM∨) for hyperspherical dual pairs (M,M∨). A most striking example of this is
provided by the Gross–Prasad example in §5.2: the Gross–Prasad period problem is
dual to the theta correspondence.

6.3. Spectral invariant

The construction of the spectral invariant is, as the reader will see below, more
speculative. To better motivate how we will approach its “definition”, we shall work
with M∨ instead of M .

Suppose that M = T ∗X for a spherical G-variety X, to which SV attaches the dual
data

(ιX : X∨ × SL2 → G∨, SX).
The main use of this dual data is to provide a means for one to formulate a conjectural
answer to the period problem associated to X: only those X-distinguished A-parameters
could contribute to the X-distinguished spectrum. On the other hand, this dual data
also allows us to build the dual variety M∨. It is then natural to ask if the X-distinction
of an A-parameter can be formulated in terms of M∨. Let us first describe how this can
be done.

Denote by WDF the Weil–Deligne group of F . Given an L-parameter

ϕ : WDF → G∨,
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one certainly has, by pullback along ϕ, an action of WDF on the hyperspherical G∨-
variety M∨. As M∨ is equipped with a grading, i.e. a commuting Gm action, we may
twist the above action of WDF by the map

ωF : WDF −→ Gm = C×

given in (2.1), so that WDF acts on M∨ via the extended L-parameter

ϕe := ϕ× ω : WDF −→ G∨ × C×.

Now, given an A-parameter

ψ : WDF × SL2(C)→ G∨,

one first considers its associated L-parameter ϕψ. The action of the A-parameter ψ on
M∨ is then defined to be the action of WDF on M∨ by pullback along the extended
L-parameter ϕψ,e. A fixed point of ψ on M∨ is a point of M∨ which is fixed by the
action of all w ∈ WDF .

Let {e, h, f} be the sl2-triple associated to (the SL2-type of) ψ. Set

M∨
slice,ψ = µ−1(f + g∨,e) ⊆M∨

where
µ : M∨ → g∨,∗

is the moment map for M∨ and the Slodowy slice f + g∨,e is considered as a subspace
of g∨,∗ (as in (4.16)). Note that M∨

slice,ψ depends only on the SL2-type of ψ.
Now the main observation is the following: for a basic X-distinguished A-parameter

ψ : WDF × SL2
ϕ×id−−−→ X∨ × SL2 −−−→ G∨,

with ϕ : WDF −→ X∨ is a tempered L-parameter (see §3.9), one can check that the
associated action of WDF on M∨ has fixed points on M∨

slice,ψ. Assume moreover that
the WDF -fixed points are isolated. Then at each fixed point x ∈ M∨

slice,ψ, one ob-
tains a representation of WDF on the tangent space TxM∨

slice,ψ. This representation of
WDF is graded by the twisting action of ωF and is how one can recover the graded
representation VX .

The above discussion suggests that the property of X-distinction of an A-parameter ψ
should be related to the associated action of ψ on M∨ having a fixed point in M∨

slice,ψ.
The spectral invariant that one would ideally like to attach to M∨ should be a function

SM∨ : Ψ(G,F ) −→ C

such that

– the support of SM∨ is on those A-parameters ψ for which the induced action
of WDF on M∨

slice,ψ has fixed points; we will call such A-parameters the M∨-
distinguished ones.
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– For an A-parameter ψ, denoting by M∨,ψ the set of fixed points on M∨
slice,ψ, the

value of SM∨ at ψ should be of the form∑
x∈M∨,ψ

λx(ψ)

for some number λx(ψ) constructed out of the representation of WDF on
Tx(M∨

slice,ψ). Implicit here is the expectation that M∨,ψ is finite.
Unfortunately, we do not know what these numbers λx(ψ) should be. One possibility

is simply to take them to be 1; by doing so, one would have:

(6.5) SM∨(ψ) = #M∨,ψ.

6.4. Connection with duality
We would like to end by giving a rough formulation of the expected relation between

the period and spectral invariants under the hyperspherical duality.
In an ideal world, we would have liked to be able to achieve the following. Recall

that the local Langlands conjecture gives a bijection

Irr(G(F ))←→ Φen(G,F ).

For a hyperspherical G-variety M , we have already defined the period invariant
PM : Irr(G(F ))→ C. What we would like is to define a spectral invariant attached to
the hyperspherical dual M∨ as a function

SM∨ : Φen(G,F ) −→ C

so that there is a commutative diagram

(6.6)
Irr(G(F )) ←→ Φen(G,F )

↘ ↙
C

where the two diagonal arrows are PM and SM∨ respectively. In other words, using the
LLC for G(F ) to identify the domains, we have

PM = SM∨ .

Likewise, using the LLC for G∨(F ) to identify the domains, one would like

PM∨ = SM .

But the above may be too much to hope for. Perhaps we should only restrict attention
to the subset Irrart(G(F )) of Arthur-type representations, i.e. those that belong to
some A-parameters. Indeed, the approach discussed in the previous subsection for
the construction of a spectral invariant is based on the action of A-parameters on a
hyperspherical variety. For example, considering the spectral invariant defined by (6.5),
one may naively ask whether

SM∨(ψ) =
∑
π∈Πψ

PM(π)?
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While this is a weaker statement than (6.6), it is still a rather stunning one (if it were
actually true).

In any case, it seems we are quite far from having a definitive definition of the spectral
invariant, even in the original setting of SV where M = T ∗X. Judging by the case of the
Gross–Prasad conjecture, it would not be surprising if symplectic local root numbers of
the representations of WDF on tangent spaces of fixed points play a role. An attempt
to go beyond the Gross–Prasad case was made in the recent paper of C. Wan and Zhang
(2023).

6.5. Conclusion
To conclude, while SV and BZSV have truly transformed the way we think about

the relative Langlands program, much remains to be done before we can claim to have
a definitive understanding. There are thus many exciting new opportunities to explore
and we can look forward to transformative new ideas and breakthroughs in the coming
years.
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