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1. Introduction

If one wishes to solve the equation ax2 + bx + c = 0, where a ̸= 0, b, c are complex
numbers then it is useful to observe that y = x + b

2a
solves y2 = α, where α = b2−4ac

4a2 .
In other words, in the variable y the equation has a simpler form. One can proceed
similarly for equations of higher degree but, as it is well known, the situation becomes
more involved.

One can use a similar strategy for solving constant coefficients linear ordinary differ-
ential equations (ODE). Indeed, let A be a n×n complex matrix and consider the ODE
ẋ(t) = Ax(t), where the vector x(t) ∈ Cn is unknown. Suppose that A is diagonalizable
and that the matrix T is such that TAT−1 = diag(λ1, . . . , λn). Then the components of
the vector (y1(t), . . . , yn(t)) = Tx(t) solve the equations ẏj(t) = λjyj(t), 1 ≤ j ≤ n, the
solutions of which are given by yj(t) = eλjtyj(0). Therefore, again in the new variables
(y1(t), . . . , yn(t)) the equation we aim to solve takes a simpler form. One can perform
a similar reasoning if A is not diagonalizable by using the Jordan normal form reduction.

Let us now apply the same strategy to the class of Hamiltonian ODE which are closely
related to the main matter of this text. Consider therefore the ODE

(1) q̇(t) = ∂H

∂p
(q(t), p(t)), ṗ(t) = −∂H

∂q
(q(t), p(t)),

where q(t) ∈ Rn and p(t) ∈ Rn are the unknown. The equation (1) can be written
as (q̇(t), ṗ(t)) = J∇q,pH(q, p), where J is the anti-symmetric operator on R2n defined
by J(q, p) = (p,−q). The operator J may be replaced by other anti-symmetric
maps and we still get Hamiltonian ODE. The function H : R2n → R is called the
Hamiltonian of the system of ODE (1). Recall that the Newton law ẍ(t) = ∇V (x(t))
can be written under the form (1), for (q(t), p(t)) = (x(t), ẋ(t)) with H(q, p) = p2

2 −V (q).

As a direct consequence of (1), we obtain that H(q(t), p(t)) is a conserved quantity
under the evolution (a conservation law). In the case n = 1 this conservation law alone
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suffices to integrate (1) by the separation of variables method for scalar ODE. For
n > 1, the situation becomes more involved and in order to reduce (1) to a simpler
system new conservation laws are needed. Fortunately, in many interesting situations
such conservation laws exist. Let F1 and F2 be two conservation laws of (1). We say
that F1 and F2 are in involution if (J∇q,pF1(q, p),∇q,pF2(q, p)) = 0, where (·, ·) stays for
the R2n scalar product. Suppose that (1) has n conservation laws F1, · · · , Fn which are
pairwise in involution and suppose that (∇q,pF1, · · · ,∇q,pFn) are linearly independent
on a dense open set. A constant solution of (1) is called an elliptic equilibrium if the
spectrum of the linearization about it is purely imaginary. Thanks to Rüssmann (1964),
Vey (1978), and Ito (1989) it is known that if an elliptic equilibrium satisfies a non
resonant condition on the spectrum of the linearization then near this equilibrium one
can introduce coordinates (x, y) = (x(q, p), y(q, p)) such that in the coordinates (x, y)
the equation (1) is reduced to

(2) ẋ(t) = ∂H
∂y

(x(t), y(t)), ẏ(t) = −∂H
∂x

(x(t), y(t)),

where the new Hamiltonian H(x, y) = H(x1, · · · , xn, y1, · · · , yn) is given by

H(x, y) = G(x2
1 + y2

1, · · · , x2
n + y2

n),

where G : Rn → R depends only on n variables. The coordinates (x, y) are called local
Birkhoff coordinates(1). By setting zj(t) = xj(t) + iyj(t), we observe that the solution
of (2) is given by

(3) zj(t) = exp
(

− 2it∂jG(|z1(0)|2, · · · , |zn(0)|2)
)
zj(0), 1 ≤ j ≤ n,

where ∂jG denotes the partial derivative of G with respect to the jth variable. Again,
we reduced the initial problem of solving (1) to the much simpler problem of solving
(2). Usually, we apply Rüssmann (1964), Vey (1978), and Ito (1989) to make such a
reduction locally around a point and therefore it is a local theorem. If we are lucky
enough, these coordinates may work globally as well. Looking at (3) we observe that
the motion is taking place on an (n − k)-dimensional torus where k is the number of
vanishing zj(0). This flexibility of the dimension of the invariant tori is related to the
assumption that (∇q,pF1, · · · ,∇q,pFn) are linearly independent only on a dense open set.
Recall that in the Liouville–Arnold theorem such an assumption is made everywhere
and therefore the invariant tori are of maximal dimension.

In the 19th century there were many studies in which, in the spirit if the previous
paragraph, conservation laws were used to find good coordinates for Hamiltonian ODE.
A famous work is the one by Jacobi dealing with the geodesic flow on the surface of a
three dimensional ellipsoid. Another well known work is by Liouville who proved the

(1)One may wish to state the existence of Birkhoff coordinates in terms of the existence of a canonical
map on a symplectic manifold.
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local part of what is nowadays known as the Liouville–Arnold theorem.

Using conservation laws for solving Hamiltonian partial differential equations (PDE)
is a much more recent subject. Intuitively, one may see a Hamiltonian PDE as a
Hamiltonian ODE with infinite degrees of freedom (the system (1) with n = ∞). In
the case of finitely many degrees of freedom, in order to start to look for suitable good
coordinates one needs at least half of the degrees of freedom number of independent
(in a suitable sense) conservation laws. Therefore in the case of a PDE one would
need infinitely many independent conservation laws in order to start hoping to find
good coordinates. Such a property may seem too optimistic for being true. However,
in Gardner, Greene, Kruskal, and Miura (1967), using experimental methods it was
discovered that the Korteweg-de Vries (KdV) equation has infinitely many independent
conserved quantities(2). Soon after Lax (1968) discovered a systematic way for deriving
infinitely many conservation laws for equations having a particular structure which will
be explained below. In the years which followed these developments, global Birkhoff
coordinated in the context of the KdV equation were introduced (see the book Kappeler
and Pöschel, 2003 and the many remarkable references therein). Namely, the KdV
equation was written globally in the form (2) (with n = ∞).

Let us next describe the Lax method in the context of the KdV equation, posed on
the circle T = R/(2πZ). This setting is in a sense the closest to the finite dimensional
situation described in (1). For this reason in the whole text we will remain in this
setting of periodic in space solutions. The KdV equation, posed on T reads
(4) ∂tu = ∂x(−∂2

xu+ 3u2),
where u : R × T → R is the unknown with a prescribed value at t = 0 as a function (or
distribution) in a suitable analytic framework. One may write (4) in the Hamiltonian
form ∂tu = J∇H(u), where J = ∂x (an anti-symmetric map with respect to the L2

scalar product) and H(u) = 1
2

∫
T(∂xu)2 +

∫
T u

3. This Hamiltonian structure alone does
not give any hint on how to look for other conservation laws than the Hamiltonian H(u).
The extraordinary observation of Lax (1968) is that if u(t) solves (4) then

(5) d

dt
Lu(t) = [Bu(t), Lu(t)],

where the linear maps Lu and Bu are defined by
Lu(v) = −∂2

xv + uv, Bu(v) = −4∂3
xv + 3∂x(uv) + 3u∂xv.

The pair (Lu, Bu) is called a Lax pair and (5) is called a Lax pair formulation of
the KdV equation (4). Clearly the operator Lu is symmetric and the operator Bu is
anti-symmetric with respect to the (real) L2 scalar product. As we shall see in the

(2)The KdV equation is a partial differential equation obtained as an asymptotic model derived from
the water waves system for the propagation of long, one directional small amplitude surface waves in a
shallow water (see e.g. Lannes, 2013).
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next paragraph, a key consequence of the above formulation is that the spectrum of
Lu(t) is independent of t. In other words for every t the solution of (4) belongs to the
iso-spectral set of Lu(0) and every function of the spectrum of Lu(0) is a conservation
law of (4). This is of course a remarkable fact.

Let U(t) be the solution of the operator valued linear ODE

(6) d

dt
U(t) = Bu(t)U(t), U(0) = Id.

Since B(t) is anti-symmetric ((B(t))⋆ = −B(t)), we have that
(7) (U(t))⋆ = (U(t))−1 .

Differentiating in t the identity Id = (U(t))−1 ◦ U(t), and using (6), we obtain that

(8) d

dt
(U(t))−1 = −(U(t))−1 ◦Bu(t) .

Therefore, using the Leibniz rule, (6), (8) and (5), we get
d

dt

(
(U(t))−1 ◦ Lu(t) ◦ U(t)

)
= (U(t))−1 ◦

( d
dt
Lu(t) + [Lu(t), Bu(t)]

)
◦ U(t) = 0.

Coming back to (7), we get the key relation
Lu(t) = U(t) ◦ Lu(0) ◦ (U(t))⋆ .

The spectral theory of Lu can be analyzed via the Sturm–Liouville theory which is
a well-established branch in the theory of second order linear ODE. Thanks to this
ODE theory and the Lax pair formulation, one may define the Birkhoff coordinates
for the KdV equation, see Kappeler and Pöschel (2003) for a textbook presentation.
One remarkable consequence of the Birkhoff coordinates is that the solutions of (4) are
almost periodic in time which is a deep insight in the long time dynamics.

