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Introduction

Dispersive equations are evolution partial differential equations for which plane waves
have speed which depends on their frequency (at a linear level). As a consequence, the
bulk of a solution to the linear part of the equation tends to split spatially as time grows,
or disperse; this explains the terminology. The Schrödinger equation, the Korteweg–
de Vries equation, or the wave equation are among the most prominent examples of
dispersive equations.

For the nonlinear version of these equations, one distinguishes often whether the
nonlinearity in some sense “helps” the dispersion (one says that the nonlinearity or
the equation is defocusing) or to the contrary, tends to make solution concentrate (one
speaks of a focusing nonlinearity). For focusing nonlinearity, there often exists special,
non-trivial non-linear objects: they can be stationary, standing wave or travelling wave
solution and are called soliton. Their key feature is that their shape remains the
same through the evolution. Solitons realise a kind of balance between the focusing
nonlinearity and the dispersive part of the equation.

Somewhat surprisingly, it was observed numerically as soon as Zabusky and Kruskal
(1965) that, from an a priori unspecific initial data, the solution of the Korteweg-de
Vries equation would split into a sum of solitons (which are in this case travelling waves),
as time goes large. The numerical simulation was done in a periodic setting, so that
solitons would collide (interact) repetitively with one another, but would come out of
this interaction without change of shape: this is refered to as elastic collision. This
is surprising simplification of the dynamics, where for large times, solutions can be
described using only solitons. It led to the so-called soliton resolution conjecture: it
is somewhat vague, and asserts that this simplification phenomenon occurs for generic
data in most non-linear dispersive models.

In the 1970s, the theory of integrable systems was developed, in part to study this
conjecture. It led to the inverse scattering method, a very powerful tool which gave,
among other stricking results, a proof of the soliton resolution conjecture for some
equations, and most notably, for the Korteweg-de Vries equation (there are still some
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open questions remaining regarding the long time dynamics, though). Nevertheless, for
non integrable models, the question remained widely open.

In this report, we will be interested in a series of results, over the last fifteen years,
related to the soliton resolution for energy critical wave type equations. The first one
is the focusing energy critical non linear wave equation (with pure power nonlinearity),
and the second one is the wave map system; they are not integrable. The most elaborate
statements are stated (and proved) for radially symmetric solutions (for the former) or
for equivariant solutions (for the latter); however, some of intermediate results were also
obtained for general data, and we will emphasise when it holds.

Acknowledgement I would like to thank Carlos Kenig for the documents provided for
the preparation of this work, Thomas Duyckaerts and Jacek Jendrej for their comments,
and Nicolas Bourbaki for his support and meticulous proof reading.

1. Two wave type partial differential equations

1.1. The energy critical wave equation

The energy critical wave equation writes

(NLW) ∂ttu − ∆u − |u|
4

d−2 u = 0,

where here d ≥ 3 is the underlying spatial dimension, t ∈ R represents time, x ∈ Rd

is the space variable, and u(t, x) ∈ R. We say that it is radial if u depends on x only
through the radial coordinate r = |x| ∈ [0, ∞), in which case the Laplacian writes
∆ := ∂2

r + (d − 1)r−1∂r.
It is convenient to recast (NLW) as a first order Hamiltonian system. To this end, we

will write pairs of functions using boldface, v = (v, v̇), noting that the notation v̇ does
not necessarily refer to the time derivative of v but just to the second component of
the vector v. Equation (NLW) admits a conserved energy: given a function v = (v, v̇)
depending on space, denote

(1) E(v) :=
∫ ∞

0

[1
2 v̇(x)2 + 1

2 |∇v(x)|2 − d − 2
2d

|v(x)|
2d

d−2

]
dx.

Then formally, if u is a solution of (NLW) defined on a time interval I ∋ 0, and letting
u = (u, ∂tu) there hold

(2) ∀t ∈ I, E(u(t)) = E(u(0)).

We now see that the Cauchy problem for (NLW) is equivalent to

(3) ∂tu(t) = J ◦ ∇E(u(t)), u(0) = u0,
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where J is a skew-symmetric matrix and ∇E is the formal gradient of E:

(4) J =
(

0 1
−1 0

)
, ∇E(v) =

(
−∆v − |v|

4
d−2 u

v̇

)
.

The linearization of (NLW) around the zero solution is the free scalar wave equation,

(5) ∂ttv − ∆v = 0.

We will often denote SL(t)v0 = (v(t), ∂tv(t)) for the linear solution to (5) with initial
data v0 = (v0, v̇0) at time t = 0: the free wave propagator SL(t) writes explicitely

SL(t)v0 =
(

cos(t|∇|)v0 + sin(t|∇|)
|∇|

v̇0, −|∇| sin(t|∇|)v0 + cos(t|∇|)v̇0

)
.

Solutions to (NLW) are invariant under the scaling

(6) u(t, x) 7→ uλ(t, x) :=
(
λ− d−2

2 u(t/λ, x/λ), λ− d
2 ∂tu(t/λ, x/λ

)
, where λ > 0,

and (NLW) is called energy critical because, where defined,

E(u(t)) = E(uλ(t)).

This scaling consideration makes that it would be suitable that the Cauchy problem be
solved in the energy space Ḣ1(Rd) × L2(Rd), which we will simply denote Ḣ1 × L2 for
short from now on. This was done first by Ginibre and Velo (1989) and revisited by
Kenig and Merle (2008) and Bulut, Czubak, Li, Pavlović, and Zhang (2013). Let us
give a precise statement. To this end, we introduce the Strichartz type spaces

S(I) := L
2(d+1)

d−2 (I × Rd),

W (I) := L
2(d+1)

d−1

(
I; Ḃ

1
2
2(d+1)

d−1 ,2
(Rd)

)
,

where I ⊂ R is a time interval. Here the homogeneous Besov space Ḃs
p,q is defined for

0 < s < 1, 1 ≤ p, q < +∞ as

∥v∥Ḃs
p,q

:=
∑

j∈Z
2js∥Pju∥q

Lp

1/q

,

where (Pj)j∈Z are Littlewood–Paley projections(1). We refer to the book by Bahouri,
Chemin, and Danchin (2011) for properties and details on homogeneous Besov spaces:
we will use them only seldomly here, and only recalled them for completeness. The
space S(I) plays however an important role below.

We say that u is a solution to (NLW) on a time interval I ∋ 0, with initial data u0, if
1. u ∈ C (I, Ḣ1 × L2(Rd)), and u ∈ S(J) ∩ W (J) for all compact intervals J ⊂ I.

(1)One can think of Pj as localizing to frequency ≃ 2j : for example P̂jv(ξ) = χ(|ξ|/2j)v̂(ξ), where
χ : (0, +∞) → [0, +1] is a smooth cut-off function with support in [3/4, 7/3] and strictly positive on
[1, 2].
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2. u is a solution of (NLW) in its Duhamel integral formulation, that is

∀t ∈ I, u(t) = SL(t)u0 +
∫ t

0
SL(t − s)(0, f(u(s))ds.

Theorem 1.1 (Cauchy theory in Ḣ1 × L2, Kenig and Merle, 2008, Theorem 2.7 and
Bulut, Czubak, Li, Pavlović, and Zhang, 2013, Theorem 3.3)

1) Existence and uniqueness of a maximal solution. There exists a function δ :
[0, ∞) → (0, ∞) with the following properties. Let A > 0 and u0 = (u0, u1) ∈ Ḣ1 × L2

with ∥u0∥Ḣ1×L2 ≤ A. Let I ∋ 0 be an open interval such that

∥SL(·)u0∥S(I) ≤ δ(A).

Then there exists a unique solution u(t) to (NLW) in the space C 0(I, Ḣ1 × L2) ∩ S(I) ∩
W (I) with initial data u(0) = u0.

To each initial data u0 ∈ Ḣ1 × L2, we can associate a unique solution u of (NLW)
defined on a maximal forward interval of existence [0, T+) such that for each compact
subinterval J ⊂ [0, T+) we have ∥u∥S(J) < ∞ and, if T+ < ∞, then ∥u∥S([0,T+)) = ∞.

We will freely write T+(u) to denote the forward maximal time of existence of a
maximal solution u.

