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POINTWISE CONVERGENCE FOR THE SCHRÖDINGER EQUATION
[After Xiumin Du and Ruixiang Zhang]

by Jonathan Hickman

1. INTRODUCTION: THE CARLESON PROBLEM

1.1. Solutions to the Schrödinger equation

Suitably normalised, the free Schrödinger equation on Rn is the second order partial
differential equation

(1) iut − ∆xu = 0.

Here u is a complex-valued function of the space-time variables (x, t) ∈ Rn × R, whilst
ut and ∆xu denote the first order time derivative and spatial Laplacian, respectively.
We are interested in the Cauchy problem for this equation, whereby we specify an initial
datum f and wish to solve

(2)
{
iut − ∆xu = 0,
u(x, 0) = f(x) (x, t) ∈ Rn × R.

Depending on our hypotheses on f , what it means for u to be a ‘solution’ to the
equation (2) varies. Here we consider two examples:

Classical solution. If f is sufficiently regular, then elementary Fourier transform methods
show that (2) has a unique solution in the classical sense.(1) For instance, if we assume
f ∈ S(Rn), the Schwartz space, then the unique solution is given by

u(x, t) := eit∆f(x)

where eit∆ is the Schrödinger propagator

(3) eit∆f(x) := 1
(2π)n

∫
R̂n
ei(x·ξ+t|ξ|2)f̂(ξ) dξ.

Note that the regularity – or smoothness – of the initial datum f is crucial to these
observations. Indeed, the smoothness of f directly translates into the decay of the

(1)In particular, the derivatives ut and ∆xu are all well-defined in the usual sense from calculus, and
the identities in (2) hold pointwise.
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Fourier transform f̂(ξ) as |ξ| → ∞. This decay ensures the integral in (3) is well-defined
and also allows one to pass the derivatives inside the integral in order to verify (1).

L2 solution. Now suppose f ∈ L2(Rn), without any additional regularity assumptions.
In this case, Plancherel’s theorem allows us to define the Fourier transform f̂ as a function
in L2(R̂n), but in general we cannot conclude that f̂ is integrable. Consequently, the
integral formula (3) is not well-defined in the classical sense.

To circumvent these issues, we further appeal to the L2 theory of Fourier transform.
Note that the propagator eit∆ introduced above can be interpreted as a linear operator
on S(Rn) which, given an initial datum f , outputs the solution at time t. Using
Plancherel’s theorem, we can extend eit∆ to a Fourier multiplier operator acting on the
whole of L2(Rn). In particular, we define

eit∆f := F−1
(
eit| · |2 · Ff

)
for f ∈ L2(Rn),

where here F denotes the Fourier transform acting on L2(Rn). Furthermore, this
operator is an isometry of the L2 space, in the sense that

(4) ∥eit∆f∥L2(Rn) = ∥f∥L2(Rn) for all f ∈ L2(Rn) and all t ∈ R;

this identity is typically referred to as conservation of energy.
As before, we may define

u(x, t) := eit∆f(x),
but in general this is no longer a classical solution to the Schrödinger equation: for
instance, for a fixed time t, the best we can say about u( · , t) is that it belongs to
L2(Rn) and so the Laplacian ∆xu is not defined in the classical sense. However, we
can interpret u as a solution to (1) in the sense of distributions. Indeed, using (4) it is
not difficult to show u defines a distribution in S ′(Rn+1) and so ∂tu and ∆xu can be
understood in the distributional sense. Furthermore, a simple Fourier analytic argument
shows ⟨i∂tu− ∆xu, ϕ⟩ = 0 for all test functions ϕ ∈ S(Rn+1).

1.2. The Carleson problem
Once a solution u to (2) has been constructed, it is natural to investigate the behaviour

of u and how it relates to the initial datum f . There is a huge variety of different
questions one can ask in this direction. Here we are interested in the classical Carleson
problem, which aims to understand whether the initial datum can be recovered as a
pointwise limit of the solution.

First consider the case where f ∈ S(Rn), so that the solution u(x, t) := eit∆f(x) is
classically defined. By definition, we know the solution u satisfies u(x, 0) = f(x) and is
differentiable, and therefore continuous, with respect to t. In particular,

(5) lim
t→0+

eit∆f(x) = f(x) for all x ∈ Rn.

The Carleson problem asks to what extent this elementary limit identity continues to
hold when we consider more general L2 solutions to the Schrödinger equation.
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Since an L2 function is only defined almost everywhere, in order to make sense of the
problem for general initial data in L2(Rn) it is necessary to weaken the requirement that
convergence holds for all x ∈ Rn in (5) to almost all x ∈ Rn. That is, given f ∈ L2(Rn)
we wish to determine whether

(6) lim
t→0+

eit∆f(x) = f(x) for almost every x ∈ Rn.

It is not difficult to show that the limit holds in the L2-sense: that is, given f ∈ L2(Rn)
we have

(7) lim
t→0+

∥eit∆f − f∥L2(Rn) = 0.

Indeed, this can be easily verified for f ∈ S(Rn) using the integral formula (3) for the
propagator and the dominated convergence theorem. One can then pass to general
f ∈ L2(Rn) via density, using the conservation of energy identity (4).

On the other hand, there are examples of f ∈ L2(Rn) for which (6) in fact fails
(see §1.3 below). Thus, we are interested in determining an additional hypothesis on f

under which the above norm convergence (7) can be ‘upgraded’ to almost everywhere
convergence. Contrasting the situation for f ∈ S(Rn) with that for general f ∈ L2(Rn),
it is natural that the additional hypothesis should enforce some degree of regularity on
the initial datum.