Let us next turn to the Benjamin–Ono (BO) equation. This equation was derived as
a model for long, one directional, small amplitude internal waves (see e.g. Klein and
Saut, 2021). The BO equation, posed on T reads
(9) ∂tu = ∂x(|D|u− u2),
where u : R × T → R is the unknown. The operator |D| is defined by H∂x, where H is
the Hilbert transform on T. In other words, one defines |D| via the Fourier transform bŷ|D|u(n) = |n|û(n) for every integer n which shows that |D| is a positive operator, after
invoking the Plancherel identity. One may write (9) in a Hamiltonian form similarly to
(4). One can also observe that (4) and (9) have a similar structure, the main difference
is that the second order positive operator −∂2

x is replaced by the first order positive
(necessarily non local) operator |D|. It is therefore probably not so surprising that the
solutions of (9) can also satisfy a Lax identity of type (5) but this time with nonlocal
operators Lu and Bu. Let us introduce these operators precisely. We denote by L2

+(T)
the Hardy space of L2(T) functions f such that f̂(n) = 0 for n < 0. Such functions can
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be written as ∑
n≥0 e

inx f̂(n) and can be seen as the boundary values of the holomorphic
functions on the unit disc {z ∈ C : |z| < 1} defined by ∑

n≥0 f̂(n) zn . Therefore we will
naturally identify a function in L2

+(T) and its holomorphic extension. Typically, if u
solves (4) or (9) with a square integrable initial datum at t = 0 then Π(u) belongs to
L2

+(T), where the projector Π is defined by

Π(u)(x) =
∑
n≥0

einx û(n) .

Moreover, the knowledge of Π(u) implies the knowledge of u because the solutions of
(4) or (9) are real valued. The Toeplitz operator Tb : L2

+(T) → L2
+(T) associated with a

function b ∈ L∞(T) is defined by Tb(u) = Π(bu). The Sobolev spaces Hs(T) are defined
by the norm

∥u∥2
Hs =

∑
n∈Z

(1 + |n|)2s |û(n)|2 .

We denote by Hs
r (T) the closed subspace of real valued elements of Hs(T). Next, for

u ∈ Hs
r (T), s ≥ 0, we denote by Lu : L2

+(T) → L2
+(T) the operator

(10) Lu(v) = |D|v − Tu(v).

The operator Lu is self-adjoint on L2
+(T) with domain L2

+(T) ∩H1(T). For u ∈ Hs
r (T),

s ≥ 0, we denote by Bu the anti-symmetric operator on L2
+(T) defined by

(11) Bu = i(T|D|u − T 2
u ).

We have that Bu is bounded for s ≥ 2, thanks to basic properties of the projector Π and
a Sobolev embedding. In strong analogy with KdV, it was observed in Nakamura (1979)
and Fokas and Ablowitz (1983) that if u(t, x) is a C∞ solution of the BO equation (9)
then it satisfies

d

dt
Lu(t) = [Bu(t), Lu(t)],

where Lu and Bu are defined by (10) and (11) respectively. As discussed above the
existence of a Lax pair structure for (9) implies the existence of many conservation
laws. More precisely, all functions of the spectrum of Lu are conservation laws for (9).
In particular the traces of functions of the self-adjoint operator Lu are conservation
laws for (9). It turns out that one of these conservation laws provides an H2 a priori
control on the solutions of (9). Combining this control with the well-established scheme
of resolution of quasi-linear hyperbolic PDE’s, it was obtained in Saut (1979) that for
every initial data in Hs

r (T), s ≥ 2 the BO equation (9) has a unique global solution
in the class C(R;Hs

r (T)). By a subtle application of the Fourier transform restriction
method of Bourgain (1993), the result of Saut (1979) was extended to data in Hs

r (T),
s ≥ 0, in Molinet (2008). These are satisfactory results from a purely PDE perspective.
However, they give very few information on the long time behavior of the solutions
of (9). This is to be compared with the KdV equation (4) for which the Birkhoff
coordinates imply that the solutions of KdV are almost periodic in time.
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It was a longstanding open problem to decide whether the solutions of the BO
equation (9) are almost periodic in time and more particularly whether Birkhoff
coordinates may be introduced in the context of (9). Despite some partial progress
(see e.g. Coifman and Wickerhauser (1990) and Tzvetkov and Visciglia (2015)) the
situation was quite unclear until recently. In other words, the existence of a Lax pair
alone does not directly imply interesting informations on the long time behavior of
the solutions. It seems that the non local nature of the Lax pair operators (10) and
(11), making the ODE methods inefficient, was one of the reasons for the lack of progress.

This problem was resolved in Gérard and Kappeler (2021) and in several subsequent
works much more information on the dynamics of (9) was obtained. As a consequence
of these works, from many perspectives, our understanding of the BO equation (9) is
now more complete than the understanding of the KdV equation (4).

In order to make a precise statement, we introduce spaces of sequences in which we
will define the good Benjamin–Ono equation coordinates. For s ∈ R, we denote by hs

the set of sequences of complex numbers (ζn)n≥1 such that

(12)
( ∞∑

n=1
|n|2s |ζn|2

) 1
2 < ∞ .

We endow hs with the norm (12) resulting from the natural scalar product. In addition,
we denote by Hs

r,0(T) the closed subspace of Hs
r (T) containing the elements of Hs

r (T)
having vanishing zero Fourier coefficient. As a consequence of Gérard and Kappeler
(2021), Gérard, Kappeler, and Topalov (2023), and Gérard (2023), we have the following
statement.

Theorem 1.1. —
– For s ≥ 0 there exists a variable change

(13) u 7−→ (ζn(u))n≥1

from Hs
r,0(T) to hs+ 1

2 which is analytic, bijective with a continuous inverse such
that in the new coordinates (ζn)n≥1 the Benjamin–Ono equation (9) becomes

(14) ∂tζn = i
(
n2 − 2

∞∑
k=1

min(n, k)|ζk|2
)
ζn, n ≥ 1.

– For s ∈ (−1/2, 0) the map (13) has an unique extension from Hs
r,0(T) to hs+ 1

2 which
is analytic, bijective with a continuous inverse, solving thus the Benjamin–Ono
equation with data in the low regularity Sobolev spaces Hs

r,0(T), s ∈ (−1/2, 0).
– As a consequence, the solutions u(t, x) of the Benjamin–Ono equation with data in
Hs

r,0(T), s > −1/2 are almost periodic in time. More precisely, t 7→ u(t, ·) is an
Hs(T) valued almost periodic function.
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– In addition, given u0 ∈ Hs
r (T), s ≥ 2, we have that for every n ≥ 1 there exist a

sequence (ωn,k)k≥0 of real numbers and a sequence (cn,k)k≥0 of complex numbers
such that if u(t, x) is the solution of the Benjamin–Ono equation with datum u0
then we can write its nth Fourier coefficient as

(15) û(t, n) =
∞∑

k=0
eiωn,kt cn,k , ∀ t ∈ R,

and the convergence of the series is uniform in t ∈ R.

We recall that a curve t 7→ u(t, ·) in Hs
r (T) is almost periodic if for every ε > 0 there

exists an almost period lε such that for every interval I of size ≥ lε there exists τ ∈ I

such that for every t ∈ R one has ∥u(t+ τ, ·) − u(t, ·)∥Hs < ε. Equivalently, the almost
periodicity can be expressed in terms of an uniform approximation by trigonometric
polynomials with values in Hs

r (T) or in terms of the relative compactness of the set
{u(t+ τ, ·), τ ∈ R} in the space of bounded continuous functions with values in Hs

r (T).
We have that if u(t, ·) is almost periodic in Hs

r (T) then for every λ ∈ R the limit
of T−1 ∫ T

0 eiλtu(t, ·)dt, as T → ∞ exists in Hs(T) and this limit is not zero only for
countably many λ ∈ R.

Let us remark that the assumption of initial data in Hs
r,0(T), imposed in the first

part of Theorem 1.1 is not quite restrictive. For that purpose, it suffices to remark
that if u solves (9) with initial datum u0 then for every real number c, we have that
v(t, x) = u(t, x− 2ct) + c also solves (9) with initial data u0 + c. Therefore by choosing
c = −û0(0) we may explicitly connect the BO flow in Hs

r,0(T) and in Hs
r (T).

One can see the flow of the Benjamin–Ono equation in the low regularity Sobolev
spaces Hs

r,0(T), s ∈ (−1/2, 0) as a unique continuous extension to Hs
r,0(T), s ∈ (−1/2, 0)

of the flow constructed in Molinet (2008). Moreover, as shown in Gérard, Kappeler,
and Topalov (2023), the assumption s > −1/2 for the extension of (13) to low
regularity spaces is optimal in the sense that for s ≤ −1/2 such an extension does not
exist. Tzvetkov (2024) conjectured that such an extension may exist after suitable
randomization and renormalization arguments.

We can observe that (14) is a complete analogue of (2) with infinitely many degrees
of freedom. Indeed, if ζn = ξn + iηn (ξn is the real part of ζn) then (14) becomes

∂tξn = ∂H

∂ηn

, ∂tηn = −∂H

∂ξn

, n ≥ 1,

where the Hamiltonian H is given by

H(ξ1, ξ2, · · · , , η1, η2, · · · ) = −1
2

∞∑
k=1

k2(ξ2
k + η2

k) + 1
2

∞∑
k=1

( ∞∑
k1=k

(ξ2
k1 + η2

k1)
)2
.
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Therefore we may say that Theorem 1.1 provides Birkhoff coordinates for the Benjamin–
Ono equation, and remarkably these coordinates are defined globally in Hs

r,0(T).

It is likely that (15) can be extended to data in Hs
r,0(T), s > −1/2. On the other

hand, it is less clear from the analysis in Gérard and Kappeler (2021), Gérard, Kappeler,
and Topalov (2023), and Gérard (2023) that an expansion similar to (15) holds for
the whole solution and not only for each Fourier coefficient. Let us try to give some
explanations on this issue. It is straightforward to see that for σ ≥ 0 the solutions of
(14) are given by

(16) ζn(t) = ζn(0) exp
(
it

(
n2 − 2

∞∑
k=1

min(k, n)|ζk(0)|2
))

,

provided (ζn(0))n≥1 ∈ hσ. We readily see that for (ζn(0))n≥1 ∈ hσ, σ ≥ 0 the expression
(16) is well-defined while if (ζn(0))n≥1 /∈ h0 the expression (16) is not well-defined. This
already gives some explanation on the assumption s > −1/2 appearing in Theorem 1.1.
The formula (16) provides an expansion of the solution in the (ζn)n≥1 coordinates.
Namely

(17) (ζn(t))n≥1 =
∞∑

n=1
ζn(0) exp

(
it

(
n2 − 2

∞∑
k=1

min(k, n)|ζk(0)|2
))

en,

where the convergence holds in hσ and (en)n≥1 is the canonical basis of hσ. The expansion
(17) gives the almost periodicity of (ζn(t))n≥1 in hσ. Next, using some properties of
the map (13) and its inverse, we can deduce the almost periodicity of the solution of
the Benjamin–Ono equation in the original coordinates. However, the expansion in the
(ζn)n≥1 coordinates does not imply an expansion in the Hs

r,0 coordinates because of the
limited understanding of (13) and its inverse. In order to get (15) one relies on an explicit
formula for the solutions derived in Gérard (2023) but the n-dependence is delicate
to control. In summary, it would be interesting to decide whether for u0 ∈ Hs

r (T),
s ≥ 2, there exist a sequence (ωn)n≥0 of real numbers and a sequence (ψn)n≥0 of Hs(T)
functions such that the solution u(t, x) of (9) with initial datum u(0, x) = u0(x) can be
written as

(18) u(t, x) =
∞∑

n=0
eiωntψn(x),

where the convergence holds in L∞([−T, T ];Hs(T)) for every T > 0 (or at least in
the distributional sense). Since u is real valued, we must have that if an ωn is in the
sequence of time frequencies then −ωn is in the sequence too and that the corresponding
ψn are complex conjugate.