2) Continuity of the flow. Let u0 ∈ Ḣ1 × L2 and let u(t) ∈ Ḣ1 × L2 be the unique
maximal solution to (NLW) with initial data u0, and let T < T+(u). Then for every
ε > 0 there exists η > 0 with the following property: for all v0 ∈ Ḣ1 × L2 with
∥u0 − v0∥Ḣ1×L2 < η we have T+(v) ≥ T and supt∈[0,T ] ∥u(t) − v(t)∥Ḣ1×L2 < ε, where
v(t) is the unique solution to (NLW) associated to v0.

There are similar statements backward in time, with T−(u) denoting the maximal
backward time of existence. In the following, all the solutions u we consider will be
maximal forward; we say that u is forward global if T+(u) = +∞, and that it is a blow
up solution if T+(u) < +∞.

As a rather direct consequence of this local well posedness result, we see that the
Strichartz space S(I) plays a role in the long time description, as a measure of the
strength of the nonlinearity. More specifically, if u is a forward maximal solution to
(NLW) (in the above sense) which satisfies

u ∈ S([0, T+(u))),

then T+(u) = +∞ and there is linear scattering as t → +∞, that is there exists u+ in
Ḣ1 × L2 such that

(7) ∥u(t) − SL(t)u+∥Ḣ1×L2 → 0 as t → +∞.

In this case, we say that u scatters (linearly) to u+. Also notice that if ∥SL(·)u0∥S([0,+∞))
is small enough, the above condition is met for the non linear solution u associated
to u0, and u scatters linearly.
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Conversely, the existence of wave operators holds, i.e., for any solution SL(·)u+ ∈
C (R, Ḣ1 × L2) to the free linear equation, there exists a unique solution u in Ḣ1 × L2

to (NLW), defined for large enough times, such that (7) holds as t → ∞.
Analogous statements hold for negative times.

For small dimensions 3 ≤ d ≤ 6, the Besov based space W (I) is not needed (as done
in Kenig and Merle, 2008), but for high dimensions, the nonlinearity is no longer smooth
enough, and the functional set up must be adapted: this is the input of Bulut, Czubak,
Li, Pavlović, and Zhang (2013). In both cases, the above statement of Theorem 1.1,
more elaborate than one could expect, is actually what is required to derive a suitable
perturbation result essential in following the evolution of a profile decomposition: see
Proposition 2.2 below.

At this point, we go back to the energy (1) and observe that the kinetic part of the
energy and the potential (non-linear) part have opposite signs (this is related to the +
sign of the nonlinearity): this is caracteristic of a focusing equation.

These two effects come to a balance for the solution

(8) W (x) :=
(

1 + |x|2

d(d − 2)

)− d−2
2

,

to the static (elliptic) equation

(9) −∆W (x) = |W (x)|
4

d−2 W (x).

The function W is the unique non negative (and non zero) solution to (9), up to the
invariances: sign, scaling and translation. It is an extremizer for the best constant in
the homogeneous Sobolev embedding Ḣ1(Rd) → L

2d
d−2 (Rd): we refer to Aubin (1978)

and Talenti (1976); for this reason, W is sometimes called the Aubin–Talenti solution.
Let us emphasize that the exponent in the nonlinearity in (NLW)

p = 1 + 4
d − 2

was actually chosen for the purpose of the Sobolev embedding. W plays the role of a
soliton for (NLW).

The main result regarding the long time behavior of solutions to (NLW), and our
main interest here, is the following. It is concerned with so-called type II solutions, that
are solutions u which remain bounded in the energy space along their lifespan (at least
forward in time):

(10) sup
t∈[0,T +(u))

∥u(t)∥Ḣ1×L2 < +∞.

The next theorem roughly asserts that radial type II solutions behave for near the
(forward) maximal time of existence as a sum of rescaled versions of W = (W, 0) (each
rescaling depends on time), plus a regular term: for finite time blow up solutions, this
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term is simply a finite energy function (independent of time); for global solution, it is a
linear solution to (5), called the radiation.

Theorem 1.2 (Soliton Resolution for the non-linear wave equation)
Let d ≥ 3 and let u(t) be a finite energy radial solution to (NLW), defined on its

maximal forward interval of existence [0, T+). Suppose that

(11) sup
t∈[0,T+)

∥u(t)∥Ḣ1×L2 < ∞.

Then there exist a function u∗ ∈ Ḣ1 × L2, an integer N ≥ 0, continuous functions
λ1, . . . , λN ∈ C 0([0, T+),R∗

+), signs ι1, . . . , ιN ∈ {−1, 1}, and g ∈ C ([0, T+), Ḣ1 × L2),
such that the following holds.

1. Global solution. If T+ = ∞, then

(12) ∀t ∈ R+, u(t) =
N∑

j=1
ιjWλj(t) + SL(t)u∗ + g(t),

with

(13) ∥g(t)∥Ḣ1×L2 +
N∑

j=1

λj(t)
λj+1(t)

→ 0 as t → ∞,

where above we use the convention that λN+1(t) = t;
2. Blow-up solution. If T+ < ∞, then N ≥ 1, and

(14) ∀t ∈ [0, T+), u(t) =
N∑

j=1
ιjWλj(t) + u∗ + g(t),

and

(15) ∥g(t)∥Ḣ1×L2 +
N∑

j=1

λj(t)
λj+1(t)

→ 0 as t → T+,

where above we use the convention that λN+1(t) = T+ − t.

Of course, an analogous statement holds for the backward in time evolution. The
concentrating Wλj(t) are often called bubbles, a term coined from elliptic regularity
theory and blow up analysis (we refer for example to Brézis and Coron, 1985), and
certainly more adapted than that of soliton. Indeed, for the soliton resolution as observed
by Zabusky and Kruskal (1965), the involved non-linear objects keep their shape after
interaction: their evolution is global, and if we were to seek for a decomposition in the
form of (12), all the scales λj would be essentially constant (decoupling occurs through
space translation). In the above statements however, the nonlinear objects are actually
rescaled over time, and this is not really in the spirit of an elastic collision. Notice
that in the blow up case, one must have concentration of a least one bubble (N ≥ 1);
whereas in the global case, one can have no bubble (N = 0), which corresponds to linear
scattering.
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Theorem 1.2 was first obtained by Duyckaerts, Kenig, and Merle (2012) in dimension 3.
It was extended to all odd dimensions in Duyckaerts, Kenig, and Merle (2023), together
with its companion papers (Duyckaerts, Kenig, and Merle, 2020, 2021); then Duyckaerts,
Kenig, Martel, and Merle (2022) treated the d = 4 case, and Collot, Duyckaerts,
Kenig, and Merle (2024), the d = 6 case (together with its companion papers (Collot,
Duyckaerts, Kenig, and Merle, 2023a,b)). Independently, and a few months later,
Jendrej and Lawrie (2023) provided a proof valid in any dimension d ≥ 4. The heart of
the proof proposed by each group is different in nature.

One could also certainly consider the defocusing energy critical wave equation

∂ttu − ∆u + |u|
4

d−2 u = 0.

Its local Cauchy theory is the same as for (NLW); now, the energy is

E(u) =
∫ ∞

0

[1
2(v̇(x)2 + 1

2 |∇v(x)|2 + d − 2
2d

|v(x)|
2d

d−2

]
dx,

and so controls ∥u∥2
Ḣ1×L2 , which therefore remains bounded during evolution. As a

consequence, all solutions are global and the long time dynamics is much simpler: there
is linear scattering for all data, at both ends of time, we refer for example to Grillakis
(1990).

The description of the large time behavior in Theorem 1.2 in neat, but rests on the
type II hypothesis, an assumption which is global in time: it is therefore not easy to
check a priori on a given initial data. Also the set of data which lead to non scattering
type II solutions lies at the frontier with type I finite time blow up solutions (for which
∥u(t)∥Ḣ1×L2 → +∞ as t → T+), and should be thought of as a submanifold (in some
sense) of Ḣ1 × L2. We refer to Gao and Krieger (2015) for a description of the flow
around W ; and to Donninger (2017) where self-similar solutions are shown to be stable:
this provides an open set in Ḣ1 × L2 of initial data which lead to finite time type I
blow-up, see also Levine (1974) for earlier type I blow-up (but with no description of
the dynamics). Actually one does not expect to be able to provide a precise description
of of general type I blow-up, the possibilities are too vast.