The above considerations lead us to consider the Sobolev spaces Hs(Rn). Roughly
speaking, Hs(Rn) consists of all f ∈ L2(Rn) with derivatives up to order s lying also in
L2(Rn). More precisely,

Hs(Rn) :=
{
f ∈ L2(Rn) : (1 − ∆x)s/2f ∈ L2(Rn)

}
, s ≥ 0,

where (1 − ∆)s/2 denotes the fractional differential operator, defined in terms of the
Fourier transform F now acting on the space of distributions S ′(Rn) by

(1 − ∆x)s/2f := F−1
(
(1 − | · |2)s/2 · Ff

)
.

In particular, given f ∈ L2(Rn), we can always make sense of the fractional derivative
(1 − ∆x)s/2f as a distribution, and f ∈ Hs(Rn) if this distribution coincides with an L2

function. It is clear from the definitions that

H0(Rn) = L2(Rn) and Hs1(Rn) ⊇ Hs2(Rn) for 0 ≤ s1 ≤ s2.

Sobolev spaces provide a natural framework in which to formalise the Carleson
problem.

Problem 1.1 (Carleson, 1980). — Determine the values of s ≥ 0 such that

(8) if f ∈ Hs(Rn), then lim
t→0

eit∆f(x) = f(x) for almost every x ∈ Rn.



1205–04

That is, we wish to determine the minimal degree of regularity (measured in terms
of the Sobolev space index s) for which almost everywhere convergence is guaranteed
to hold.

Aside from its intrinsic appeal, Problem 1.1 is intimately related to important ques-
tions regarding the distribution of the solution eit∆f(x) in space-time. Pointwise con-
vergence is typically proved via analysis of the Schrödinger maximal operator, an object
of interest in its own right. The maximal operator can in turn be studied using fractal
energy estimates for the Schrödinger solutions. We introduce these concepts in §3.2
and §3.5 below. Through these connections, progress on Problem 1.1 has led to new
developments on a surprising array of different problems, such as the Falconer distance
problem (see, for instance, Guth, Iosevich, Ou, and Wang, 2020; Du and Zhang, 2019)
and the Fourier restriction conjecture (see Wang and Wu, 2022).

1.3. A resolution of the Carleson problem: introducing the key results

Problem 1.1 has a rich history, paralleling many important developments in harmonic
analysis over the last 40 years. We do not intend to give a complete survey of the
relevant literature, but focus on definitive results and recent highlights.

Whilst the n = 1 case of Problem 1.1 was fully understood by the early 1980s through
the works of Carleson (1980) and Dahlberg and Kenig (1982), in higher dimensions the
situation is much more nuanced. Nevertheless, a recent series of dramatic developments
brought about an almost complete resolution.

Necessary conditions. — Problem 1.1 splits into two parts: finding necessary conditions
for the index s for (8) to hold and finding sufficient conditions. Both parts are difficult.
The recent spate of activity on the Carleson problem was initiated by the surprising
discovery of a new necessary condition on s.

Theorem 1.2 (Bourgain, 2016). — For all s < n
2(n+1) , there exists some f ∈ Hs(Rn)

such that (8) fails.

Theorem 1.2 relies on the construction of an explicit(2) initial datum f ; the proof is
intricate, involving number theoretic considerations. Prior to Bourgain (2016), weaker
necessary conditions were established in Dahlberg and Kenig (1982), Bourgain (2013b),
and Lucà and Rogers (2017).

We shall not discuss the proof of Theorem 1.2 here, but instead refer the reader to
the detailed exposition in Pierce (2020). An alternative argument, based on ergodic
arguments rather than number theory, can also be found in Lucà and Rogers (2019).

(2)Strictly speaking, the proof of Theorem 1.2 proceeds by constructing a counterexample to the
Hs(Rn) → L1(Rn) boundedness of the Schrödinger maximal operator. This in turn implies the
existence of a counterexample to (8) through a variant of Stein’s maximal principle. See §3.2.
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Sufficient conditions. — We now turn to positive results, which form the focus of this
article. In the wake of Bourgain’s counterexample, there was a flurry of activity on
the Carleson problem. In a major advance, the n = 2 case was completely settled
through work of Du, Guth, and Li (2017). The higher dimensional case later followed
in a landmark paper of Du and Zhang (2019).

Theorem 1.3 (Du and Zhang, 2019(4)). — If f ∈ Hs(Rn) for some s > n
2(n+1) , then

lim
t→0+

eit∆f(x) = f(x) holds for almost every x ∈ Rn.

Together, Theorem 1.2 and Theorem 1.3 give an almost complete(5) answer to the
Carleson problem and constitute a major milestone in harmonic analysis and PDE.
Furthermore, Theorem 1.3 is in fact a special case of a significantly more general result
proved in Du and Zhang (2019), which has a variety of additional applications: see §3.5
below.

The proof of Theorem 1.3 builds on many important developments in harmonic
analysis and previous works on the Carleson problem in particular. For the purpose of
this article, we shall roughly divide the recent history of the problem into two epochs.

1. Multilinear theory / broad-narrow analysis. A key development in modern
harmonic analysis was the introduction of multilinear Strichartz estimates for the
Schrödinger equation in Bennett, Carbery, and Tao (2006) (see Theorem 5.5 below).
These estimates were applied to the study of (linear) oscillatory integral operators
by Bourgain and Guth (2011), where an important mechanism was introduced for
estimating linear operators via their multilinear counterparts. The technique of
Bourgain and Guth (2011) has since become known as broad-narrow analysis; the
relevant ideas are discussed in detail in §6 below. The multilinear technology was
applied to the study of Problem 1.1 in Bourgain (2013b), where Theorem 1.3 was
shown to hold for the more restrictive range s > 2n−1

4n
(this result was previously

established for n = 2 in Lee (2006) using bilinear methods).
2. Refined Strichartz estimates. A landmark paper of Du, Guth, and Li (2017)

established the n = 2 case of Theorem 1.3. Their work relied on important advances
in harmonic analysis such as the ℓ2 decoupling theorem of Bourgain and Demeter
(2015) (see Theorem 6.5 below) and polynomial partitioning techniques introduced
in Guth and Katz (2015) and Guth (2016). Moreover, Du, Guth, and Li (2017)
introduced refined Strichartz estimates, which were later developed to attack the
Carleson problem in higher dimensions in Du, Guth, Li, and Zhang (2018) and
have been found to have an array of additional applications (see, for instance,
Guth, Iosevich, Ou, and Wang, 2020; Wang and Wu, 2022).