Let us observe that an expansion of type (18) holds for the solution of the linear
Benjamin–Ono equation

∂tu = ∂x|D|u, u(0, x) = u0(x)
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which can be written as ∑
n∈Z

ein|n|t û0(n) einx .

In the linear case, the time frequencies and the corresponding x-dependent amplitudes
are quite explicit while for the nonlinear problem these objects, if they exist, should
depend in a quite involved way on the initial data.

The rest of this text is organized as follows. In the next section we derive the explicit
formula for the solutions on the Benjamin–Ono equation obtained in Gérard (2023)
and we discuss its application to the zero dispersion limit problem. Section 3 is devoted
to the Birkhoff coordinates of the Benjamin–Ono equation and several applications
resulting from these coordinates. In Section 4, we discuss the cubic Szegő equation
which is another infinite dimensional integrable system related to nonlocal operators.
In the last section we discuss some related results and open problems.

Acknowledgment. This work is partially supported by the ANR project Smooth
ANR-22-CE40-0017. I am very grateful to Patrick Gérard for his kind help in the
preparation of this text, in particular with the proof of (15). I am also very grateful to
Louise Gassot and to N. Bourbaki for their remarks on a previous version of this text.

2. Explicit formula for the solutions of BO and an application

We define the shift operator S : L2
+(T) → L2

+(T) by S(f)(x) = eixf(x). Then
S⋆ = Te−ix and S⋆ ◦ S = Id. In addition S ◦ S⋆(f) = f −

∫
T f for every f ∈ L2

+(T). In
this text the Lebesgue measure on T is normalized so that

∫
T 1 = 1.

If f ∈ L2
+(T) then for n ≥ 0, f̂(n) = (̂S⋆)nf(0) = ((S⋆)nf, 1) and therefore

(19) f(z) =
∞∑

n=0
zn((S⋆)nf, 1) = ((Id − zS⋆)−1f, 1).

Using that if A and Id −B are invertible then A−1(Id −B)−1A = (Id −A−1BA)−1 and
using (19), we can write

(20) Πu(t, z) =
((

Id − z(U(t))−1 ◦ S⋆ ◦ U(t)
)−1

◦ (U(t))−1(Πu(t)), (U(t))−1(1)
)
,

where u(t, x) is a solution of (9) in the class C(R;H2
r (T)) and the map U(t) solves the

linear problem
d

dt
U(t) = Bu(t)U(t), U(0) = Id,

where Bu is defined by (11) (thus (U(t))⋆ = (U(t))−1). As in the analysis for the KdV
equation, presented in the introduction, we have the key Lax relation

(21) Lu(t) = U(t) ◦ Lu(0) ◦ (U(t))⋆ .
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We now use (21) to show that the objects

(U(t))−1(1), (U(t))−1(Πu(t)), (U(t))−1 ◦ S⋆ ◦ U(t)

appearing in (20) can be expressed in terms of the initial data u(0) only, which will lead
to an explicit formula for the solution of (9) in terms of the initial data. The definition
of Lu implies that Lu(t)(1) = −Π(u(t)). Using (21), we can write

(22) (U(t))−1(Πu(t)) = −(U(t))−1 ◦ Lu(t)(1) = −Lu(0) ◦ (U(t))−1(1).

Therefore, we expressed (U(t))−1(Πu(t)) in terms of (U(t))−1(1). Let us now compute
(U(t))−1(1). Using that Tu(t)(1) = Π(u(t)) and (21), we can write

d

dt
(U(t))−1(1) = −(U(t))−1(Bu(t)(1)) = −i(U(t))−1(T|D|u(t)(1) − T 2

u(t)(1))

= −i(U(t))−1(|D|(Πu(t)) − Tu(t)(Πu(t))) = −i(U(t))−1 ◦ Lu(t)(Πu(t))
= i(U(t))−1 ◦ (Lu(t))2(1) = i(Lu(0))2((U(t))−1(1)).

Therefore (U(t))−1(1) satisfies the linear equation ẋ(t) = i(Lu(0))2x(t) with initial con-
dition at t = 0 equal to 1. Consequently

(23) (U(t))−1(1) = eit(Lu(0))2(1).

Coming back to (22), we obtain that

(24) (U(t))−1(Πu(t)) = −eit(Lu(0))2(Lu(0)(1)) = eit(Lu(0))2(Π(u(0))).

Let us finally compute the operator (U(t))−1 ◦ S⋆ ◦ U(t) in terms of the initial datum
u(0). Using the Leibniz formula, we can write

(25) d

dt

(
(U(t))−1 ◦ S⋆ ◦ U(t)

)
= (U(t))−1 ◦ [S⋆, Bu(t)] ◦ U(t).

The next lemma plays an important role in the analysis.

Lemma 2.1. — One has the relation

[S⋆, Bu] = i
(
(Lu + Id)2 ◦ S⋆ − S⋆ ◦ L2

u

)
.

One can check Lemma 2.1 by an explicit computation, based on the commutator
relation

[S⋆, Lu](f) = S⋆(f) −
(∫

T
f(x)dx

)
S⋆(Π(u)).

Combining Lemma 2.1 and (25), we infer that
d

dt

(
(U(t))−1 ◦ S⋆ ◦ U(t)

)
= i(U(t))−1 ◦

(
(Lu + Id)2 ◦ S⋆ − S⋆ ◦ L2

u

)
◦ U(t).

Now, using one again the key Lax relation (21) leads to the following linear differential
equation for the operator (U(t))−1 ◦ S⋆ ◦ U(t)
d

dt

(
(U(t))−1◦S⋆◦U(t)

)
= i(Lu(0)+Id)2◦(U(t))−1◦S⋆◦U(t)−i(U(t))−1◦S⋆◦U(t)◦L2

u(0).



1234–11

The last linear equation can be explicitly solved, which leads to

(26) (U(t))−1 ◦ S⋆ ◦ U(t) = eit(Lu(0)+Id)2 ◦ S⋆ ◦ e−itL2
u(0) .

Combining (20), (23), (24), (26), we arrive to the following statement, obtained in
Gérard (2023).

Theorem 2.2 (explicit formula for the solutions of the BO equation)
Let u ∈ C(R;H2

r (T)) be the solution of the BO equation (9) with initial datum
u(0, x) = u0 obtained in Saut (1979). Then

u(t, x) = Π(u)(t, x) + Π(u)(t, x) −
∫
T
u0(x)dx,

where the holomorphic extension of Π(u)(t, x) is given by

Π(u)(t, z) =
(
(Id − zeite2itLu0 ◦ S⋆)−1(Π(u0)), 1

)
=

∫
T
(Id − zeite2itLu0(x) ◦ S⋆)−1(Π(u0(x))) dx

for z ∈ C, |z| < 1.

We next discuss an application of the explicit formula obtained in Theorem 2.2 to
the so called zero dispersion limit of the solutions of the BO equation. Such a limit is
supposed to create small scales and is very poorly understood in the context of dispersive
PDE’s. Consider therefore the Cauchy problem

(27) ∂tu
ε = ∂x(ε|D|uε − (uε)2), uε|t=0 = u0,

where u0 ∈ H2
r (T) and ε > 0. The question is how uε behaves in the limit ε → 0. This

is a singular limit because there are very few uniform in ε informations on uε. There
is however one such information which is the L2 conservation. Namely, the solution
of (27) satisfies ∥uε(t, ·)∥L2(T) = ∥u0∥L2(T) which implies that (uε)ε∈(0,1) is bounded in
L∞([0, T ];L2(T)) for every T > 0. On the other hand, using the equation (27) and
the continuous embedding L1(T) ⊂ H−1(T) we obtain that the family (∂tu

ε)ε∈(0,1)
is bounded in L∞([0, T ];H−2(T)). Therefore, by a compactness argument there is a
sequence εk → 0 such that (uεk)k∈N converges in C([0, T ];L2

w(T)), where L2
w(T) denotes

L2(T) equipped with the weak topology. Such a reasoning can be done in the context
of many equations conserving the L2 norm but has the usual weakness of such a
compactness argument. The problem is that the family (uε)ε∈(0,1) may have more than
one accumulation point which would make the zero dispersion limit a not well-defined
object. Using the explicit formula of the solutions of (9) one may show that the family
(uε)ε∈(0,1) has a unique accumulation point in C([0, T ];L2

w(T)). Thanks to Gérard (2024)
and Gassot (2023a), we have the following statement.

Proposition 2.3 (zero dispersion limit). — Let u0 ∈ H2
r (T) be arbitrary. Then for

every T > 0 the family (uε)ε∈(0,1) of solutions of (27) converges in C([0, T ];L2
w(T)) as

ε → 0.
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Proof. — As in the proof of Theorem 2.2, we can show that the solution of (27) is given
by

Π(uε)(t, z) =
(
(Id − zeiεte2it(ε|D|−Tu0) ◦ S⋆)−1(Π(u0)), 1

)
.

For u0 ∈ H2
r (T), we have that for every t ∈ R and every |z| < 1, the sequence

(Π(uε)(t, z))ε>0 converges to(
(Id − ze−2itTu0 ◦ S⋆)−1(Π(u0)), 1

)
.