These considerations raise interest toward another wave type partial differential equa-
tion, where a soliton resolution could be proven without an assumption global in time.

1.2. Wave maps

Wave maps are a canonical example of a geometric wave equation, in the setting of
manifold-valued maps. They are actually the generalization of harmonic maps between
two Riemannian manifolds, to case when the base manifold is Lorenztian. Let (M , η) be
a Lorentzian manifold and (N , γ) be a Riemannian manifold, a wave map Ψ : M → N
is a formal critical point of the Lagrangian action,

(16) L (Ψ) = 1
2

∫
M

⟨∂µΨ, ∂µΨ⟩γdσM = 1
2

∫
M

ηµνγij∂µΨi∂νΨjdσM ,
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in local coordinates (we use Einstein’s summation convention, and denote ∂µ = ηµν∂ν).
Still formally, assuming now that N embeds isometrically in some euclidian space RM ,
this writes in the so-called extrinsic form:

∂µ∂µΨ ⊥ TΨN .

This last expression makes it clear that wave maps generalize the free (linear) wave
equation: it corresponds to the case when M is a Minkowski space, and N is Euclidian
space. We will focus on wave maps from the Minkowski space R1+2

t,x into the two-
sphere S2: the equation beautifully simplifies to

∂ttΨ − ∆Ψ = (|∇Ψ|2 − |∂tΨ|2)Ψ.

The presence of derivatives in the non-linearity makes nevertheless the analysis much
harder that in the case of (NLW). This leads us to one further reduction, namely the
k-equivariant symmetry: we restrict ourselves to the class of maps Ψ : R1+2

t,x → S2 ⊂ R3

that take the form

(17) Ψ(t, r, θ) = (sin u(t, r) cos kθ, sin u(t, r) sin kθ, cos u(t, r)) ∈ S2 ⊂ R3,

for some fixed k ∈ N∗. Above, (r, θ) are polar coordinates on R2; u is the distance
from the north pole (colatitude), and denoting ω the longitude, the metric on S2 is
ds2 = du2 + sin2(u)dω2.

For the k-equivariant class, the wave map system reduces to a single scalar semilinear
wave equation on u:

(WM) ∂ttu(t, r) −
(

∂rr + 1
r

∂r

)
u(t, r) + k2

r2
sin 2u(t, r)

2 = 0.

Let us notice that the 4D (critical) Yang–Mills equation for radial data takes the
form

∂ttu(t, r) −
(

∂rr + 1
r

∂r

)
u(t, r) + 1

r2 u(t, r)(1 − u(t, r)2) = 0.

It is closely related to (WM) with k = 2: this reinforce the relevance of this model.
From now on, we will refer to wave maps u = (u, ∂tu) as solutions to the above

equation (WM).
As for the nonlinear wave equation, (WM) admits a conserved quantity: let

E(v) = 2π
∫ ∞

0

1
2

(
v̇(r))2 + (∂rv(r))2 + k2 sin2 v(r)

r2

)
rdr.

Then, at least formally, if u is solution to (WM) defined on a time interval I ∋ 0, then

∀t ∈ I, E(u(t)) = E(u(0)).

Observe that the energy is now always non-negative, even though there is a degeneracy
at πZ (the zeros of sin). The wave map equation also admits a scaling:

(18) uλ(t, r) = (u(t/λ, r/λ), λ−1∂tu(t/λ, r/λ)),

is a k-equivariant wave map as soon as u is. Also E(uλ(t)) = E(u(t)) (where defined):
the scaling is energy critical, as for (NLW).
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Notice that if (u0, 0) has finite energy, then u0 is continuous on [0, +∞) and converges
as r → 0 and as r → +∞ with limits in πZ = sin−1({0}). The natural space of finite
energy data is no longer a vector space, but rather splits into disjoints sectors, which
are convenient to introduce:

Eℓ,m = {u0 = (u0, u̇0) : E(u0) < ∞, lim
r→0

u0(r) → ℓπ and lim
r→+∞

u0(r) → mπ}.

Nevertheless, convergence in the statements below will still hold in the natural energy
vector space H × L2([0, +∞), rdr) where

∥v∥2
H =

∫ ∞

0

(
∂rv(r))2 + v(r)2

r2

)
rdr and H = {v : ∥v∥H < +∞}.

We will write it H × L2 for short. Actually, Eℓ,m is an affine space over H × L2.
Even though a 2D radial Laplacian appears in (WM), wave maps are actually inti-

mately related to the energy critical non linear wave equation in dimension 2k + 2, due
to the linear part in the nonlinearity. This is made apparent via the change of unknown
v(t, r) = r−ku(t, r), which solves

∂ttv −
(

∂rr + 2k + 1
r

∂r

)
+ f̃(rkv)v1+2/k = 0.

(above, f̃ : y 7→ sin(2y)/2 − y is smooth). Thus equivariant wave maps enjoy a similar
local Cauchy theory as the energy critical nonlinear wave equation. Notice however
as observed by Jendrej and Lawrie (2024, Section 2.2), that the nonlinearity function
k2 sin is smooth, so that it is possible to simplify the functional spaces involved even
for large k, and to rely on spacetime Lebesgue spaces only (no Besov space): this can
been seen by using the unknown ṽ(t, r) = r−1u(t, r) and the Strichartz estimates for
the wave equation with an inverse square potential proven by Planchon, Stalker, and
Tahvildar-Zadeh (2003). We denote again S(I) for the suitable Strichartz space and
SL(t) for the linear flow of

∂ttv(t, r) −
(

∂rr + 1
r

∂r

)
v(t, r) + k2

r2 v(t, r) = 0.

This common notation with the setting of (NLW) should not raise conflicts. The Cauchy
problem for general, non symmetric, wave maps is much harder in critical Sobolev spaces,
and was the object of intense study at the beginning of the 2000s. Let us only mention
the breakthrough papers by Tao (2001a,b), which were generalized by Klainerman and
Rodnianski (2001) and in the definitive result by Tataru (2005).

In the context of k-equivariant wave maps, the relevant non-linear objects are again
stationary solutions, that is, harmonic maps: for (WM), they take the explicit form

Q(r) = 2 arctan(rk).

Observe that Q has distinct limits at 0 and ∞ (it links the North and South poles). We
denote, following our convention, Q = (Q, 0), and also π = (π, 0) (constant harmonic
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map). The main result for wave maps is the following soliton resolution, which applies
to any finite energy equivariant wave maps without further assumption.

Theorem 1.3 (Soliton Resolution for equivariant wave maps)
Let k ∈ N∗, ℓ, m ∈ Z and u(t) ∈ C ([0, T+), Eℓ,m) be a finite energy solution to

(WM) defined on its maximal forward interval of existence [0, T+). Then there exist
N ≥ 0, continuous functions λ1, . . . , λN ∈ C ([0, T+),R∗

+), signs ι1, . . . , ιN ∈ {−1, 1}
and g ∈ C ([0, T+), H × L2) such that the following holds.

1. Global solution. If T+ = ∞, then there exists u∗ ∈ H × L2 such that

u(t) =
N∑

j=1
ιj(Qλj(t) − π) + mπ + SL(t)u∗ + g(t),

with

∥g(t)∥H×L2 +
N∑

j=1

λj(t)
λj+1(t)

→ 0 as t → ∞,

where above we use the convention that λN+1(t) = t.
2. Blow-up solution. If T+ < ∞, then N ≥ 1 and there exist m̃ ∈ Z and u∗ ∈ Em̃,m

such that

u(t) =
N∑

j=1
ιj(Qλj(t) − π) + m̃π + u∗ + g(t),

with

∥g(t)∥H×L2 +
N∑

j=1

λj(t)
λj+1(t)

→ 0 as t → T+,

where above we use the convention that λN+1(t) = T+ − t.

As for (NLW), analogous statements hold for the backward in time evolution. This
theorem was first proved for the co-rotational case k = 1 by Duyckaerts, Kenig, Martel,
and Merle (2022). Shortly after, the preprint version of Jendrej and Lawrie (2024) was
released, and treated all equivariant classes k ≥ 1. Then Collot, Duyckaerts, Kenig, and
Merle (2024) complemented the case k = 2 by solving it in the framework of Duyckaerts,
Kenig, and Merle.