(4)The n = 1 and n = 2 cases of Theorem 1.3 were established earlier in Carleson (1980) and Du, Guth,
and Li (2017), respectively.
(5)That is, except for the question of behaviour at the endpoint exponent s = n/(2(n+ 1)).
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The argument of Du and Zhang (2019) incorporates many of the tools and ideas
mentioned above: in particular, the broad-narrow analysis of Bourgain and Guth (2011);
the multilinear Strichartz inequalities of Bennett, Carbery, and Tao (2006) and the
decoupling estimates of Bourgain and Demeter (2015). We shall discuss these ingredients
in detail in §6 below. On the other hand, the methods of Du and Zhang (2019) are in
many respects quite different from those used in Du, Guth, and Li (2017) to settle the
n = 2 case. Here no polynomial partitioning is used and the refined Strichartz estimates
are not necessary to the argument.(6) Nevertheless, the main novel ingredient in Du
and Zhang (2019) is an ingenious induction-on-scale method which has its roots in the
proof of the refined Strichartz estimates from Du, Guth, and Li (2017) and Du, Guth,
Li, and Zhang (2018). We shall discuss these techniques in §7 below.

1.4. About this article
What follows is an exposition of the proof of Theorem 1.3, following the methods of

Du and Zhang (2019). As described above, the proof combines sophisticated modern
machinery from harmonic analysis and, in particular, the multilinear Strichartz estimates
of Bennett, Carbery, and Tao (2006) and the ℓ2 decoupling theory of Bourgain and
Demeter (2015). We shall introduce these two key ingredients in Theorem 5.5 and
Theorem 6.5 below, but we shall not provide proofs. The rest of the article is self-
contained. Equally important to the argument are a variety of elementary guiding
principles, rooted in Fourier analysis, which govern the behaviour of solutions to the
Schrödinger equation. We shall spend some time in §4 discussing these principles, and
as such this article could serve as an accessible introduction to this highly active area
of harmonic analysis and PDE.

1.5. Acknowledgement
The author wishes to thank Marco Vitturi, Bernat Ramis Vich and an anonymous

referee for many tremendously helpful comments which improved the exposition.

2. NOTATION

Throughout this article, we work either in the space-time domain Rn+1 or spatial
domain Rn. The latter is endowed with the product metric

(9) |z − z̄| = max{|x− x̄|, |t− t̄|} for z = (x, t), z̄ = (x̄, t̄) ∈ Rn+1,

where the norms | · | appearing on the right-hand side are the usual Euclidean norms
on Rd for d = n and d = 1, respectively. The spatial domain, on the other hand, is
endowed with the usual Euclidean metric. We write Bn+1(z,R) for the space-time ball

(6)In Du and Zhang (2019) multilinear refined Strichartz estimates from Du, Guth, Li, and Zhang
(2018) are applied but, as noted in the paper, the more elementary multilinear Strichartz estimates of
Bennett, Carbery, and Tao (2006) suffice for the proof of Theorem 1.3.
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centred at z ∈ Rn+1 of radius R, defined with respect to (9), and Bn(x,R) for the usual
Euclidean ball centred at x ∈ R of radius R. This gives rise to a slight ambiguity in the
notation, but the meaning should always be clear from the context. In some cases we
will write Bn+1

R or Bn
R for Bn+1(0, R) and Bn(0, R), respectively.

Given functions f ∈ L1(Rn) and g ∈ L1(R̂n), we define the Fourier transform of f
and the inverse Fourier transform of g by the integral formulæ

f̂(ξ) :=
∫
Rn
e−ix·ξf(x) dx and ǧ(x) := 1

(2π)n

∫
R̂n
eix·ξg(ξ) dξ.

Note that we distinguish between the spatial domain Rn and the frequency domain R̂n;
this is simply for notational purposes and R̂n can be thought of as a copy of Rn.

Given a set E ⊆ Rd, we let χE : Rd → R denote its characteristic function, so that
χE(x) = 1 if x ∈ E and χE(x) = 0 otherwise. If E is Lebesgue measurable, we let |E|
denote its Lebesgue measure.

An r-cube (or simply a cube) Q ⊂ Rn is a set of the form

Q := x+ [−r/2, r/2]n for some x ∈ Rn and r > 0;

in this case x is referred to as the centre of the cube and r the side-length. Note that,
for the purposes of this article, all cubes have faces parallel to the coordinate axes. We
say Q ⊆ Rn+1 is a lattice r-cube for some r > 0 if it is an r-cube centred at a point
on the integer lattice rZn+1. In the case r = 1, we will also refer to Q as a lattice
unit-cube. Given a cube Q and M > 0, we let M ·Q denote the cube concentric to Q
but side-length scaled by a factor of M .

Given a list of objects L and real numbers A, B ≥ 0, we write A ≲L B or B ≳L A

to indicate A ≤ CLB for some constant CL which depends only items in the list L and
perhaps other admissible parameters such as the dimension n or Lebesgue exponents p.
We write A ∼L B to indicate A ≲L B and B ≲L A.

3. STANDARD REDUCTIONS AND REFORMULATIONS

In this section we perform a series of arguments to reduce Theorem 1.3 to the fractal
energy estimate stated in Theorem 3.6 below. Whilst these arguments are standard (use
of maximal estimates, linearisation, discretisation), the final form of the fractal energy
estimate in Theorem 3.6 is an interesting aspect of the approach.