Therefore all possible accumulation points have the same harmonic extension which
leads to the rigidity of the possible limits in C([0, T ];L2

w(T)). This completes the proof
of Proposition 2.3 .

It seems that Proposition 2.3 is the only available result in the literature showing
the existence of unique zero dispersion limit for a nonlinear dispersive equation, for an
arbitrary initial data. As such it is a notable achievement of psychological importance
for the further research on the zero dispersive limit for non-linear dispersive PDE.

We refer to Gassot (2023a,b) for a much finer description of the zero dispersion limit
for particular classes of initial data.

Let us also recall that the zero viscosity limit is much better understood in the context
of the nonlinear heat equation
(28) ∂tu

ε = ε∂2
xu

ε + ∂x(f(uε)), uε|t=0 = u0,

where f : R −→ R is a C1 function (in particular f(x) = x2). Thanks to Kruzkov
(1970) one can show that if u0 ∈ L∞(T) then the sequence (uε)ε∈(0,1) of solutions of (28)
converges in C([0, T ];L1(T)) for every T > 0. The convergence of (uε)ε∈(0,1) holds in
a much stronger topology compared to the convergence in Proposition 2.3. Moreover,
the convergence holds for a general nonlinear interaction f(u) while the convergence in
Proposition 2.3 is strictly restricted to a quadratic nonlinearity. Let us also mention
that in the case f(x) = x2 the convergence of the solutions of (28) may be obtained
by invoking the Cole–Hopf transformation (the arguments of Kruzkov (1970) are really
needed only when f in (28) is not convex).

3. Birkhoff coordinates for BO and applications

For u ∈ Hs
r (T), s ≥ 0, the self-adjoint operator Lu has a discrete spectrum bounded

from below because thanks to elliptic regularity and the compactness of the embedding
H1(T) ⊂ L2(T) the map (µ + Lu)−1, µ ≫ 1, is a postive compact operator on L2

+(T).
Therefore, there exists a sequence (fn)n≥0 of L2 normalized functions in L2

+(T) ∩H1(T)
which is a basis of L2

+(T) and a sequence λ0 ≤ λ1 ≤ · · · ≤ of real numbers tending to
+∞ such that Lufn = λnfn. The functions fn and the numbers λn are depending on u

but this dependence will sometimes not be explicitly mentioned. The functions fn are
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unique modulo a rotation in C. Using some manipulations on the shift operator, we can
show that we can assume that the basis (fn(u))n≥0 is such that (fn+1(u), Sfn(u)) > 0
and (f0(u), 1) > 0. In the sequel, we shall use this choice of (fn(u))n≥0.

It turns out that the quadratic form associated with Lu is closely related to the
quadratic form associated with Lu ◦ S. This fact plays an important role in the proof
of Theorem 1.1. More precisely, one can easily check the following relation

(29) (Lu(S(f)), S(g)) = (Lu(f), g) + (f, g), ∀ f, g ∈ L2
+(T) ∩H1(T).

We have that (29) gives interesting informations about the spectrum of Lu. For instance,
it implies that the smallest eigenvalue λ0 of Lu is simple. Indeed, suppose that there
are linearly independent f1 and f2 such that Lu(fj) = λ0fj, j = 1, 2. Then there would
be α1, α2 ∈ R such that α1f1 + α2f2 = Sg for some g ∈ L2

+(T) ∩ H1(T) (cancelling of
the zero Fourier coefficient of α1f1 + α2f2). Thanks to (29), we obtain that

λ0(S(g), S(g)) = (Lu(g), g) + (g, g) ≥ λ0(g, g) + (g, g) = λ0(S(g), S(g)) + (g, g).

Therefore g = 0 which implies that f1 and f2 are linearly dependent. By repeating the
same argument to the restriction of Lu to the space orthogonal to f0, we obtain that λ1
is simple. Similarly, we get that all eigenvalues are simple. By applying a very similar
argument and the Courant–Fischer min-max characterization of the eigenvalues of Lu,
we can obtain that

λj+1(u) ≥ λj(u) + 1, j ≥ 0
which is a strong information about the spectrum of Lu. We next define the gaps

γn(u) = λn(u) − λn−1(u) − 1 ≥ 0, n ≥ 1.

We can write (9) in the Hamiltonian form ∂tu = J∇H(u) where J = ∂x and

(30) H(u) = 1
2

∫
T
(|D|1/2u(x))2dx− 1

3

∫
T
(u(x))3dx .

As we shall see below, it turns out that the Hamiltonian H(u) can be expressed in
terms of the positive functionals γn(u) and therefore it is natural to look for Birkhoff
coordinates having γn(u) as actions. In addition, for u ∈ L2(T) we can write via the
spectral decomposition

Πu =
∑
n≥0

(Πu, fn)fn = −
∑
n≥0

(Lu(1), fn)fn = −
∑
n≥0

(1, Lufn)fn = −
∑
n≥0

λn(1, fn)fn .

Therefore if u(t) is a solution of the Benjamin–Ono equation then the position of Πu(t)
on the iso-spectral manifold of Lu(0) is parametrized by (1, fn(u(t))). Interestingly, it
turns out that the phase of the complex number (1, fn(u)) is the angle part of the
Birkhoff coordinate ζn(u).

Coming back to the Hamiltonian H(u), we have the following remarkable statement.
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Proposition 3.1 (writing the Hamiltonian of BO in terms of the spectral gaps)
For every u ∈ H

1/2
r,0 (T), we have

H(u) =
∞∑

n=1
n2γn(u) −

∞∑
n=1

( ∞∑
k=n

γk(u)
)2
.

Proof. — For u ∈ H
1/2
r,0 (T), we substitute u = Πu + Πu in the expression of the

Hamiltonian (30) to get H(u) = (Lu(Πu),Πu) and recalling that

(31) Πu = −
∑
n≥0

λn(u)(1, fn(u))fn(u)

we arrive at

(32) H(u) =
∑
n≥0

(λn(u))3|(1, fn(u))|2 .

We now observe that (32) can be related to a partial trace of the resolvent of Lu, which,
for λ ∈ C outside of the spectrum of Lu, is defined by

(Lu + λId)−1(g) =
∑
n≥0

(g, fn(u))
λn(u) + λ

fn(u), g ∈ L2
r(T).

Taking into account (32) it is natural to consider the meromorphic function of λ, defined
by

(33) Hλ(u) =
(
(Lu + λId)−1(1), 1

)
=

∑
n≥0

|(1, fn(u))|2
λn(u) + λ

.

We observe that when expanding the expression (33) in λ = ∞ at third order we
essentially get (32). Therefore, understanding (33) in terms of the spectrum of Lu

would help to understand the Hamiltonian (32) in terms of the spectrum of Lu. For
that purpose, one uses the following product representation of Hλ(u).

Lemma 3.2. — For u ∈ L2
r,

Hλ(u) = 1
λ0(u) + λ

∏
n≥1

(
1 − γn(u)

λn(u) + λ

)
.

In the proof of Lemma 3.2 the relation (29) again plays a key role. Indeed, using this
relation one may show that when λ ≫ 1, the quantity

Tr
(
(Lu + (λ+ 1)Id)−1 − S⋆ ◦ (Lu + λId)−1 ◦ S

)
equals on the one hand∑

n≥0

( 1
λn(u) + λ+ 1 − 1

λn(u) + λ

)
+ Hλ(u)

and on the other hand

−∥S⋆ ◦ (Lu + λId)−1(1)∥2
L2

Hλ(u) = −∥(Lu + λId)−1(1)∥2
L2

Hλ(u) + Hλ(u) .
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This leads to the relation

(34) d

dλ
log Hλ(u) =

∑
n≥0

( 1
λn(u) + λ+ 1 − 1

λn(u) + λ

)
which implies the claimed product formula in Lemma 3.2 for λ ≫ 1. We then extend it
to all λ outside of the spectrum of Lu by analytic continuation. Let us come back to
the proof of Proposition 3.1. For ε = 1

λ
, λ ≫ 1, we set

H̃ε(u) = 1
ε

H 1
ε
(u) =

∑
n≥0

|(1, fn(u))|2
1 + ελn(u) .

Identity (34) becomes

(35) − d

dε
log H̃ε(u) = λ0(u)

1 + ελ0(u) +
∑
n≥1

γn(u)
(1 + ε(λn−1(u) + 1))(1 + ελn(u)) .

We clearly have H̃ε(u)|ε=0 = 1 and since u ∈ H
1/2
r,0 (T), we also have that

d

dε
H̃ε(u)|ε=0 =

∫
T
u = 0,

which implies

H(u) = −1
6
d3

dε3 H̃ε(u)|ε=0 = −1
6
d3

dε3 log H̃ε(u)|ε=0 .

In view of (35) the proof of Proposition 3.1 is reduced to a straightforward explicit
computation(3).

Comparing the residue at λ = −λn(u) in the identity

Hλ(u) = 1
λ0(u) + λ

∏
n≥1

(
1 − γn(u)

λn(u) + λ

)
=

∑
n≥0

|(1, fn(u))|2
λn(u) + λ

we infer that for n ≥ 1

|(1, fn(u))|2 = γn(u)κn(u), κn(u) := 1
λn(u) − λ0(u)

∏
1≤p ̸=n

(
1 − γp(u)

λp(u) − λn(u)
)

and
|(1, f0(u))|2 = κ0(u), κ0(u) :=

∏
p≥1

(
1 − γp(u)

λp(u) − λ0(u)
)
.

Observe that κn(u) > 0 for every n ≥ 0. The Birkhoff coordinates for the Benjamin–Ono
equation appearing in the statement of Theorem 1.1 are defined as follows

(36) ζn(u) = (1, fn(u))√
κn(u)

, n ≥ 1.

(3)We also have that for k > 3, dk

dεk H̃ε(u)|ε=0 provide quite explicit conservation laws of BO which
allow to get a uniform control on the high Sobolev norms of the solutions.
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First of all, |ζn(u)|2 = γn(u) and it follows from Proposition 3.1 that the Hamiltonian
only depends on |ζn(u)|2. Let us next show that u 7→ ζn(u) is injective. Combining (19)
and (31), we infer that

(37) Πu(z) =
(
(Id − zM(u))−1X(u), Y (u)

)
l2
,

where M(u) is the (infinite) matrix of the operator S⋆ in the basis (fn(u))n≥0 of eigen-
functions of the operator Lu and

X(u) = −(λn(u)(1, fn(u)))n≥0, Y (u) = ((1, fn(u))n≥0.