For each framework, the proofs for (NLW) and (WM) are very similar: we will render
the relation more apparent in the next paragraphs. Nevertheless, this prompts us to
sketch the proofs of only one of these equations, and the choice here is to focus on
equivariant wave maps.
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1.3. Relevance of the models

The wave equation enjoys several crucial properties which prompted the study of
these particular models. In the soliton resolution, one observes a space localization of
the rescaled nonlinearity objects, which can be seen via the pseudo-orthogonality of
the scales λj/λj+1 → 0. The wave equation has finite speed of propagation, and this
property makes it easy to preserve the space localisation mentionned above. The proofs
use repetitively finite speed of propagation in the following form: if u and v are two
solutions to (NLW) (say), defined on a common time interval I, and if at time t0 ∈ I,
u(t0) and v(t0) coincide on a annulus {r ∈ (r1, r2)} then for all t ∈ I, u(t) and v(t)
coincide on the annulus {r ∈ (r1 + |t − t0|, r2 − |t − t0|)}. This idea is pushed further in
the method of channels of energy, see Section 2.3. This is a reason to choose the wave
equation over the Schrödinger equation, for example.

One could naturally consider the long time behavior of solution to the nonlinear wave
equation with a different nonlinearity, say

(19) ∂ttu − ∆u − |u|p−1u = 0

for some p > 1. Due to the pure power nonlinearity, this equation also admits a scaling
invariance: if u is a solution, then so is

uλ(t, x) = λ
2

p−1 u(λt, λx).

In this case, the adequate type II assumption is to require a bound in the critical space
Ḣsc × Ḣsc−1 where

sc = sc(d, p) = d

2 − 2
p − 1

is the critical exponent: it is defined so that ∥uλ∥Ḣsc = ∥u∥Ḣsc . Indeed, a profile
decomposition is the most relevant when written in a critical space (see Section 2.1).
Also a suitable local well posedness result is available in that space.

It turns out that, under the type II hypothesis, the dynamics is not very rich and only
linear scattering occurs, even in the focusing case. The precise statement, regarding the
radial case, is the following.

Theorem 1.4 (Shen, 2013 (p < 5), Duyckaerts, Kenig, and Merle, 2014 (p > 5))
Let d = 3, p > 3, p ̸= 5, and u = (u, ∂tu) be a forward type II solution of

(20) ∂ttu − ∆u ± |u|p−1u = 0

that is, u is defined on a maximal forward interval [0, T+) with uniformly bounded critical
norm over its lifespan:

(21) sup
t∈[0,T+)

∥u(t)∥Ḣsc ×Ḣsc−1 < +∞.

Then u is a forward global solution (T+ = +∞) and scatters linearly in Ḣsc × Ḣsc−1.



1235–12

The idea of proof goes by contradiction. If the result does not hold, one can con-
sider the threshold size in Ḣsc × Ḣsc−1 where an initial data u0 does not lead to linear
scattering. Using profile decomposition (see Section 2.1 below) on a sequence of min-
imizing non scattering data, the Kenig–Merle machinery (see Kenig and Merle, 2006,
2008 and the review by Raphaël, 2013) allows to construct a minimal element, which is
compact up to scaling. This minimal element must then be a stationary solution (as a
consequence of a suitable multiplier identity, see Section 2.2). But stationary solutions
actually don’t belong to the critical Lebesgue space, and so, nor to the critical Sobolev
space Ḣsc .

Duyckaerts and Roy (2017) even refined condition (21) to lim inft→T+ ∥u(t)∥Ḣsc ×Ḣsc−1 <

+∞. We also refer, regarding the defocusing equation, to Kenig and Merle (2011) for
the radial case and to Killip and Visan (2011) for the general case.

These results are in sharp contrast with the soliton resolution stated in the previous
paragraphs and underline the interest to work in the energy critical context.

1.4. Comments and further results
The analysis developed for Theorems 1.2 and 1.3 tells some information on the

collisions of bubbles. We call forward pure multi-bubble a solution to (NLW) or (WM)
such that u∗ = 0 in the soliton resolution, as t → T+; one can similarly define backward
pure multi-bubble. Then a rather direct consequence of soliton resolution is that there
is no non trivial forward and backward pure multi-bubbles.

Theorem 1.5. — The only forward and backward pure multi-bubbles of (NLW) or
(WM) are stationary solutions.

In other words, a multi-bubble at t → −∞ (which is not stationnary) has radiation
as t → T+: the collisions of pure multi-bubbles can not be elastic.

In view of Theorems 1.2 and 1.3, several questions remain open: how many bubbles
can there be, that is, what are the possible values of N? Are there further conditions
on the concentration scales, can we give example of more precise rates? Can we give an
example of a solution (with non trivial bubbling N ≥ 1) with prescribed radiation u∗?

The case of one soliton N = 1 was thoroughly studied, with deep results showing
that the possibilities are vast, in particular on the concentration scale. The first results
describing finely the blow up dynamic for (WM) were twofold. The first was the stable
blow up scenario, elucidated by Rodnianski and Sterbenz (2010) in equivariance class
k ≥ 4 and by Raphaël and Rodnianski (2012) in all equivariance class k ≥ 1: the
blow up rate is a correction to the self-similar rate, namely T+−t

ln2(k−1)(T+−t) (for k ≥ 2)

and e−
√

| ln(T+−t)| when k = 1, and occurs for initial data in a open set of an H2 type
topology (Q lies at the boundary of this open set). The second is concerned with exotic,
unstable blow up formation: let us refer to Krieger, Schlag, and Tataru (2008, 2009a)
complemented by Gao and Krieger (2015), where blow up wave maps where constructed
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with N = 1, and rate λ(t) ∼ (T+ − t)1+ν for any ν > 0 (notice that these examples are
not smooth). Analogous results were obtained for (NLW) (in dimension 3) in Krieger,
Schlag, and Tataru (2009b) and Krieger and Schlag (2014). Symmetrically, Donninger
and Krieger (2013) constructed infinite time blow-up or blow-down solutions to the
(NLW) in dimension 3: that are forward global solutions, with N = 1 and the rate of
the bubble is of the form tµ where µ can be positive (blow-down) or negative (blow-up).
And Donninger, Huang, Krieger, and Schlag (2014) gave example where the rate shows
some oscillatory behavior (it is of the form t1+ν exp(ε sin(ln t))). Jendrej, Lawrie, and
Rodriguez (2022) provided some links between the behavior of the radiation u∗ at 0
and the blow up rate (still for N = 1 blow-up wave maps).

Regarding 2-bubbles (N = 2), there are much fewer results. Jendrej (2019) con-
structed pure 2-bubbles for (NLW) and (WM) (that is, N = 2 and u∗ = 0) which were
forward global, where one bubble remains at scale λ1(t) = 1 and the other concentrates
at rate λ2(t) = e−κ|t| for some explicit value κ > 0 (for non linear wave in dimension
d = 6 and for wave maps with k = 2), or λ2(t) = t−2/(k−2) (for wave maps with k ≥ 3).
We should mention that these pure 2-bubbles were further studied by Jendrej and Lawrie
(2018): they describe the behavior at the other end of times, showing scattering. The
methods developed there were seminal for their proof of the soliton resolution for (WM)
and (NLW). Very recently, Jendrej and Krieger (2025) gave the first construction of a
blow up solution with 2 concentrating bubbles: these are wave maps in the equivariance
class k = 2, with scales λ1(t) = t ln−β |t| (where β > 3/2 can be freely chosen) and
λ2(t) = e−α(t) with α(t) ∼ | ln(t)|β+1.

The extension of the soliton resolution to general solution (without a symmetry
assumption) seems out of reach for several reasons. In a possible resolution, one should
now take into account any stationary solution (and their Lorentz transform), not only the
ground state W or the minimal harmonic map Q, and we should understand how they
interact. But there is not much known about general harmonic maps or solutions to (9),
and current proofs can not go through without precise information about the linearized
flow. For general wave maps, the situation is even worse since the Cauchy theory is
not as neat as that for (NLW) (in particular with respect to long time perturbation).
Nevertheless a soliton resolution along a sequence of times holds for general type II
solutions to (NLW): we discuss this in Theorem 3.5. Let us also mention Grinis (2017)
where a resolution along a sequence of times is obtained for the general wave map
system to the sphere, but where the convergence of the remainder holds in a much
weaker space that the energy space. These weaker versions of soliton resolution do not
need understanding the interaction.