3.1. Elementary symmetries

For fixed time t ∈ R, the operator eit∆ is a Fourier multiplier, and therefore automat-
ically enjoys a number of special symmetries.(7) In particular, eit∆ commutes with any

(7)We will discuss additional special symmetries particular to eit∆ in §4.2 below.
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other multiplier and, therefore, with (spatial) translations. We call this property spatial
translation invariance. With respect to dilations, the operators satisfy

eit∆(δRf) = δR(eiR2t∆f) where δRf(x) := f(Rx),

and so are dilation invariant up to a scaling of the temporal parameter. Finally, the op-
erators eit∆ form a semigroup, which leads to temporal translation invariance properties,
at least at the level of L2 norms.

3.2. Schrödinger maximal estimates
The first step is to apply a standard argument to reduce the pointwise convergence

problem to bounding a maximal operator.

Theorem 3.1 (Du and Zhang, 2019). — For all s > n
2(n+1) , we have a maximal estimate

(10) ∥ sup
0<t<1

|eit∆f |∥L2(Bn(0,1)) ≲ ∥f∥Hs(Rn) for all f ∈ Hs(Rn).

Here, given f ∈ Hs(Rn), the Hs-norm is defined by

∥f∥Hs(Rn) := ∥(1 − ∆x)s/2f∥L2(Rn).

By a standard argument, Theorem 3.1 implies Theorem 1.3; for completeness, we include
the details below.

The choice of L2 space here is likely sub-optimal and (10) may hold with the left-hand
L2-norm replaced with an Lp-norm for larger p. Indeed, for n = 1 it was shown in
Kenig, Ponce, and Vega (1991) that one may take p = 4 and for n = 2 it was shown
in Du, Guth, Li, and Zhang (2018) that one may take p = 3. These exponents are
sharp. In general, an obvious necessary condition is p ≤ 2 · n+1

n
which arises through

Sobolev embedding. Indeed, since we know limt→0 e
it∆f for f ∈ S(Rn), we can only

hope to have an Hs(Rn) → Lp(Rn) maximal estimate if Hs(Rn) embeds into Lp(Rn).
Surprisingly, a more restrictive necessary condition on p was found in Du, Kim, Wang,
and Zhang (2020) by adapting Bourgain’s counterexample from Bourgain (2016).
Proof (Theorem 3.1 ⇒ Theorem 1.3). — Fix s ≥ 0 and assume (10) holds with implied
constant Cs ≥ 1. Given f ∈ Hs(Rn), define

m(α) :=
∣∣∣{x ∈ Bn(0, 1) : lim sup

t→0+
|eit∆f(x) − f(x)| > α

}∣∣∣.
By spatial translation invariance, it suffices to show

(11) m(α) < ε for all α, ε > 0.

Fix α, ε > 0. By the density of the Schwartz class, there exists some g ∈ S(Rn) such
that

(12) ∥f − g∥Hs(Rn) <
α2ε

4(Cs + 1) .

By the triangle inequality and the linearity of the propagator,

|eit∆f(x) − f(x)| ≤ |eit∆(f − g)(x)| + |f(x) − g(x)| + |eit∆g(x) − g(x)|.
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Taking the lim sup of both sides of the inequality and applying the a priori convergence
result,

lim sup
t→0+

|eit∆f(x) − f(x)| ≤ sup
0<t<1

|eit∆(f − g)(x)| + |f(x) − g(x)|.

Consequently, m(α) ≤ m1(α) +m2(α) where

m1(α) :=
∣∣∣{x ∈ Rn : sup

0<t<1
|eit∆(f − g)(x)| > α/2

}∣∣∣,
m2(α) :=

∣∣∣{x ∈ Rn : |f(x) − g(x)| > α/2
}∣∣∣.

Applying Tchebyshev’s inequality to both m1(α) and m2(α), we have

m(α) ≤ 4
α2

(∥∥∥ sup
0<t<1

|eit∆(f − g)|
∥∥∥2

L2(Rn)
+ ∥f − g∥2

L2(Rn)

)
≤ 4(Cs + 1)α−2∥f − g∥2

Hs(Rn),

where the second inequality is due to the maximal estimate (10) and the embedding of
Hs(Rn) into L2(Rn). The desired bound (11) now follows from (12).

3.3. Littlewood–Paley decomposition
The next step is to recast the Hs(Rn) → L2(Rn) maximal bound in Theorem 3.1 as

an L2(Rn) → L2(Rn) estimate for frequency localised data. We are easily able to do
this since Theorem 3.1 involves an open range of s.

For R ≥ 1, let χA(R) denotes the characteristic function of the frequency annulus

A(R) := {ξ ∈ R̂n : R/2 ≤ |ξ| < R}

and let χA(R)(D) denote the Fourier multiplier operator defined by

χA(R)(D)f := F−1
(
χA(R) · Ff

)
for all f ∈ L2(Rn).

Thus, χA(R)(D) corresponds to a frequency projection to A(R), with a rough cutoff. As
a simple consequence of Plancherel’s theorem,

(13) ∥f∥Hs(Rn) ∼
( ∞∑

k=1
22ks∥χA(2k)(D)f∥2

L2(Rn)

)1/2
+ ∥f∥L2(Rn);

this is known as the Littlewood–Paley characterisation of the Hs-norm.
In view of the characterisation (13), to prove Theorem 3.1 it suffices to show that for

all ε > 0 and all R ≥ 1, the inequality
(14) ∥ sup

0<t<1
|eit∆f |∥L2(Bn(0,1)) ≲ε R

n/(2(n+1))+ε∥f∥L2(Rn)

holds for all f ∈ L2(Rn) with supp f̂ ⊆ A(R). By scaling and exploiting certain pseudo-
local properties of the propagator, the problem is further reduced to the following
proposition.