We therefore have that M(u) = (Mnp(u))n,p≥0, where Mnp(u) = (S⋆fp(u), fn(u)). Clearly
X(u) and Y (u) can be expressed in terms of (ζn(u))n≥1. By using some direct manipu-
lations on Lu and S, we obtain that if γn+1 = 0 then Mpn = δp,n+1 and if γn+1 ≠ 0 then
(fn+1(u), 1) ̸= 0 and

(38) Mnp(u) = γn+1(u)(fn+1(u), Sfn(u))(fp(u), 1)
(fn+1(u), 1)(λp(u) − λn(u) − 1) .

Consequently, it remains to prove that (fn+1(u), Sfn(u)) can be expressed in terms of
(ζn(u))n≥1. Recall that (fn+1(u), Sfn(u)) > 0. Next, we use that

1 = ∥Sfn(u)∥2
L2 =

∑
p≥0

|Mnp(u)|2

which implies that |(fn+1(u), Sfn(u))| = (fn+1(u), Sfn(u)) can be expressed in terms
of (ζn(u))n≥1. Therefore the map u 7→ ζn(u) is injective because we can uniquely
reconstruct u from the data (ζn(u))n≥1 .

Let us now define the Poisson bracket of two sufficiently regular functions F,G from
Hs

r (T), s ≥ 0 to C by {F,G} =
∫
T (∂x∇F )∇G, where ∇F is the L2 gradient. Then

F (u) is a conservation law of the BO equation (9) if {F,H} = 0. In order to show that
(36) are indeed good coordinates one computes the Poisson brackets between the λn(u)
and also the Poisson brackets between γp(u) and (1, fn(u)) which contains the angular
part of the coordinate ζn(u). It turns out that the equation ∂tu = ∂x∇Hλ(u), where
Hλ is defined by (33) has a Lax pair formulation with Lax operator Lu. This implies
that {λn(u),Hλ(u)} = 0 which, coming back to (33) implies that∑

p≥0

(
− |(1, fp(u))|2

(λp(u) + λ)2 {λp(u), λn(u)} + {|(1, fp(u))|2, λn(u)}
λp(u) + λ

)
= 0.

The left hand-side of the above identity is a meromorphic function and therefore

|(1, fp(u))|2{λp(u), λn(u)} = 0.

Using some basic properties of the shift operator S, one may check that

(1, fp(cos(x))) ̸= 0, ∀ p ≥ 1 .

Moreover, one can show that u 7→ (1, fp(u)) is an analytic map. Therefore the zero
set of (1, fp(u)) has an empty interior. As a consequence {λp(u), λn(u)} vanishes on a
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dense set and since u 7→ {λp(u), λn(u)} is continuous we obtain that {λp(u), λn(u)} = 0.
We next turn to the Poisson bracket between γp(u) and (1, fn(u)). Using again the Lax
pair formulation of ∂tu = ∂x∇Hλ(u) we obtain that

{Hλ(u), (1, fn(u))} = i (1, fn(u)) Hλ(u)
n−1∑
p=0

( 1
λp(u) + λ

− 1
λp(u) + λ+ 1

)
.

On the other hand, using (33), we obtain that

{Hλ(u), (1, fn(u))} =
∑
p≥0

(
− |(1, fp(u))|2

(λp(u) + λ)2 {λp(u), (1, fn(u))}+{|(1, fp(u))|2, (1, fn(u))}
λp(u) + λ

)
.

As above, we deduce that for p ≥ 1 and n ≥ 0,

(39) {γp(u), (1, fn(u))} = i (1, fn(u)) δp,n .

The above obtained relations of the Poisson brackets are used to show that there are
finite-dimensional manifolds, invariant by the Benjamin–Ono equation flow on which
we have an integrability in the 19th century sense. These are the so called finite gap
potentials manifolds. For s ≥ 0 and N ≥ 1, we define the sets

ON = {u ∈ Hs
r,0(T) : γj(u) ̸= 0, 1 ≤ j ≤ N, γk(u) = 0, k > N}

and the slightly larger sets

UN = {u ∈ Hs
r,0(T) : γN(u) ̸= 0, γk(u) = 0, k > N}.

We endow Hs
r,0(T) with the symplectic form ω(u, v) = (u, ∂−1

x v), where ∂−1
x is defined

via the Fourier transform on Hs
r,0(T). We therefore have the relation

{F,G} = ω(J∇F, J∇G), J = ∂x

relating the Poisson and the symplectic structures. It turns out that one can characterize
quite explicitly UN . We have the following statement.

Proposition 3.3. — We have that

UN =
{

− 2Re
(
eixQ′(eix)
Q(eix)

)
, Q ∈ C+

N [z]
}
,

where C+
N [z] is the set of complex variable polynomials of degree N with zeros outside

the unit disc. We have that UN is a connected, real analytic, symplectic submanifold of
L2

r,0(T) of dimension 2N . The restriction ΦN of the map u 7→ (ζn(u))n≥1 to UN is a
real analytic, diffeomorphism from UN to CN−1 × C⋆. It is moreover symplectic, i.e.

(ΦN)⋆ω = i
N∑

n=1
dζn ∧ dζn.

In particular, ON is an open subset of UN with ΦN(ON) = (C⋆)N .
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An elaboration on (37) yields that the elements of UN have the claimed form.
We have that on ON the arguments φn(u) of (1, fn(u)) are well-defined and on ON

γ1(u), . . . , γN(u), φ1(u), . . . , φN(u) are action angle variables in the Liouville–Arnold
sense, thanks to the relation {γp(u), γn(u)} = 0 and thanks to the fact that (39) implies
{γp(u), φn(u)} = δp,n. Next, using regularity properties of the map u 7→ (ζn(u))n≥1
allows to prove that ΦN is symplectic not only on ON but also on UN .

Using again (35) at second order in ε, we obtain that

(40) 2∥ζn(u)∥2
h1/2 = ∥u∥2

L2(T), u ∈ L2
r,0(T) .

This in turn may be used to show that u 7→ (ζn(u))n≥1 is a proper map from Hs
r,0(T) to

hs+1/2, s ≥ 0 (proper means that the preimage of every compact set is compact). Using
this property and Proposition 3.3 allows to show that u 7→ (ζn(u))n≥1 is a surjective
map from Hs

r,0(T) to hs+1/2, s ≥ 0 and that ∪N≥1UN is a dense set in Hs
r,0(T). Thanks

to Proposition 3.3, the coordinates (ζn(u))n≥1 transform the Benjamin–Ono equation
in the claimed form on the union of the finite gap potentials manifolds. This form can
then be extended to the full Hs

r,0(T) by density and the Hs
r,0(T), s ≥ 0 well-posedness

result of Molinet (2008).

Let us now turn to the proof of (15) which will be a combination of the explicit
formula of Theorem 2.2 and the properties on the coordinates (ζn(u))n≥1 coming from
the first part of Theorem 1.1. Using Theorem 2.2, we obtain that the nth Fourier
coefficient, n > 0 of the solution of the Benjamin–Ono equation with datum u0 ∈ H2

r (T)
is given by

(41) û(t, n) =
∫
T

(
eit e2itLu0 ◦ S⋆

)n
(Π(u0(x)))dx, n > 0.

Since u is real valued we have that û(t, n) = û(t,−n). Thanks to the conservation of
the mean under the flow, we have that û(t, 0) =

∫
T u0. We can write

S⋆Πu0 =
∑
k≥0

(S⋆Πu0, fk) fk,

where fk = fk(u0) are the eigenvalues of Lu0 . Therefore

e2itLu0 (S⋆Πu0) =
∑
k≥0

e2itλk (S⋆Πu0, fk)fk,

where λk = λk(u0) are the corresponding eigenvalues. Hence, we need to show the
absolute convergence of the multiple series

(42) e2int
∑

kn≥0
· · ·

∑
k1≥0

e2it(λk1 +···+λkn ) (S⋆Πu0, fk1)(S⋆fk1 , fk2) . . . (S⋆fkn−1 , fkn)(fkn , 1).

We now prove that

(43) |(S⋆fp, fn)| ≲ (1 + |p− n|)−3/2 .
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Estimate (43) holds for |p− n| ≤ 10 thanks to Cauchy–Schwarz. If (fn+1, 1) = 0 then
(S⋆fp, fn) = δp,n+1 and (43) clearly holds. Hence we can suppose that |p− n| ≥ 10 and
(fn+1, 1) ̸= 0. In this case, we can come back to (38) and write

|(S⋆fp, fn)| =
∣∣∣∣ γn+1(fn+1, Sfn)(fp, 1)
(fn+1, 1)(λp − λn − 1)

∣∣∣∣ ≲ |ζn+1||ζp| ,

where we have used that for |p − n| ≥ 10 one has |λp(u0) − λn(u0) − 1| ≥ 1 and that
|κn(u0)| ∼ 1. Since u0 ∈ H2(T), we can continue as follows

|(S⋆fp, fn)| ≲ (1 + |p|)−5/2 (1 + |n|)−5/2 ≲ (1 + |p− n|)−3/2 .

Therefore we have (43). Next, using (31) and (43), we obtain that

|(S⋆Πu0, fk1)| = |(
∑
n≥0

λn(u0)(1, fn(u0))S⋆fn(u0), fk1(u0))|

≲
∑
n≥0

(1 + |k1 − n|)−3/2 (1 + |n|)(1 + |n|)−5/2 ≲ (1 + |k1|)−3/2,

where we used that |λn(u0)| ≲ |n|, |ζn(u0)| ≲ (1 + |n|)−5/2 and the calculus inequality

(44)
∑
p≥0

(1 + |p− n|)−3/2 (1 + |p|)−3/2 ≲ (1 + |n|)−3/2 .

Using the previous bounds and that |(fkn , 1)| ≲ 1, we arrive at the estimate

|(S⋆Πu0, fk1)(S⋆fk1 , fk2) . . . (S⋆fkn−1 , fkn)(fkn , 1)| ≲
≲ (1 + |k1|)−3/2 (1 + |k1 − k2|)−3/2 (1 + |k2 − k3|)−3/2 . . . (1 + |kn−1 − kn|)−3/2 .