In the opposite direction, Engelstein and Mendelson (2022) cook up a special target
manifold N and a specific wave map for which the soliton resolution does not hold
continuously in time: there are two sequential resolution to two distinct bubbles. Their
construction was inspired by a similar phenomenon for the harmonic heat map flow due
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to Topping (2004). In any case, this means that one has to be careful when turning the
soliton resolution into a precise statement.

2. Three key preliminary tools

2.1. Profile decomposition

One important tool is the so called profile decomposition, a notion to describe bounded
sequences in Ḣ1 × L2.

Below we will always work with radial data for simplicity. In this paragraph, results do
hold for general sequences, but one has to take care of translation invariance: this adds
an extra parameter in the decompositions below, which makes notations cumbersome,
even though proofs remain the same in essence.

We say that a sequence u0,n = (u0,n, u̇0,n)n of radial functions in Ḣ1 × L2 admits
a profile decomposition (U j, (λj,n, tj,n)n)j (where the U j are radial functions Ḣ1 × L2,
λj,n > 0 and tj,n ∈ R) when wJ

0,n defined as the remainder in the expansion

(22) u0,n =
J∑

j=1
(SL(−tj,n)U j)λj,n

+ wJ
0,n

satisfies

(23) lim sup
n→+∞

∥∥∥SL(·)wJ
0,n

∥∥∥
S(R)

→ 0 as J → +∞.

We recall that here and below, uλ denotes the rescaled of u by a factor λ in time and
space as introduced in (6). The main result is

Theorem 2.1 (Bahouri and Gérard, 1999). — If the sequence (u0,n)n is (radial and)
bounded in the energy space Ḣ1 × L2, there always exists a subsequence of (u0,n)n which
admits a profile decomposition.

We also refer to Merle and Vega (1998) where the idea of profile decomposition was
developed in the context of the nonlinear Schrödinger equation (for the equivalent of
the above statement for the Schrödinger equation, see Keraani, 2001).

Actually, the profiles U j are derived as weak limits in Ḣ1 × L2 of linearly evolved
rescales of (u0,n): more precisely,

SL(tj,n)[(u0,n)1/λj,n
] ⇀ U j weakly in Ḣ1 × L2.

As a consequence, for all j ≤ J ,

(24) SL(tj,n)[(wJ
n)1/λj,n

] ⇀ 0 weakly in Ḣ1 × L2.

One extracts this way all profiles inductively, picking among the possible non trivial
weak limits the ones with larger norm first. The difficult point is to show convergence
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of the remainder in a relevant space, here the Strichartz space S(R): it is based on an
improved Sobolev inequality:

∀h ∈ Ḣ1(Rd), ∥h∥
L

2d
d−2

≲ ∥∇h∥1/n
L2 ∥h∥(n−1)/n

Ḃ0
2,∞

.

As a consequence of the expression of the profiles as weak limits, one has the so called
pythagorean expansions of the free energy and of the nonlinear energy: for each J ≥ 1,
as n → +∞,

∥u0,n∥2
Ḣ1×L2 =

J∑
j=1

∥∥∥U j
∥∥∥2

Ḣ1×L2
+
∥∥∥wJ

0,n

∥∥∥2

Ḣ1×L2
+ on(1),(25)

E(u0,n) =
J∑

j=1
E(SL(−tj,n/λj,n)U j) + E(wJ

0,n) + on(1).(26)

Now, why should one involve the linear flow of (5) in (22)? A priori, the sequence u0,n

has nothing to do with the wave equation. Earlier perfectly reasonnable decompositions
were done in a static context: they were related to the lack of compactness of the
Sobolev embedding Ḣ1(Rd) → L

2d
d−2 (Rd), we refer for example to Gérard (1998) and

Brézis and Coron (1985).
The reason for involving SL is that the decomposition (22) can be non-linearly evolved

through time by (NLW), with a control on the error as long as the profiles do not interact
with each other, and that the nonlinear evolution of each profile remains tamed in the
Strichartz norm.

To give a precise statement, we need to introduce the notion of non-linear profile.
First notice that up to further extraction, and to replacing U j with V j = SL(τ)[(U j)µ]
for some adequate τ ∈ R and µ > 0, we can (and we will) always assume that, for all j,
the sequences (tj,n)n, (λj,n)n have a limit in R and [0, +∞] respectively, and that one
either has

– tj,n = 0 for all n, or
– limn→+∞ tj,n/λj,n ∈ {−∞, +∞}.

Then the nonlinear profile associated to a profile (U j, λj,n, t
j ,n)n is the unique solution

U j
NL to (NLW) defined in a neigbourhood of limn→+∞(−tj,n/λj,n) such that

∥U j
NL(−tj,n/λj,n) − SL(−tj,n/λj,n)U j∥Ḣ1×L2 → 0 as n → +∞.

The existence and uniqueness of a non-linear profile is a consequence of the Cauchy
theory, which also ensures, for example, that if −tj,n/λj,n → +∞, U j

NL scatters for
forward times (that is, T+(U j

NL) = +∞ and U j
NL ∈ S([T, +∞)) for any T > T−(U j

NL)).
The key result is as follows.
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Proposition 2.2. — Let u0,n be a bounded sequence in Ḣ1 × L2 admitting a pro-
file decomposition with profiles (U j)j and parameters (tj,n, λj,n)n. Denote (U j

NL)j the
associated non-linear profiles, and let θn ∈ (0, +∞) be such that

(27) ∀j ≥ 1, ∀n,
θn − tj,n

λj,n

< T+(U j
NL) and lim sup

n→+∞

∥∥∥U j
NL

∥∥∥
S

([
−

tj,n
λj,n

,
θn−tj,n

λj,n

]) < ∞.

Let un be the solution of (NLW) with initial data u0,n.
Then for large n, un is defined on [0, θn],

(28) lim sup
n→+∞

∥un∥S([0,θn]) < ∞,

and defining the remainder rJ
n by

(29) un =
J∑

j=1
(U j

NL(· − tj,n))λj,n
+ wJ

n + rJ
n ,

there holds

(30) lim
J→+∞

lim sup
n→+∞

(
∥rJ

n∥S([0,θn]) + ∥rJ
n∥L∞([0,θn],Ḣ1×L2)

)
= 0.

An analoguous statement holds if θn < 0.

The proof is a consequence of a long time perturbation argument, which itself is a
consequence of the sharp Cauchy theorem 1.1. We refer to the Main Theorem p. 135
in Bahouri and Gérard (1999), see also a sketch of proof right after Proposition 2.8 in
Duyckaerts, Kenig, and Merle (2011a).

Of course, mutatis mutandis, similar statements hold for equivariant wave maps.

2.2. Virial and multipliers identity

Let u be a solution of (WM). To derive the conservation of energy, one can multiply
(WM) by r∂tu, which yields

(31) ∂t

[
r

2

(
∂tu

2 + ∂ru
2 + k2 sin2(u)

r2

)]
− ∂r(r∂ur∂tu) = 0,

and integrate in space. Two other relations are particularly useful. The first one, usually
refered to as the virial identity, is:

(32) ∂t(r2∂ur∂tu) − ∂r

[
r2

2

(
∂tu

2 + ∂ru
2 − k2 sin2(u)

r2

)]
+ r(∂tu)2 = 0.

It is obtained by multiplying (WM) by r2∂ru. Observe that the flux function r(∂tu)2

has a sign. (32) is crucial to prove that bubbles concentrate at a rate which is faster
than self-similar. The second identity, exploited by Jia and Kenig (2017), is derived
from multiplying (WM) by rf(u) (with f(u) = sin(2u)/2):

(33) ∂t(rf(u)∂tu) − ∂r(rf(u)∂ru) −
(

rf ′(u)(∂tu)2 − rf ′(u)(∂ru)2 − k2

r
f(u)2

)
= 0.
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As there is no a priori signed quantity involved, it is not as clear how useful it can be;
nevertheless it amazingly effective to control the remainder for the sequential soliton
resolution, as explained below in Section 3.3.

The above identities are to be integrated on space domain, possibly depending on
time, or against a suitable cut-off function (which will depend on time).

2.3. Channels of energy

The heuristic and fundamental insight of channels of energy is that the linear wave
equation disperses the energy of a solution in the vicinity of the light cone, and more
importantly, that some part of this energy remains outside of the light cone.