Proposition 3.2. — For all ε > 0 and all R ≥ 1 the inequality

(15) ∥ sup
0<t<R

|eit∆f |∥L2(Bn(0,R)) ≲ε R
n/(2(n+1))+ε∥f∥L2(Rn)

holds whenever f ∈ L2(Rn) satisfies supp f̂ ⊆ A(1).
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Scaling alone shows that (14) is equivalent to a variant of (15) in which the supremum
is taken over the longer time interval 0 < t < R2. To pass to the shorter time interval,
we use an argument of Lee (2006), based on pseudo-local properties of the operator; we
describe the details in §4.4.

3.4. Linearising the maximal operator

To prove Proposition 3.2, we linearise the maximal operator using the Kolmogorov–
Seliverstov–Plessner method. In particular, it suffices to show, for all ε > 0, R ≥ 1 and
all measurable functions t : Bn(0, R) → (0, R), the inequality

(16)
( ∫

Bn(0,R)
|eit(x)∆f(x)|2 dx

)1/2
≲ε R

n/(2(n+1))+ε∥f∥L2(Rn)

holds for all f ∈ L2(Rn) with supp f̂ ⊆ Bn(0, 1).
Let U denote the operator defined initially on the Schwartz class by

Uf(x, t) := 1
(2π)n

∫
Bn(0,1)

ei(⟨x,ξ⟩+t|ξ|2)f̂(ξ) dξ.

Thus, Uf( · , t) corresponds to the composition of eit∆f with a rough frequency projection
to the unit ball. We think of the estimate (16) as bounding Uf over the space-time
graph Γt := {(x, t(x)) : x ∈ Bn(0, R)} of the measurable function t. This perspective
turns out to be useful and we shall formulate all our key estimates over the space-time
domain.

Since Uf is localised in frequency, we do not expect the values |Uf(z)| to vary greatly
at small scales. This is a manifestation of the uncertainty principle, which is discussed
in detail in §4.1 below. These observations allow us to discretise our setup.

Definition 3.3. — Let Q be a family of lattice unit cubes in Rn+1.
i) We let ZQ denote the union ⋃

Q∈Q Q.
ii) We say Q satisfies the vertical line test if for almost every x ∈ Rn, at most one

cube from Q intersects the line {(x, t) : t ∈ R}.

A lattice unit cube Q should be thought of as a ‘discretised point’ and ZQ for a
family Q satisfying the vertical line test as a ‘discretised graph’. With these definitions,
Proposition 3.2 is a consequence of the following bound.

Proposition 3.4 (Du and Zhang, 2019). — For all ε > 0 and all R ≥ 1, the inequality

∥Uf∥L2(ZQ) ≲ε R
n/(2(n+1))+ε∥f∥L2(Rn)

holds whenever f ∈ L2(Rn) and Q is a collection of unit lattice cubes lying in Bn+1(0, R)
which satisfy the vertical line test.

We will show in detail why the discretised bound in Proposition 3.4 implies the
linearised maximal estimate (16) in §4.1 below.
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3.5. Fractal energy estimates

Proposition 3.4 is in fact a special case of a significantly more general theorem proved
in Du and Zhang (2019). Here we describe the general framework, which we adopt for
the remainder of the exposition.

Definition 3.5. — Let M > 0 and Q be a family of lattice M-cubes in Rn+1.
i) For 1 ≤ α ≤ n+ 1 and a space-time ball B ⊆ Rn+1, we define

∆α(Q, B) := #{Q ∈ Q : Q ⊂ B}
rad(B)α

,

where rad(B) denotes the radius of B.
ii) Furthermore, let

∆α(Q) := sup
B

∆α(Q, B)

where the supremum is taken over all space-time balls B = Bn+1(z, r) ⊆ Rn+1.

If 1 ≤ M ≤ R and Q is a non-empty collection of lattice M -cubes contained in
Bn+1(0, R), then it follows from the definition that

M−α ≲ ∆α(Q) and #Q ≲ ∆α(Q)Rα.

We may now (finally) state the main result of Du and Zhang (2019).(8)

Theorem 3.6 (Du and Zhang, 2019). — For all ε > 0 and all R ≥ 1, 1 ≤ α ≤ n+ 1,
the inequality

(17) ∥Uf∥L2(ZQ) ≲ε ∆α(Q)1/(n+1)Rα/(2(n+1))+ε∥f∥L2(Rn)

holds whenever f ∈ L2(Rn) and Q is a family of lattice unit cubes in Bn+1(0, R).

If Q satisfies the vertical line test, then it is not difficult to see ∆n(Q) ≲ 1. Conse-
quently, Theorem 3.6 implies Proposition 3.4 and therefore, by the preceding reductions,
also pointwise convergence result in Theorem 1.3.

We refer to the estimate (17) as a fractal energy estimate. This terminology is partly
motivated by the conservation of energy identity (4). Indeed, from (4) we have

(18) ∥Uf∥L2(ZQ) ≤
( ∫ R

−R
∥eit∆f∥2

L2(Rn) dt
)1/2

≲ R1/2∥f∥L2(Rn),

which directly implies the α = n + 1 case of Theorem 3.6. For general exponents
1 ≤ α ≤ n + 1, it is useful to think of a family of cubes Q satisfying ∆α(Q) ≲ 1 as a
discretised version of an α-dimensional ‘fractal’ set.

There are two main advantages in working with the general framework of fractal
energy estimates:

(8)In fact, Du and Zhang (2019) prove a further strengthening of Theorem 3.6 involving an additional
parameter λ: see Du and Zhang (2019, Theorem 1.6). However, this strengthened result is unnecessary
for typical applications and so here we stick to the simpler statement in Theorem 3.6.
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1) Theorem 3.6 has an array of additional applications beyond the pointwise convergence
problem for the Schrödinger maximal function. These include estimates for the
dimension of the divergence set in the Carleson problem and partial results towards
the Falconer distance conjecture. We refer to Du and Zhang (2019, §2) for further
details.