We conclude the absolute convergence of the multiple series (42) by a repetitive use of
the calculus inequality (44), performing first the k1 summation, then the k2 summation
etc.

We observe that there is a lot of room in the previous arguments and therefore we
expect that the expansion (15) can be extended to initial datum u0 of lower regularity.
It seems reasonable to expect that the time oscillations presented in (42) may be useful
if one wishes to establish an expansion of the full solution and not only of the Fourier
coefficients.

We next discuss the extension of u 7→ (ζn(u))n≥1 to low regularity Sobolev spaces.
So far the map u 7→ (ζn(u))n≥1 is defined from H0

r,0(T) to h1/2 and the shift of 1/2 in
the regularity exponent is natural in view of the Plancherel type formula (40). One
therefore may hope that the map u 7→ (ζn(u))n≥1 can be extended to a map from Hs

r,0(T)
to hs+1/2. For s ≥ 0 this corresponds to propagation of regularity while for s < 0 this
corresponds to low regularity well-posedness of the Benjamin–Ono equation. As already
mentioned, the explicit formula (16) giving the solutions of the Benjamin–Ono equation
in the Birkhoff coordinates (ζn)n≥1 makes sense for initial data (ζn(0))n≥1 ∈ hσ, σ ≥ 0
but it does not make sense in hσ, σ < 0. Therefore one does not expect to have the
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extension for s < −1/2 and there is a hope to have such an extension for s ≥ −1/2.
The result of Gérard, Kappeler, and Topalov (2023) proves that s = −1/2 is indeed the
critical regularity Sobolev exponent and that ill-posedness holds exactly at the critical
regularity. It is worth mentioning that s = −1/2 also appears by a standard scaling
argument applied to the Benjamin–Ono equation (9). Let us next demonstrate that this
same regularity shows up when we look for self-adjoint realizations of the Lax operator
Lu = |D| − Tu, for u ∈ Hs

r (T). The quadratic form associated to Lu is

Q(v1, v2) = (Lu(v1), v2) = (|D|1/2(v1), |D|1/2(v2)) −
∫
T
uv1v2.

We therefore have that

Q(v, v) ≥ ∥v∥2
H1/2 − C∥v∥2

L2 − (u, |v|2).

The issue is to understand whether (u, |v|2) is perturbative with respect to ∥v∥2
H1/2 for

u in negative regularity Sobolev spaces. If we suppose that u ∈ H−s
r (T) for some s > 0,

we can write by duality

|(u, |v|2)| ≤ ∥u∥H−s(T)∥|v|2∥Hs(T) .

Clearly, if s > 1/2 there is no chance to see ∥|v|2∥Hs(T) as a perturbation of ∥v∥2
H1/2 . It

turns out that it is however possible for s < 1/2. Indeed, for s < 1/2 one may write via
the Hölder inequality, the fractional Leibniz rule and the Sobolev embedding,

∥|v|2∥Hs(T) ≲ ∥⟨D⟩sv∥Lp∥v∥Lq ≲ ∥v∥2
Hσ(T),

where the exponents σ, p and q satisfy
1
p

+ 1
q

= 1
2 ,

1
2 − 1

q
= σ,

1
2 − 1

p
= σ − s

which leads to σ = 1
2(1

2 + s). Therefore, for s < 1/2 we cannot estimate ∥|v|2∥Hs(T)
by ∥v∥2

Hs(T), but we can estimate it by ∥v∥2
Hσ(T) which is worse but sufficient for the

perturbative analysis. Indeed, by a suitable application of the Hölder inequality at the
Fourier side, we can write

(45) ∥v∥2
Hσ(T) ≤ ∥v∥1−2s

L2(T) ∥v∥1+2s

H
1
2 (T)

.

The key point is that 1 + 2s < 2 and therefore after a use of the Young inequality, we
arrive at the lower bound

(46) Q(v, v) ≥ 1
10∥v∥2

H1/2(T) − C∥v∥2
L2(T)

(1/10 can be replaced by any number < 1). Observe that the last argument no longer
works for s = 1/2 because in this case ∥v∥

H
1
2 (T)

appear with power 2 in (45) which
prevents us from using the Young inequality. With (46) at our disposal we can use some
relatively standard soft analysis arguments, together with elliptic regularity in order to
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show that Lu has a self-adjoint realization on L2
+(T) for u ∈ H−s

r (T), s ∈ (0, 1/2)(4). As
in the case of u in L2 one may show that for u ∈ H−s

r (T), s ∈ (0, 1/2) the spectrum of Lu

is discrete, bounded from below and that the eigenvalues (λn(u))n≥0 satisfy λn+1 ≥ λn+1.
We therefore have that the infinite product defining κn(u) is convergent which shows
that (1, fn(u)) is well-defined for u ∈ H−s

r (T), s ∈ (0, 1/2). Hence, we can define
the Birkhoff coordinates ζn(u) in the low regularity setting u ∈ H−s

r (T), s ∈ (0, 1/2).
As a consequence of a quite involved regularity analysis using the generating function
Hλ(u) one can show that for s > −1/2 the map u 7→ (ζn(u))n≥1 is a bijection from
Hs

r,0(T) to hs+ 1
2 which in addition sends bounded sets of Hs

r,0(T) to bounded sets of
hs+ 1

2 . The ill-posedness analysis for s = −1/2 is also delicate. The initial data providing
instantaneous amplification of the solution is of the form

uε(x) = 2Re
(
ε q eix

1 − q eix

)
, q2 = 1 − e−ε−3/2

.

In the limit ε → 0+ the sequence uε(x) of smooth initial data tends to zero in the
critical space H−1/2 but the corresponding solutions of the Benjamin–Ono equation
have a first Fourier coefficient which does not converge pointwise to zero at any
given time interval of positive length. This implies ill-posedness at the critical reg-
ularity. Once again, the Birkhoff coordinates play a key role in this ill-posedness analysis.

In view of the previous discussion, one may wish to claim that in the low regularity
theory of the Benjamin–Ono equation (9) the Birkhoff coordinates (36) perform better
than the Fourier restriction method of Bourgain. In other words, integrability methods
perform better than refined Fourier analysis on the circle T.

Let us next turn to another application of the explicit formula of Theorem 2.2. Thanks
the almost periodicity in time displayed by Theorem 1.1, we have that the time averages

1
T

∫ T

0
u(t, x)dt

of the solutions obtained in Theorem 1.1 converge in Hs(T) as T → ∞. However, it is
not clear what the limit is. The explicit formula from Theorem 2.2 and the informations
about the Birkhoff coordinates we have can be used to obtain the following statement.

Proposition 3.4 (a law of large numbers for the BO equation)
Let u0 ∈ H2

r (T) and let u(t, x) be the unique solution of (9) in the class C(R;H2
r (T))

with initial datum u0. Suppose that u0 ≤ 0. Then

(47) lim
T →∞

1
T

∫ T

0
u(t, x)dt =

∫
T
u0(x)dx

in H2(T).

(4)This self-adjoint realization of Lu and the associated spectral properties can be used in order to
extend the explicit formula of Theorem 2.2 to data in Hσ

r (T), σ > −1/2.
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Proof. — After developing u0 in the basis (fn)n≥0 of the Lax operator Lu0 , using (41),
the time frequencies ωn,k appearing in (15) must be of the form

ωn,k = n+ 2(λl1 + · · · + λln),

where λl1 , . . . , λln are some eigenvalues of Lu0 . On the other hand, taking the L2 scalar
product of the relation Lu0(fn) = λnfn with fn gives∫

T
||D|

1
2fn(x)|2dx−

∫
T
u0(x)|fn(x)|2dx = λn

∫
T

|fn(x)|2dx,

which, taking into account the assumption u0 ≤ 0 implies that λn ≥ 0. Therefore
ωn,k ≥ n which implies that for n > 0,

lim
T →∞

1
T

∫ T

0
û(t, n)dt = 0.

Since û(t, n) = û(t,−n) a similar convergence holds for n < 0. By almost periodicity
we know that the limit in the left hand side of (47) exists and therefore using the
conservation of the mean under the BO flow, we get

lim
T →∞

1
T

∫ T

0
u(t, x)dt = lim

T →∞

1
T

∫ T

0
û(t, 0)dt = lim

T →∞

1
T

∫ T

0

∫
T
u0(x)dxdt =

∫
T
u0(x)dx.

This completes the proof of Proposition 3.4.

Let us also mention that for the stationary solutions(5) of the Benjamin–Ono equation,
the limit of the time averages is the solution itself. This is a case strictly opposed to the
situation in the context of Proposition 3.4 because there is a strong dependence between
the values of the solution at different times. It would be interesting to understand the
limit of the time averages of the solutions of the Benjamin–Ono equation for a general
initial data and in particular to understand how much, depending on the initial datum,
the values of the solutions at different times are independent (in a sense to be defined).

Let us now turn to another application of the Birkhoff coordinates of the Benjamin–
Ono equation. It turns out that these coordinates may be used to obtain a precise long
time description of the most singular part of the solution of the Benjamin–Ono equation.
Interestingly, this description is connected to the previous work Tao (2004) which
introduced a gauge transform associated with the Benjamin–Ono equation, crucially
used in the low regularity well-posedness result in Molinet (2008). For u ∈ Hs

r,0(T),
s ≥ 0, the Tao gauge transform is defined by

(48) G(u) = ∂xΠ e−i∂−1
x u = −iΠ (u e−i∂−1

x u) .

The following statement is obtained in Gérard, Kappeler, and Topalov (2024).

(5)An example of such a stationary solution is (1 − r2)/(1 − 2r cos x + r2) with r = 3−1/2.
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Theorem 3.5. — Let u0 ∈ Hs
r,0(T), s > 1/2. Define v(t) by

v(t, x) =
∑
n≥1

eitωn(u0)v̂0(n)einx,

where v0 = G(u0) and

ωn(u0) = n2 −
∫
T
u2

0 + 2
∑
k>n

(k − n)γk(u0).