The typical question is the following: given a radial data u0, and R ≥ 0, does there
hold

(34) lim
t→+∞

∥SL(t)u0∥Ḣ1×L2(r≥R+|t|) + lim
t→−∞

∥SL(t)u0∥Ḣ1×L2(r≥R+|t|) ≳ ∥u0∥Ḣ1×L2(r≥R) ?

Data u0 for which it fails are said to be (R-)non-radiative.
First let us focus on this estimate with R = 0. Then (34) holds true for any radial

data in odd dimension. However, for even dimensions, (34) fails: this is due to the
existence of a radial singular resonance which (is explicit and) fails to be in the energy
space by a logarithmic divergence (see Côte, Kenig, and Schlag, 2014).

What is more, the estimate (34) is particularly relevant for R > 0 (due to finite speed
of propagation, large R corresponds to small data).

Duyckaerts, Kenig, and Merle (2011b) were the first to study channels of energy,
in dimension d = 3: they prove that (34) holds for all R > 0 and all radial data u0
orthogonal to (1

r
, 0). This direction is related to the scaling invariance, and corresponds

to the asymptotic of W . It can be handled at the non linear level using modula-
tion/orthogonality with ΛW (Λ = r∂r is the infinitesimal scaling operator), and this
leads to a strong rigidity result: for any R > 0, W is the only non zero, non radiative
radial solution to (NLW) (up to the invariances: sign and scaling). Ultimately, it is
the key argument in Duyckaerts, Kenig, and Merle (2013) which leads to the soliton
resolution for the radial, 3D (NLW).

In higher odd dimensions, (34) holds for R > 0 on a codimension d−1
2 subspace of

Ḣ1 × L2, as shown in Kenig, Lawrie, Liu, and Schlag (2015): the gap is now too large
for the proof to go through as is, and it requires additional arguments: we will go back
to this in Section 4.

For even dimensions, one can still salvage estimate (34), on a finite codimension
space, for radial data of the form (u0, 0) if d ≡ 0 mod 4, and of the form (0, u̇0) if d ≡ 2
mod 4. It turns out to be a starting point for the proof of the soliton resolution via
channels of energy in dimension d ≥ 4.
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3. Some ideas of proof

In this paragraph we focus on equivariant wave maps to the sphere, or wave maps for
short, that are solutions to (WM).

3.1. Within cones
The first observation is that energy can only concentrate within a cuspidal region of

the light cone.

Proposition 3.1. — 1) Let u be a wave map that blows up in finite time. Then for
all α ∈ (0, 1),

∥u(t)∥H×L2(α(T+−t)≤r≤T+−t) → 0 as t → T+.

2) Let v be a wave map that is forward global in time. Then there exists ℓ ∈ Z, such
that for all α ∈ (0, 1),

lim
t→+∞

∥v(t) − ℓπ∥H×L2(αt≤r≤t−A) → 0 as A → +∞.

These are rather old results by now, which go back to Christodoulou and Tahvildar-
Zadeh (1993) in the global case, and Shatah and Tahvildar-Zadeh (1994) in the blow
up case. They rely essentially on monotonicity of the energy within light cones (which
allows to define the limt→+∞ in the global case, for example), and the use of the virial
identity (32), expressed in null coordinates t + r and t − r. The proof extends to radial
type II solution of (NLW) via an induction on the slope α (starting with α near 1): the
details can be found in Côte, Kenig, Lawrie, and Schlag (2018).

It is however not true for general solutions of (NLW) (even type II), as a Lorentz
boost of a stationary solution can travel with any speed β ∈ Rd, |β| < 1.

3.2. Radiation field
The second step in the description of long time behavior is to extract the radiation.

Proposition 3.2. — 1) Let u be a wave map that blows up in finite time. Then there
exists a finite energy function u∗ such that

∥u(t) − u∗∥H×L2(r≥(T+−t)/2) → 0 as t → T+.

2) Let v be a wave map in Eℓ,m that is forward global. Then there exists v∗ ∈ H × L2

such that
∥v(t) − mπ − SL(t)v∗∥H×L2(r≥t/2) → 0 as t → +∞.

The choice of the factor 1/2 is not important in view of Proposition 3.1, any α ∈ (0, 1)
would be fine. Let us however stress that the convergence holds for all times. For the
proofs, the point is to construct the regular terms u∗ and v∗.

In the blow up case, it is a simple consequence that singularity can only form at
r = 0. If one consider u(τ), it can therefore be extended to a regular wave map outside
the cone {(t, r) : t ≥ τ, r ≥ t − τ}, and so defined a regular function at time T+ on
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{r ≥ T+ − τ}. By finite speed of propagation, these definitions are compatible for any
τ < T+, and letting τ → T+ yield u∗.

In the global case, the construction is more delicate. A consequence of Proposition 3.1
is that ∥v(t) − mπ∥L∞(r≥t/2) → 0 as t → +∞. One considers any sequence tn → +∞,
and a profile decomposition associated to a cut-off version of v(tn) outside the cone
r ≥ t/2 (say). Then a version of the Pythagorean expansion holds with spatial cut-off
(possibly moving): combining this with finite speed of propagation, one can show that
all non-linear profiles must actually scatter linearly for positive times, and evolving the
profile decomposition as allowed by Proposition 2.2, one can infer that there is linear
scattering in the outer cone {r ≥ t/2}.

It should be noted that this result does hold for general (non-symmetric) type II
solutions of (NLW), upon choosing suitable domain where the convergence to the
regular part occurs. More precisely, here is the statement.

Proposition 3.3. — 1) Let u be a (non radial) type II solution to (NLW) which blows
up in finite time.

Then the blow up set B is made points x0 ∈ Rd such that ∥u∥S([t,T+),B(x0,ε)) = +∞ for
all ε > 0 and t < T+

(2). This set is finite, and there exists u∗ ∈ Ḣ1 × L2 such that for
all ε > 0, letting Bε = ⋃

x0∈B B(x0, ε),

∥u(t) − u∗∥Ḣ1×L2(Rd\Bε) → 0 as t → T+.

2) Let v be a (non radial) type II solution to (NLW) which is forward global.
Then there exists a radiation v∗ ∈ Ḣ1 × L2 such that, for all A ∈ R,

(35) ∥v(t) − SL(t)v∗∥Ḣ1×L2(|x|≥t−A) → 0 as t → +∞.

As it should be, the proof is more delicate than in the case with symmetry. When
there is blow-up, the condition on the Strichartz norm is exactly what is needed to define
a solution in the cone grounded on B(x0, ε); as a consequence of local well posedness, a
blow up point must concentrate a minimal amount of Ḣ1 × L2 norm and so, the type II
a priori bound makes the blow set B finite. Then one can adapt the finite speed of
propagation argument of the case with symmetry.

For global solutions this time, the proof does not rely on Proposition 3.1 (which doesn’t
hold), but rather on a more intricate study of a profile decomposition in case of failure
of scattering, which combines sharp cut-off expansion and geometric consideration. It
is the content of Duyckaerts, Kenig, and Merle (2019).

(2)The second argument in the Strichartz space means that integration in space is restricted to the
small ball B(x0, ε).
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3.3. Sequential soliton resolution
The next step is to show the

Proposition 3.4. — Theorem 1.2 and 1.3 hold for one well chosen sequence of times
tn → T+.

The freedom in picking a well chosen sequence of times gives some room to complete
the argument. Here is how to choose a suitable sequence (tn)n. Using the vanishing of
the energy within cones, one quickly infers from the virial identity (32) that

1
T

∫ T

0

∫ t/2

0
|∂tu(t, r)|2rdrdt → 0 as T → +∞,

if u is a forward global wave map (an analoguous statement holds when blow up occurs).
This means that ∂tu tends to 0 in some averaged sense: via a covering argument, one
finds a sequence tn → +∞ such that

sup
s∈(0,tn/2)

∫ tn+s

tn−s

∫ t/2

0
|∂tu(t, r)|2rdrdt → 0.

In other words, the sequence (∂tu(tn + ·))n tends to 0 in L2
t,r locally in time at all

scales. If one now considers a profile decomposition associated to (u(tn))n, the above
convergence implies that all profiles U j must satisfy ∂tU

j = 0, or equivalently, U j = Q

up to sign, rescaling, and the addition of an integer multiple of π. As a constant amount
of energy is extracted for each profile, the decomposition only has a bounded number
of terms. The convergence at these relevant scales can be shown to be locally strong in
the energy space.