2) The form of the estimate in (17) is useful when it comes to the proof. In particular,
the arguments involve an induction scheme and the inclusion of the ∆α(Q) factor
allows greater leverage from the induction hypothesis.(9)

For the remainder of this article we shall discuss the proof of Theorem 3.6. We start
with some basic background in harmonic analysis and dispersive PDEs in §4, before
moving to more advanced topics in §§5–7.

4. BASIC TOOLS FROM HARMONIC ANALYSIS

4.1. The uncertainty principle
We begin with a discussion of the uncertainty principle for the Fourier transform.

This is a set of heuristics which roughly state:
If F̂ is localised at scale R−1, then |F | should be locally constant at scale R.

The following lemma provides a rigorous interpretation of this principle at the unit
scale.

Lemma 4.1 (Locally constant property). — There exists a continuous function η : Rd →
[0,∞) satisfying the following:

i) If F ∈ S(Rd) satisfies supp F̂ ⊆ Q0 := [−1/2, 1/2]d, then

(19) |F (z)| ≤
∑

Q∈Qall

aQχQ(z) ≲ |F | ∗ η(z) for all z ∈ Rd

where here Qall is the collection of all lattice unit cubes in Rd and

aQ := sup
z∈Q

|F (z)| for all Q ∈ Qall.

ii) The function η is L1-normalised and rapidly decaying away from Q0 in the sense
that

η(z) ≲N (1 + 2|z|∞)−N for all N ∈ N.

Proof. — Fix η0 ∈ S(Rd) satisfying η̂0(ξ) = 1 for all ξ ∈ [−1, 1]d. Thus, if F ∈ S(Rd)
satisfies the hypothesis of part i), we have the reproducing formula F = F ∗ η0. In
particular, given Q ∈ Qall and zQ ∈ Q chosen to satisfy |F (zQ)| = aQ, it follows that

aQ = |F (zQ)| ≤
∫
Rd

|F (y)||η0(zQ − y)| dy.

(9)The induction argument is not applied to the statement in Theorem 3.6 itself, but a variant described
in Proposition 7.2.
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Now define η : Rd → [0,∞) by

η(z) := sup
|w−z|∞≤1

|η0(w)|.

The rapid decay of the Schwartz function η0 then ensures η is rapidly decaying away
from [−1, 1]d. It therefore only remains to show that (19) holds.

If z ∈ Q is an arbitrary element, then

|(zQ − y) − (z − y)|∞ ≤ 1 for all y ∈ Rd.

Consequently, |η0(zQ − y)| ≤ η(z − y) for all y ∈ Rd, and so

aQ ≤ |F | ∗ η(z) for all z ∈ Q,

which immediately implies the second inequality in (19). On the other hand, the first
inequality in (19) is a trivial consequence of the definitions.

We may use the rigorous formulations of the uncertainty principle introduced above
to justify the discretisation procedure described in §3.4.
Proof (Proposition 3.4 ⇒ Proposition 3.2). — Assume Proposition 3.4 holds. Recall
that it suffices to show the linearised maximal estimate (16).

Let χ̃ ∈ S(Rn+1) satisfy |χ̃(z)| ≳ 1 for all |z| ≤ 2 and supp F χ̃ ⊆ Bn+1(0, 1). Defining

F (z) := Uf(z) · χ̃(R−1z),

then it follows that |Uf(z)| ≲ |F (z)| for all z ∈ Bn+1(0, 2R) and supp F̂ ⊆ Bn+1(0, 2).
The proof will follow from the resulting locally constant properties of the function F .

Fix ε > 0 and a measurable function t : Bn(0, R) → (0, 1] and let qR denote the
collection of lattice unit cubes in Rn which intersect Bn(0, R). For each q ∈ qR there
exists some choice of xq ∈ q such that

sup
x∈q

|eit(x)∆f(x)| ≤ 2|eit(xq)∆f(xq)|.

If we define zq := (xq, t(xq)) for each q ∈ qR, then it follows that( ∫
Bn(0,R)

|eit(x)∆f(x)|2 dx
)1/2

≲
( ∑

q∈qR

|F (zq)|2
)1/2

.

For each q ∈ qR let Iq ⊆ R denote a choice of lattice unit interval containing t(xq)
and define Qq := q × Iq. By Lemma 4.1, we have

|F (zq)| ≲ ∥|F | ∗ η∥L2(Qq)

where η is rapidly decaying away from the unit cube in Rn+1 centred at the origin. In
particular, if we let δ := ε/(2n) and define the enlarged cube Q(δ)

q := Rδ ·Qq, then

|F (zq)| ≲N,ε ∥F∥
L2(Q(δ)

q ) +R−N∥F∥L2(Rn+1) for all N ∈ N0.

Thus, if we define the family of space-time unit cubes Q(δ) := {Q(δ)
q : q ∈ qR}, then

(20)
( ∫

Bn(0,R)
|eit(x)∆f(x)|2 dx

)1/2
≲ ∥Uf∥L2(ZQ(δ) ) +R−100n∥Uf∥L2(w

Bn+1
R

),
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for wBn+1
R

a weight adapted to Bn+1
R . The rapidly decaying error term is easily bounded

using the conservation of energy identity. In particular, it follows from the rapid decay
of the weight and translation invariance properties of the operator that

(21) ∥Uf∥L2(w
Bn+1

R

) ≲ R1/2∥f∥L2(Rn).

On the other hand, the set ZQ(δ) can be covered by O(R(n+1)δ) sets of the form ZQ
where Q is a family of unit lattice cubes satisfying the hypotheses of Proposition 3.4
(and, in particular, the vertical line test). For any such Q, we may apply Proposition 3.4
to deduce that

∥Uf∥L2(ZQ) ≲ε R
n/(2(n+1))+δ∥f∥L2(Rn).

Summing together these contributions, we obtain an estimate for ∥Uf∥L2(ZQ(δ) ). This
can be combined with (20) and (21) to deduce the desired bound (16).