Let u(t) be the solution of the Benjamin–Ono equation (9) with initial data u0. Then

(49) sup
t∈R

∥u(t) + 2Im(ei∂−1
x u(t) v(t))∥Hs+1(T) < +∞

The statement of Theorem 3.5 is remarkable in several respects. It shows that
uniformly in time the solution may be approximated by −2Im(ei∂−1

x u(t) v(t)) modulo
a smoother remainder which has 1 derivative higher Sobolev regularity (observe that
∂−1

x u(t) also has 1 derivative higher Sobolev regularity and therefore v(t) contains
the most singular part of the solution). Usually when such smoothing properties
are available they come with a bound which degenerates for large times (in other
words, in (49) one is allowed to take sup only on finite time intervals). Probably even
more striking, the singular part of the solution is a quite involved object which is a
manifestation of the quasi-linear nature of the Benjamin–Ono equation, first observed
in Molinet, Saut, and Tzvetkov (2001) and Koch and Tzvetkov (2005) (see also Herr
(2008)). This is to be compared with many known smoothing properties for other
dispersive models (as KdV) where the singular part of the solution is simply the free
linear evolution : such dispersive models are naturally called semi-linear.

In Gérard, Kappeler, and Topalov (2024) one may find a similar to Theorem 3.5
statement for s ∈ [0, 1/2] as well. One observes that the degree of the smoothing effect
depends on the value of s (and tames to 1/2 derivative smoothing when s approaches
zero).

The proof of Theorem 3.5 is based on a high frequency approximation of the map
u 7→ (ζn(u))n≥1. It turns out that the most singular part of this map is the map

u 7→
(

− in−1/2(G(u), einx)
)

n≥1
.

In other words, the singular part of the Birkhoff map of a given u is a suitable
normalization of the sequence of the Fourier coefficients of the Tao gauge transform of u.
This answers a question posed in Tao (2004) asking whether the gauge transform (48) is
connected to integrability properties of the Benjamin–Ono equation. On the other hand,
even if (48) is indeed connected to the complete integrability of the Benjamin–Ono
equation, gauge transforms aiming to tame the nonlinear interaction in the spirit of
(48) may be very useful even in the context of non integrable models, see for example
Oh, Tzvetkov, and Wang (2020).
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We end this section by mentioning several final applications of the Birkhoff coordinates
associated with the Benjamin–Ono equation. These coordinates were used in Gérard and
Kappeler (2021) to show that the non-zero traveling wave solutions of the Benjamin–Ono
equation are the solutions with initial data u0 given by a one gap potential (i.e. γn(u0) ̸=
0 for only one n ≥ 1). In addition, these coordinates were used in Gérard, Kappeler,
and Topalov (2023) to show Hs stability of the traveling wave solutions, while previous
results were dealing only with H1/2 stability. The Birkhoff coordinates associated
with the Benjamin–Ono equation were crucially used in Tzvetkov (2024) in order to
construct new non-degenerate invariant measures for the Benjamin–Ono equation. These
measures are fairly explicit in the (ζn)n≥1 coordinates but their understanding in the u
coordinates is quite limited so far. This offers an interesting transformation of measure
problem. Finally, as shown in Gassot (2022), the Birkhoff coordinates associated with
the Benjamin–Ono equation were the main tool in the study of the long time dynamics
of a damped Benjamin–Ono equation, even if this dynamics is quite different from the
almost periodic dynamics of (9).

4. The cubic Szegő equation

The results on the Benjamin–Ono equation presented in the previous sections have
an important precursor in the works by Grellier and Gérard on the so-called cubic Szegő
equation. This equation was introduced in Gérard and Grellier (2010) in an attempt to
extend the results of Burq, Gérard, and Tzvetkov (2004) on the nonlinear Schrödinger
equation, posed a Riemannian manifold to a sub-Riemannian geometry. Amazingly
this led Grellier and Gérard to the discovery of a new infinite-dimensional integrable
system presenting features which were not previously known in the world of integrable
differential equations. In addition, the spectral issues presented in the analysis of this
new infinite-dimensional integrable system have some important similarities with the
spectral issues in the analysis of the Benjamin–Ono equation, presented in the previous
sections.

The Cauchy problem for the cubic Szegő equation reads as follows

(50) i∂tu = Π(|u|2u), u|t=0 = u0 ∈ Hs
+(T).

Equation (50) is invariant under a multiplication with a complex number of modulus
one, under time and under spatial translations. This implies that the quantities

∥u∥L2(T), ∥u∥L4(T),
∑
n≥1

n|û(n)|2 = ∥|D|1/2(u)∥2
L2(T)

are, at least formally, conservation laws for (50). Therefore, we have an H1/2 control on
the solutions of (50). This control does not imply L∞ control by the standard Sobolev
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embedding but we are ε-close to such a control. More precisely, by the standard Sobolev
embedding we have the inequality

(51) ∀ s > 1/2,∃C ∈ R, ∀u ∈ Hs(T), ∥u∥L∞(T) ≤ C∥u∥Hs(T) .

Inequality (51) implies that for s > 1/2, the Sobolev space Hs(T) is an algebra which
in turn implies the local well-posedness of (50) in Hs(T), s > 1/2. The H1/2(T) control
alone is not sufficient to globalize the local solutions in Hs(T), s > 1/2. However,
if u is supposed in a bounded set of H1/2(T) (a global information coming from the
conservation laws) then the right-side of (51) can be replaced by C(log(2 + ∥u∥Hs(T)))1/2

which is sufficient to show that the Hs(T), s > 1/2 norm of the solutions does not
blow-up in finite time by a logarithmic extension of the classical Gronwall lemma,
applied to the time evolution of the Hs(T), s > 1/2 norm for the solution. This implies
the global well-posedness of (50) in Hs(T), s > 1/2. A slight extension of the argument
extends this global well-posedness of (50) to the space H1/2(T).

It turns out that the equation (50), as the Benjamin–Ono equation, has a Lax pair
formulation. In order to write this formulation, we need to introduce the Hankel
operators. By definition, the Hankel operator Hb : L2

+(T) → L2
+(T) associated with a

function b ∈ L∞(T) is the anti-linear operator defined by Hb(u) = Π(bu). Toeplitz and
Hankel operators may look similar but in fact they are quite different. The Hankel
operator is Hilbert–Schmidt, provided the symbol b is sufficiently regular (in the Sobolev
space H1/2) while the Toeplitz operator Tb(u) = Π(bu) is not Hilbert–Schmidt, even for
b ∈ C∞. Set en(x) = einx, n ≥ 0. Then

∑
n≥0

∥Hb(en)∥2
L2 =

∑
n≥0

∥
∑
k≥n

b̂(k)ek−n(x)∥2
L2 =

∑
k≥0

k∑
n=0

|b̂(k)|2 =
∑
k≥0

(k + 1)|b̂(k)|2 < ∞,

provided b ∈ H1/2(T). This implies that Hb is Hilbert–Schmidt on L2
+(T), provided

b ∈ H1/2(T). Note that in the context of the Toeplitz operator, we have∑
n≥0

∥Tb(en)∥2
L2 =

∑
n≥0

∥
∑
k≥0

b̂(k)ek+n(x)∥2
L2 =

∑
n≥0

∥b∥2
L2 = +∞

for every nontrivial b.

It was discovered in Gérard and Grellier (2010) that if u ∈ Hs(T), s > 1/2 is a
solution of (50) then

(52) d

dt
Hu(t) = [Bu(t), Hu(t)],

where the anti-symmetric operator Bu is defined as follows

Bu(v) = −iT|u|2(v) + i

2H
2
u(v) .

Therefore (50) has a Lax pair formulation. We saw that for u ∈ H
1/2
+ (T), the map Hu is

Hilbert–Schmidt. Hence under the same assumption on u, we have that H2
u is a linear,
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positive, trace class, self-adjoint operator. Thanks to the Lax pair formulation, the
eigenvalues of the compact operator H2

u are conserved quantities. Since these eigenvalues
tend to zero as the spectral parameter tends to infinity, in sharp contrast with the
tending to +∞ eigenvalues of the operator Lu appearing in the Lax pair formulation
of the Benjamin–Ono equation, one may wish to expect that the conservation laws
produced by Hu are giving less control on the solutions of (50) compared to the control
provided by Lu on the solutions of (9).

Remarkably, there is a second, independent Lax pair formulation of (50). More
precisely, if u ∈ Hs(T), s > 1/2 is a solution of (50) then

(53) d

dt
Ku(t) = [Cu(t), Ku(t)],

where Ku(v) = Hu(Sv) and Cu(v) = −iT|u|2(v) + i
2K

2
u(v).

Historically, the explicit formula for the solutions of the Benjamin–Ono equation
presented in the previous sections is preceded by a similar formula for the solutions of
(50). Using the above introduced Lax pair formulations of (50), the following statement
is obtained in Gérard and Grellier (2015).

Theorem 4.1. — Let u ∈ C(R;H1/2
+ (T)) be the solution of (50) with initial datum u0

in H
1/2
+ (T). Then

u(t, z) =
∫
T
(Id − ze−itH2

u0 ◦ eitK2
u0 ◦ S⋆)−1 ◦ e−itH2

u0 (u0)

for z ∈ C, |z| < 1. As a consequence, for n ≥ 0,

û(t, n) =
∫
T

(
e−itH2

u0 ◦ eitK2
u0 ◦ S⋆

)n
e−itH2

u0 (u0) .

As shown in Gérard and Pushnitski (2023), one may use Theorem 4.1 to define the
flow of (50) in low regularity spaces.

It turns out that the problem of introducing Birkhoff or action/angle coordinates in
the context of (50) is much more involved compared to the case of the Benjamin–Ono
equation. This deep study is conducted in Gérard and Grellier (2012, 2017) and here
we will only give very few elements of it.

Recall that H2
u is a linear, positive self-adjoint operator. In addition

K2
u(v) = H2

u(v) − (v, u)u.

Using the variational characterization of the eigenvalues, we can obtain that if for
u ∈ H

1/2
+ (T), we denote by (s2

j)j≥1 and by ((s′
k)2)k≥1 the decreasing sequences formed

by the eigenvalues of H2
u and K2

u respectively, counted with the multiplicities, then

s1 ≥ s′
1 ≥ s2 ≥ s′

2 ≥ · · · ≥ 0.
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We can write (50) in a canonical Hamiltonian form with a Hamiltonian functional given
by

(54) ∥u∥4
L4(T) = Tr(H4

u) − Tr(K4
u) =

∑
j≥1

s4
j −

∑
k≥1

(s′
k)4.