It remains to improve the convergence of the remainder wJ
n , which is known to hold

in L∞
t,r, to the energy linear space H × L2. This can be done via channels of energy (as

done in Côte, 2015, for k = 1), or the use of the identity (33) (following Jia and Kenig,
2017): we give a flavour of this second argument which applies to any equivariance class.
The flux in (33) does not have a sign, and one could think it would be hard to make
use of it. Nevertheless, one has to observe the identity∫ ∞

0

(
k2 sin2(2Q)

2r2 + (∂rQ)22 cos(2Q)
)

rdr = 0,

so that there is a cancellation at leading order at the scales of the harmonic maps. Also
if u is near a multiple π (in between these scales), there is coercivity

k2 sin2(2u(r))
2r2 + (∂ru(r))22 cos(2u(r)) ≳ ∂ru(r)2 + sin2(u(r)

r2 .

Now, upon refining the choice of tn, one can furthermore assume that

lim sup
n→+∞

∫ ∞

0

(
k2 sin2(2u(tn, r))

2r2 + (∂ru(tn, r))22 cos(2u(tn, r))
)

rdr ≤ 0,

and the above two observations (together with ∥wJ
n∥L∞(r≤tn) → 0) allow to conclude

that ∥wJ
n∥H×L2 → 0, as required.
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It is noteworthy that the soliton resolution holds for a sequence of times also for
type II solution of (NLW), without symmetry assumption.

The precise statement is mechanically more elaborate than in the radial case, for two
reasons. First, the set of non radial stationary solutions of (NLW) is now much larger
than the family generated by W : we will denote Q a generic steady state. Second the
equation enjoys another symmetry, the Lorentz transform (it didn’t appear before as it
does not preserve radial solutions). The Lorentz transform writes as follows:

(36) u(t, x) → u[ℓ](t, x) := u

 t − x · ℓ√
1 − |ℓ|2

, x − x · ℓ

|ℓ|2
ℓ +

x·ℓ
|ℓ|

ℓ
|ℓ| − ℓt√

1 − |ℓ|2

 ,

for each ℓ ∈ Rd, with |ℓ| < 1: if u is a solution to equation (NLW), then u[ℓ] is also
a solution where it is defined. Taking Lorentz transforms of a steady state, we obtain
traveling wave solutions for ℓ ∈ Rd with |ℓ| < 1:

(37) Q[ℓ](t, x) :=
Q(y), − ℓ√

1 − |ℓ|2
· ∇Q(y)

 where y = x − x · ℓ

|ℓ|2
ℓ +

x·ℓ
|ℓ|

ℓ
|ℓ| − ℓt√

1 − |ℓ|2
.

Theorem 3.5 (Duyckaerts, Jia, Kenig, and Merle, 2017). — Let u be a type II solution
to equation (NLW), defined on a maximal foward interval [0, T+).

1. Blow-up case. We use the notations of Proposition 3.3. Let x∗ ∈ B be a singular
point. Then there exist u∗ ∈ Ḣ1 × L2, and depending on x∗, a time sequence tn ↑ T+,
a radius r∗ > 0, an integer J∗ ≥ 1, and for each 1 ≤ j ≤ J∗, a non zero stationary
solutions Qj, and sequences of scales (λj

n)n with 0 < λj
n ≪ T+ − tn and positions (cj

n)n

in Rd satisfying |cj
n − x∗| ≤ β(T+ − tn) for some β ∈ (0, 1) with ℓj = lim

n→∞
cj

n−x∗
T+−tn

well
defined (all depending on x∗), such that we have, as n → +∞,

(38) u(tn) =
J∗∑

j=1
(Qj[ℓj](· − cj

n))λj
n

+ u∗ + oḢ1×L2(1) in the ball B(x∗, r∗).

In addition, the parameters λj
n, cj

n satisfy the pseudo-orthogonality condition

(39) λj
n

λj′
n

+ λj′
n

λj
n

+

∣∣∣cj
n − cj′

n

∣∣∣
λj

n

→ ∞,

as n → ∞, for each 1 ≤ j ̸= j′ ≤ J∗; and for all ε > 0,

u(tn) → u∗ in Ḣ1 × L2(Rd \ Bε).

2. Global case. There exist u∗ ∈ Ḣ1 × L2, a time sequence tn ↑ ∞, an integer J∗ ≥ 0,
and for each 1 ≤ j ≤ J∗, an non zero stationary solutions Qj and sequence of scales
(λj

n)n with λj
n > 0 and lim

n→∞
λj

n

tn
= 0, and positions (cj

n)n in Rd satisfying |cj
n| ≤ βtn for

some β ∈ (0, 1) with ℓj = lim
n→∞

cj
n

tn
well defined, such that, as n → +∞,

(40) u(tn) =
J∗∑

j=1
(Qj[ℓj](· − cj

n))λj
n

+ u∗ + oḢ1×L2(1).
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In addition, the parameters λj
n, cj

n satisfy the pseudo-orthogonality condition (39).

A key input for the proof of this theorem is the use of a Morawetz estimate, which
writes is the case of (NLW):

(41) d

dt

∫
|x|≤t

(
1
2 |∂tu(t)|2 + 1

2 |∇u(t)|2 − d − 2
2d

|u(t)|
2d

d−2

)
dx

= 1√
2

∫
|x|=t

(
1
2 |∂tu(t)|2 + 1

2 |∇u(t)|2 + ∂tu(t) x

|x|
· ∇u − d − 2

2d
|u(t)|

2d
d−2

)
dσ.

This is derived from yet another multiplier identity, with multiplier x
|x| · ∇, and it is well

suited to bound the non radial part of the angular momentum. However the sign of in
front of |u(t)|

2d
d−2 appearing in the flux (the right hand side of (41)) is right only for the

defocusing equation: this explains why it is seldom used for focusing equations. However,
in the current setting, the type II bound on ∥u∥Ḣ1×L2 makes it possible to control the
ill behaved terms |u|

2d
d−2 as an L1 function on the light cone {(t, x) : |x| = t} ⊂ R+ ×Rd,

and to use the full power of the Morawetz estimate (41). This is a good replacement
for the virial estimate, and allows to choose the suitable sequence of times on which the
analysis can be completed.

4. Soliton interaction

This step requires true dynamical analysis of the interaction of the bubbles: one must
bridge the gap between two times when the sequential resolution occurs (which can be
very far from one another). It is the core of Duyckaerts, Kenig, and Merle (2023) —and
then Duyckaerts, Kenig, Martel, and Merle (2022) and Collot, Duyckaerts, Kenig, and
Merle (2024)— on one side, and Jendrej and Lawrie (2023, 2024) on the other, with
two different lines of approach.

The first series of work brings some remedy to the failure of the usual channels
of energy mentioned in Section 2.3. The idea is to study channels for the linearized
operator around W , or around a sum of decoupled bubbles. Denote the exterior energy

Eext(u) = lim inf
t→+∞

∥u(t)∥2
Ḣ1×L2(r≥t) + lim inf

t→−∞
∥u(t)∥2

Ḣ1×L2(r≥|t|),

for any space time function, and let v = SW (·)v0 be a solution to the linearized wave
equation around W with initial data v0:

∂ttv − ∆v + d + 2
d − 2W

4
d−2 v = 0.

Denote Π⊥
Ḣ1 and Π⊥

L2 be the orthogonal projections on (Span ΛW )⊥ relative to the Ḣ1

and L2 scalar product respectively (recall Λ = r∂r is the infinitesimal scaling generator).

Proposition 4.1 (Duyckaerts, Kenig, and Merle, 2020). — If d ≥ 3 is odd, then

Eext(SW (·)v) ≳ ∥Π⊥
Ḣ1v0∥2

Ḣ1 + ∥Π⊥
L2 v̇0∥2

L2 .
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This is a powerful improvement over the channel of energy for the linear equation (5),
where the counter-examples have less structure. For even dimensions, the functional
setting has to be somewhat changed, and a suitable norm is

∥v∥Z := sup
R>0

1
1 + | ln R|

∥v∥L2(R≤r≤2R).

Proposition 4.2 (Collot, Duyckaerts, Kenig, and Merle, 2023a)
Let d ≥ 4 be even.