We now discuss some further manifestations of the uncertainty principle which are of
use in later arguments.

By the basic scaling properties of the Fourier transform, Lemma 4.1 implies a gen-
eralisation of itself. We define a parallelepiped to be set π ⊆ Rd given by the image
of Q0 := [−1/2, 1/2]d under an affine transformation. In particular, π = A(Q0) + a

for some A ∈ GL(d,R) and a ∈ Rd. Given such a parallelepiped, we define the dual
parallelepiped π∗ := A−⊤(Q0), where A−⊤ is the inverse transpose of A, and

Pall(π) := {A−⊤Q : Q ∈ Qall}.

Thus, Pall(π) is a family of translates of π∗ which tile the whole of Rd.
As a direct consequence of Lemma 4.1 and an obvious change of variables, we obtain

the following.

Corollary 4.2. — Let π ⊆ R̂d be a parallelepiped. There exists a function ηπ : Rn →
[0,∞) satisfying the following:

i) If F ∈ S(Rd) satisfies supp F̂ ⊆ π, then

(22) |F (z)| ≤
∑

P ∈Pall(π)
aPχP ≲ |F | ∗ ηπ(z) for all z ∈ Rd

where Pall(π) is as defined above and

aP := sup
z∈P

|F (z)| for all P ∈ Pall(π).

ii) The function ηπ is L1-normalised and rapidly decaying away from π∗ in the sense
that

η(z) ≲N |π∗|−1(1 + |z|π∗)−N for all N ∈ N.

Here | · |π∗ is the norm given by the Minkowski function of π∗.



1205–15

Corollary 4.2 realises the uncertainty principle by allowing us to pass from F to its
discretisation over Pall(π) and back again. However, the appearance of the mollifier ηπ

on the right-hand side of (22) is a source of minor annoyance. It can be removed at the
level of Lq(Rd) norm estimates: for instance, combining (19) with Young’s inequality
we deduce that

∥F∥Lq(Rd) ≤
( ∑

P ∈Pall(π)
|aP |q|P |

)1/q

≲ ∥F∥Lq(Rd)

for all 1 ≤ q < ∞. Generalising this argument, we arrive at the following fundamental
estimate.

Lemma 4.3 (Bernstein inequality). — Let 1 ≤ p ≤ q ≤ ∞ and suppose F ∈ S(Rd)
satisfies supp F̂ ⊆ π for some parallelepiped π ⊆ R̂d. Then

∥F∥Lq(Rd) ≲ |π|1/p−1/q∥F∥Lp(Rd).

The moral here is that, by the locally constant property, F behaves like a discrete
function and, consequently, the Lp norms of F satisfy a nesting property like the ℓp

norms of a sequence.
Proof (of Lemma 4.3). — We assume q < ∞; the same proof goes through for q = ∞
mutatis mutandis. Fix F ∈ S(Rd) satisfying the Fourier support hypothesis and apply
Corollary 4.2 to bound

|F | ≤
∑

P ∈Pall(π)
aPχP .

Since |P | = |π|−1 for any P ∈ Pall(π), by the nesting of ℓp norms,

∥F∥Lq(Rd) ≤
( ∑

P ∈Pall(π)
|aP |q|P |

)1/q

≤ |π|1/p−1/q
( ∑

P ∈Pall(π)
|aP |p|P |

)1/p

.

Applying Corollary 4.2, we have( ∑
P ∈Pall(π)

|aP |p|P |
)1/p

=
∥∥∥∥ ∑

P ∈Pall(π)
|aP |χP

∥∥∥∥
Lp(Rd)

≲ ∥|F | ∗ ηπ∥Lp(Rd).

The desired result now follows by Young’s convolution inequality.

The Bernstein inequality can be localised in space, provided this localisation occurs at
a scale which is coarse enough to respect the uncertainty principle. Before we state this
local version, we introduce the following definition which plays a somewhat technical
rôle in our arguments.

Definition 4.4. — Let S0 ⊆ Rd be a symmetric convex body(10) and S := S0 + z0
some translate of S. We say a function wS : Rd → [0,∞) is a (rapidly decaying) weight
adapted to S if wS is continuous and satisfies

wS(z) ≲N (1 + |z − z0|S0)−N for all N ∈ N,

(10)In practice, we will only consider simple examples such as euclidean balls, cubes and cartesian
products of these sets.
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where here | · |S0 is the norm given by the Minkowski function of S0.

Such weight functions are used to account for ‘Schwartz tails errors’ which arise
when attempting to localise a function simultaneously in the physical and the frequency
domain.

Corollary 4.5 (Local Bernstein inequality). — Let 1 ≤ p ≤ q ≤ ∞, and π ⊆ R̂d be a
parallelepiped. For every P ∈ Pall(π) there exists a rapidly decaying weight wP adapted
to P such that the following holds. If F ∈ S(Rd) satisfies supp F̂ ⊆ π, then

∥F∥Lq(P ) ≲ |π|1/p−1/q∥F∥Lp(wP ).

Proof. — We may assume without loss of generality that p < ∞. It is a simple exercise
to show that there exists some βP ∈ S(Rd) with supp β̂P ⊆ π satisfying

1 ≲ |βP (z)| for all z ∈ P

and such that |βP (z)| is a rapidly decaying weight adapted to P . The functionG := F ·βP

has Fourier support in the Minkowski sum π+π and satisfies |F (z)| ≲ |G(z)| for all z ∈ P .
Applying Bernstein’s inequality to G, the desired result follows with wP := |βP |p.

4.2. Parabolic geometry
Given f ∈ S(Rn) with supp f̂ ⊆ Bn(0, 1), we recall the integral formula for the

solution
Uf(x, t) = 1

(2π)n

∫
Bn(0,1)

eiϕ(x,t;ξ)f̂(ξ) dξ,

where the phase function ϕ is given by

ϕ(x, t; ξ) := ⟨x, ξ⟩ + t|ξ|2.