In sharp contrast with the analysis of Lu appearing in the context of the Benjamin–Ono
equation, the eigenvalues of H2

u are not necessarily simple. This leads to the complica-
tion of constructing Birkhoff or action/angle coordinates for all initial data. It is only
possible for data such that the spectrum is simple and for a general data a singular
foliation construction is needed (see the introduction of Gérard and Grellier (2017)
for a precise statement). Let us now briefly discuss the action/angle variables in the
case when Hu is of finite rank (this is an analogue of the finite gap potential manifolds
appearing in the analysis of the Benjamin–Ono equation). In view of (54) it is natural
to look for actions which are functions of sj and s′

k, and in the case of Hu of finite rank
there are only finitely many such sj and s′

k. By a theorem of Kronecker, we know that
Hu is of finite rank if and only if u(z) is a rational function with no pole in the closed
unit disk. Let N ≥ 1. Denote by UN the set of u ∈ H

1/2
+ (T) such that the rank of Hu

is N and the rank of Ku is also N . In the spirit of the Kronecker theorem, one can
show that the set UN can be seen as an open set of a 4N -dimensional manifold. For
u ∈ UN , using that the eigenvalues of H2

u are not eigenvalues of K2
u, we obtain that

the eigenfunctions of H2
u are also eigenfunctions of Hu and similarly the eigenfunctions

of K2
u are also eigenfunctions of Ku. We can define the action/angle variables as the

modulus and phases of the 2N complex numbers given by the corresponding eigenvalues
of Hu and Ku. One can extend the previous construction to u so that the spectra of
H2

u and K2
u are simple.

The cases when multiplicities in the spectra appear are more delicate but also most
interesting because these multiplicities in the Lax operators spectra lead to the creation
of small scales which is the basic problem in the turbulence theory. More precisely,
this degeneracy in the spectrum can be used if one wishes to construct solutions of
(50) having Hs, s > 1/2 norms which do not remain bounded for all times. Recall
that thanks to the conservation laws, the H1/2 norm of a solution of (50) must remain
bounded as the time evolves. A solution with an unbounded trajectory in high Sobolev
norms displays the energy cascade phenomenon which reads as follows : for a suitable
sequence of times tending to +∞ the Fourier modes of the solutions migrate to high
modes, keeping the H1/2 norm bounded.

Let us next present a basic but significant example of an energy cascade in the context
of (50). For ε ≥ 0, consider (50) with initial data

uε
0(x) = eix + ε.
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We have that H2
uε

0
has a simple spectrum for ε > 0 but H2

u0
0

has 1 as a double eigenvalue.
The energy cascade shows up in the limit ε → 0 which corresponds to the merging of
two eigenvalues of H2

uε
0
. By using the explicit formula for the solutions of (50), one can

check that the solution of (50) with initial datum uε
0 is given by

(55) uε(t, x) = aε(t)eix + bε(t)
1 − pε(t)eix

,

with
aε(t) = e−it(1+ε2), pε(t) = − 2i sin(ωt)

(4 + ε2)1/2 e
−itε2/2, ω = ε

2 (4 + ε2)1/2

and
bε(t) = e−it(1+ε2/2)

(
ε cos(ωt) − i(2 + ε2)

(4 + ε2)1/2 sin(ωt)
)
.

For tε = π/(2ω) ∼ π/(2ε), we have that 1 − |pε(t)|2 ∼ ε2/4. Therefore, we expect that
u(tε, x) becomes large because of the appearance of a small denominator in (55). Formula
(55) also shows that at time tε the solution is concentrated at the hight frequencies of
order ε−2 and that for s > 1/2,

∥uε(tε, ·)∥Hs ∼ 1
(1 − |pε(t)|2)s−1/2 ∼ ε1−2s ≫ 1.

Therefore there is a migration of the Fourier modes leading to an amplification of the
solution at time tε. A very involved elaboration on the previous construction leads to
the following remarkable result obtained in Gérard and Grellier (2017).

Theorem 4.2. — Denote by Φ(t) the flow of (50), defined on H
1/2
+ (T). For every

v ∈ C∞
+ (T), every M > 0, every s > 1/2 there exist a sequence (vn)n≥1 of elements of

C∞
+ (T) tending to v in C∞

+ (T) and a sequence of times (tn)n≥1 tending to +∞ such that

lim
n→∞

|tn|−M ∥Φ(tn)(vn)∥Hs(T) = +∞.

In the previous statement C∞
+ (T) = {u ∈ C∞(T) : u = Π(u)} endowed with the C∞

topology. In the example (55) we checked the statement of Theorem 4.2 with v = eix and
M = 0. Interestingly, on another sequence of times (t̃n)n≥1, we have that Φ(t̃n)(vn) − vn

converges to zero in any Sobolev space. A Baire category argument (used in a similar
context in Hani (2014)) leads to the following corollary of Theorem 4.2.

Corollary 4.3. — There exists a dense Gδ subset of C∞
+ (T) such that for every u0

in this set there exists a sequence of times (tn)n≥1 tending to +∞ such that for every
s > 1/2 and every M > 0,

lim
n→∞

|tn|−M ∥Φ(tn)(u0)∥Hs(T) = +∞.

Again we have that on another sequence of times the solution converges to the initial
data (which reminds the Poincaré recurrence theorem and makes think of invariant
measures). The situation radically changes if we consider (50) with respect to the
H

1/2
+ (T) topology. It is shown in Gérard and Grellier (2017) that the solutions of (50)
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are not only bounded in H
1/2
+ (T) (resulting from the conservation laws) but they are

also almost periodic in this phase space. In particular, the trajectories are relatively
compact sets of H1/2

+ (T). Let us also mention that in Gérard (2019) it is even shown
that there exists a dense Gδ subset of H1

+(T) such that for every u0 in this set one has

lim sup
T →∞

1
T

∫ T

0
∥Φ(t)(u0)∥H1(T) dt = +∞

and
lim inf

t→∞
∥Φ(t)(u0)∥H1(T) ≤ ∥u0∥H1(T).

Let us finally discuss upper bounds on the solutions. The argument based on a refinement
of the Gronwall lemma presented in the beginning of this section implies that a solution
u of (50) with data in Hs

+(T), s > 1/2 satisfies the bound

∃C > 0, ∀ t ∈ R, ∥u(t, ·)∥Hs(T) ≤ C exp(exp(C|t|)) .

Using the Lax pair structure we can improve the last bound to an exponential bound
for solutions in Hs

+(T), s > 1. More precisely, we have the inequalities

∥u∥L∞(T) ≲ Tr(|Hu|) ≲ ∥u∥Hs(T), s > 1.

Therefore since Tr(|Hu|) is a conserved quantity we get a uniform L∞ bound for the
Hs, s > 1 solutions. This stronger uniform control implies that in the globalization
argument we can appeal to the usual Gronwall inequality. This shows that a solution u
of (50) with data in Hs

+(T), s > 1 satisfies the bound

∃C > 0, ∀ t ∈ R, ∥u(t, ·)∥Hs(T) ≤ C exp(C|t|) .

Hence one may wish to say that Corollary 4.3 captures a nearly optimal possible
amplification of the solution. It would be interesting to decide whether solutions with
an exponential growth do exist.

5. Final remarks

As we have shown above, the method to construct a self-adjoint realization of the
Lax operator Lu associated with the Benjamin–Ono equation is limited to u ∈ Hs

r (T),
s > −1/2. However, it is clear that the methods developed in Allez and Chouk (2015),
Mouzard (2022), and Labbé (2019) can be applied to define a self-adjoint realization of
Lu, after a suitable renormalisation, in the case when u is the white noise on T (which
is almost surely not in u ∈ Hs

r (T), s > −1/2). Even much more general potentials
fit in the scope of applicability of the methods of Allez and Chouk (2015), Mouzard
(2022), and Labbé (2019). It would be interesting to investigate how much this spectral
theory may help to construct a renormalized Birkhoff map which would lead to solving
a renormalized Benjamin–Ono equation with random data in super-critical Sobolev
spaces (see Bouard, 2015 for an account on this line of research). It would also be
interesting to understand whether this spectral theory may be used in the context of
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the explicit formula for the solutions obtained in Theorem 2.2.

In the recent paper Gérard and Topalov (2023) the Birkhoff map u 7→ (ζn(u))n≥1
associated with the Benjamin–Ono equation is extended to spaces which are logarith-
mically close to H−1/2.

In the whole text we limited our discussion to periodic in space solutions. However,
the case of localized in space solutions is equally interesting. In this context, we refer
to Sun (2021) in which the multi-soliton dynamics of localized solutions is studied as a
completely integrable system. In the case of localized solutions, the natural analogue
of Theorem 1.1 is the soliton resolution. Such a result is not in the literature so far but
it does not seem out of reach in the case of the Benjamin–Ono equation, thanks to the
remarkable recent developments on localized solutions of the Benjamin–Ono equation,
see Blackstone, Gassot, Gérard, and Miller, 2024.

It will be very interesting to see whether the recent progress on the Benjamin–Ono
equation will stimulate research on the KdV equation. A very natural question is
whether in the context of the KdV equation, one can derive an explicit formula for the
solutions similar to the one we presented in this text for the Benjamin–Ono equation. In
addition, the zero dispersive limit for general data in the context of the KdV equations
seems to be an open problem. In other words, it would be interesting to decide whether
Proposition 2.3 holds in the context of the KdV equation.

In Killip, Laurens, and Visan (2024) the existence of the Benjamin–Ono dynamics in
low regularity spaces is established, both in the case of periodic and localized solutions.
The analysis of Killip, Laurens, and Visan (2024) does not seem to provide insights on
the long time dynamics as the ones presented in Theorem 1.1.

In the very interesting recent work Badreddine (2024) the methods presented in
this text are extended to some derivative non-linear Schrödinger equations. We finally
mention Bambusi and Gérard (2024), where KAM type results for the Benjamin–Ono
equation are presented. In this KAM analysis the analyticity of the Birkhoff map
u 7→ ζn(u) plays an important role.
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