If d ≡ 2[4], then Eext(SW (·)v0)) ≳ ∥∇Π⊥
Ḣ1v0∥2

Z + ∥Π⊥
L2 v̇0∥2

L2.
If d ≡ 0[4], then Eext(SW (·)v0)) ≳ ∥Π⊥

Ḣ1v0∥2
Ḣ1 + ∥Π⊥

L2 v̇0∥2
Z.

These new bounds from below are suitable to be turned to a nonlinear rigidity
theorem.

Theorem 4.3 (Duyckaerts, Kenig, Martel, and Merle, 2022; Collot, Duyckaerts, Kenig,
and Merle, 2023b)

Let d ≥ 4, and u be a global, type II, radial solution to (NLW), which is not W up
to sign and scaling. Then there exist R0, η0 > 0, and t0 ∈ R such that either for all
t ≥ t0, or for all t ≤ t0,

∥u(t)∥Ḣ1×L2(r≥R0+|t−t0|) ≥ η0.

This is the crucial ingredient for the proof of the soliton resolution in Duyckaerts,
Kenig, Martel, and Merle (2022) (d = 4) and Collot, Duyckaerts, Kenig, and Merle
(2024) (d = 6).

Let us now give a sketch of the proof in Jendrej and Lawrie (2023, 2024).
To fix ideas, we work with a forward global equivariant wave map u in equivariance

class k ≥ 3. From Paragraphs 3.2 and 3.3, we can assume that u decomposes into an
N -bubble plus a radiation SL(·)u∗ on a sequence of time tending to +∞. The correct
quantity to analyse is the distance to the multi-soliton family: it writes

(42) d(t) = inf
ι⃗,λ⃗

[∥∥∥∥u(t) − SL(t)u∗ − m −
N∑

j=1
ιj(Qλj

− π)
∥∥∥∥2

H×L2
+

N∑
j=1

(
λj

λj+1

)k
]1/2

where ι⃗ = (ι1, . . . , ιn) is the sequence of signs and λ⃗ = (λ1, . . . , λN+1) is the sequence
of scales, with the convention that λN+1 = t. Minimization is done on all admissible ι⃗

and λ⃗. One could also allow N to vary, but it is not useful: as a consequence of
sequential resolution and continous in time convergence to the radiation field outside
light cones, if u is near a multi-bubble configuration (inside light cones) at some time,
this configuration must have N -bubbles.

The soliton resolution is equivalent to proving that d(t) → 0 as t → +∞. The
argument is by contradiction: for its sake, we can assume that there exist η > 0 (small
but fixed) and a monotone sequence of times sn → +∞ such that d(sn) ≥ η.

One can actually be more precise: Jendrej and Lawrie (2023) introduces the notion
of collision interval [a, b] with parameters K, ϵ, η if
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1. d(a), d(b) ≤ ϵ,
2. [a, b] contains a (maximal) subinterval [c, d] such that d(t) ≥ η > 0 for all t ∈ [c, d],
3. still, there exists a curve ρ(t) such that dK(u, ρ(t)) ≤ ϵ.

In the third condition, dK is a variant of d with N − K bubbles, and the scale ρ(t)
is an outer cut-off which means that bound is in H × L2({r ≥ ρ(t)}). In words, a
configuration with N − K (exterior) bubbles remains coherent in the region r ≥ ρ(t)
throughout the whole time interval [a, b].

Then one considers the minimal integer K such that an infinite sequence of disjoint
collision intervals ([an, bn])n with parameters K, ϵn, η exists, for some sequence ϵn → 0.
Due to the contradiction assumption, K ≥ 1: it represents the furthest bubble which
gets destabilized.

On [an, bn], one can write a decomposition

u(t) =
N∑

j=1
ιj(Qλj(t) − π) + π + SL(t)u∗ + g(t).

(g might be large when d(t) is). Formally, the dynamics of the jth bubble is given at
leading order by

(43)


λ′

j ≃ − ιj

λj∥ΛQ∥2
L2

⟨ΛQλj
, ġ⟩,

d

dt

(
− ιj

λj∥ΛQ∥2
L2

⟨ΛQλj
, ġ⟩

)
≃ −ιjιj+1ω

2 1
λj

(
λj

λj+1

)k

+ ιjιj−1ω
2 1
λj

(
λj

λj−1

)k

.

However, the control of the lower order terms is a bit too rough: it is typically bounded
the ratios (λi/λi+1)k when ιi and ιi+1 have opposite sign (attractive interaction). To
overcome this, a refined modulation parameter βj is defined: it is a lower order correction
to λ′

j, so that one still has λ′
j ≃ βj but the correction cancels exactly an annoying term

in the derivative β′
j. This kind of algebraic cancellation was first unveiled by Raphaël

and Szeftel (2011) in the context of the non-linear Schrödinger equation, and used
subsequently with success for many other dispersive models: (generalized) Korteweg-de
Vries, waves, etc. Thus, one defines:

βj = − ιj

λj∥ΛQ∥2
L2

⟨ΛQλj
, ġ⟩ − 1

∥ΛQ∥2
L2

⟨A(λj)g, ġ⟩.

Here A(λ) is a suitable cut-off/perturbed version of the L2 scaling operator 1 + Λ. Then
one has a lower bound

(44) β′
j ≳ −ιjιj+1ω

2 1
λj

(
λj

λj+1

)k

+ ιjιj−1ω
2 1
λj

(
λj

λj−1

)k

+ remainder,

where ω = 8k2/∥ΛQ∥2
L2 is an explicit constant, and the remainder shows a crucial gain

of 1/λj(t) over the previous remainder.
It is now possible to implement a no-return argument. First is defined a scale µ: it is

the maximal scale with µ ≪ λK+1 where a noticeable amount of energy is present (for
example on [an, cn] where u approaches an N -bubble, µ ≃ λK). One important point
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in choosing the minimal K, is that the duration of the collision dn − cn can not be too
small with respect to µ:
(45) dn − cn ≳ max(µ(cn), µ(dn)).
This is another instance where finite speed of propagation comes into play. Then consider
the localized virial quantity (see (32))

v(t) =
∫ ∞

0
∂tu∂ruχρ(t)r

2dr.

Here χρ is a cut-off whose scale ρ is a finely tuned variant of the scale of the collision
so that µ ≪ ρ ≪ λK+1, and
(46) ρ(an)∥∂tu(an)∥L2 , ρ(bn)∥∂tu(bn)∥L2 ≲ max(µ(an), µ(bn)).
This surprising bound (46) is possible in particular due to (45). The key is now to relate
the variation of v to the scale µ: there holds

v̇ = −
∫ ∞

0
(∂tu)2χρ(t)rdr + Ωρ(t)(u(t)).

and the choice of the cut-off ρ allows a suitable control of the remainder:
sup

t∈[an,bn]
Ωρ(t)(u(t)) → 0.

Hence, one can prove that v is decreasing on [an, bn] (up to manageable error), and even
better,
(47) v(b̃n) − v(ãn) ≲ − sup

t∈[ãn,b̃n]
µ(t),

for any subinterval [ãn, b̃n] where d(t) ≥ θ > 0 is bounded below. The interval [an, bn] can
then be split into a finite number of such decoherence intervals, separated by coherence
intervals. On the latter, the crucial observation is that the function µ only changes by
a bounded factor (say 2): this a consequence of the improved dynamics (44). Collecting
all the bounds (47), the telescopic sum yields

v(bn) − v(an) ≲ − max(µ(an), µ(bn)).
However for any time t, |v(t)| ≤ ρ(t)∥∂tu(t)∥L2E(u), and we reach a contradiction
with (46).

In equivariance class k = 2, the scaling parameter λj has to be modulated to acco-
modate the slow decay of ΛQ: the definition of βj is modified, but this doesn’t change
the ODE system (43) for the dynamics, at leading order. In equivariance class k = 1,
yet another modulation is needed: it now also involves a rescaling by ln(λj+1/λj) and
this modifies the ODE system (43). However, it has little consequence on the rest of
the analysis, which can be carried out to provide the same theorem. These alterations
of the dynamics (and how to treat them) are reminiscent of similar issues tackled in
Raphaël and Rodnianski (2012) (there, it however changed the blow up rate, see the
mention in Section 1.4).
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