The phase ϕ can be interpreted as the inner product of the space-time vector (x, t) ∈ Rn+1

with a point lying on the bounded piece of the paraboloid

(23) Σ0 :=
{
Σ(ξ) : ξ ∈ B(0, 1)

}
⊂ Σ :=

{
Σ(ξ) : ξ ∈ R̂n

}
where Σ(ξ) := (ξ, |ξ|2). It follows that the (distributional) spatio-temporal Fourier
transform of Uf is supported on Σ0.

The geometry of Σ underpins our entire analysis of the propagator eit∆. As a first
example of this, we observe certain symmetries of the paraboloid, which translate into
symmetries of the propagator.

Any ball θ ⊂ R̂n of radius r corresponds to a cap, or r-cap, on the paraboloid, given
by

Σθ :=
{
Σ(ξ) : ξ ∈ θ

}
.

In view of this, we shall often refer to balls θ ⊂ R̂n themselves as ‘caps’. Note that the
bounded piece of the paraboloid Σ0 featured in (23) corresponds to the cap formed over
the unit ball centred at the origin. We observe an important self-similarity property of
the paraboloid, relating every cap to Σ0.
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Lemma 4.6 (Parabolic rescaling: geometric version). — Given a cap Σθ, corresponding
to a ball θ ⊆ R̂n, there exists an affine transformation Aθ of the ambient space R̂n+1

which restricts to a bijection from Σ0 to Σθ.

Remark 4.7. — By inverting and composing affine transformations, Lemma 4.6 further
implies that given any two caps Σθ1 , Σθ2 , there exists an affine transformation Aθ2→θ1

of the ambient space R̂n+1 which restricts to a bijection from Σθ2 to Σθ1 .

Before giving the (simple) proof of Lemma 4.6, we introduce some notation and, in
fact, give an explicit formula for Aθ. Given a ball θ ⊂ R̂n, let ξθ denote its centre and
rad(θ) its radius. We let Mθ be the shear transformation and Dθ the anisotropic scaling
on R̂n+1 defined by

Mθ :=
(
In 0

2ξ⊤
θ 1

)
and Dθ :=

(
rad(θ)In 0

0 rad(θ)2

)
;

here In denotes the n× n identity matrix. It will be shown in the proof below that the
affine transformation Aθ in the statement of Lemma 4.6 can be taken to be

(24) Aθ : ζ 7→ (Lθ)⊤ ζ + Σ(ξθ) where Lθ := Dθ ◦M⊤
θ ,

where here ⊤ is used to denote the matrix transpose.
Proof (of Lemma 4.6). — Let θ ⊆ R̂n be a ball, so that the map

η 7→ ξθ + rθη for η ∈ R̂n

restricts to a bijection from B(0, 1) to θ. Here rθ := rad(θ). Moreover, if we fix ξ ∈ θ

and write ξ = ξθ + rθη, then a simple computation shows that

(25) Σ(ξ) = Σ(ξθ) +Mθ ◦DθΣ(η)

where Mθ and Dθ are as defined above. Indeed, (25) follows directly from the expansion
of the inner product

|ξ|2 = |ξθ + rθη|2 = |ξθ|2 + 2rθ ⟨ξθ, η⟩ + r2
θ |η|2,

which may also be interpreted as a Taylor series expansion. Thus, the map Aθ defined
in (24) satisfies the desired property.

We now relate the scaling property of the paraboloid to the solution operator U via
the formula ϕ(z; ξ) := ⟨z,Σ(ξ)⟩ for z = (x, t) ∈ Rn+1.

Corollary 4.8 (Parabolic rescaling). — Let θ ⊂ R̂n be ball and suppose f ∈ L2(Rn)
satisfies supp f̂ ⊆ θ ∩Bn(0, 1). Then

(26) |Uf(z)| = rad(θ)n/2|Uf̃ ◦ Lθ(z)|

for some function f̃ ∈ L2(Rn) satisfying

(27) ∥f̃∥L2(Rn) = ∥f∥L2(Rn) and supp F(f̃) ⊆ Bn(0, 1).

Here the linear rescaling Lθ is as defined in (24).
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Proof (of Corollary 4.8). — Let ξθ denote the centre of θ and rθ := rad(θ). We simply
define f̃ via the Fourier transform by

F(f̃)(η) := r
n/2
θ f̂(ξθ + rθη),

so that (27) immediately holds. On the other hand, we apply a change of variables to
write

Uf(z) = r
n/2
θ

∫
R̂n
eiϕ(z;ξθ+rθη)F(f̃)(η) dη.

The remaining property (26) now follows from the identity

ϕ(z; ξθ + rθη) = ⟨z,Σ(ξθ + rθη)⟩ = ⟨z,Σ(ξθ)⟩ + ⟨Lθz,Σ(η)⟩,

which is itself a simple consequence of (25) and the definition of Lθ.

4.3. Wave packets

We now analyse solutions to the Schrödinger equation for a class of very simple,
well-behaved initial data. We shall see that the behaviour of our solutions is closely
related to the geometry of the paraboloid Σ.

Example 4.9 (Unit-scale localised datum). — Fix ψ ∈ S(Rn) with non-negative Fourier
transform satisfying

supp ψ̂ ⊆ Bn(0, 4) and ψ̂(ξ) = 1 for all ξ ∈ Bn(0, 2).

By a simple integration-by-parts argument, the propagator

eit∆ψ(x) = 1
(2π)n

∫
R̂n
ei⟨x,ξ⟩

(
eit|ξ|2ψ̂(ξ)

)
dξ

satisfies

(28) |eit∆ψ(x)| ≲N (1 + |x|)−N for all N ∈ N0 whenever |t| ≤ 1.

Indeed, the point here is that for |t| ≤ 1, the functions eit| · |2ψ̂ form a uniformly bounded
family in the Schwartz class.

Example 4.10 (Wave packets). — We now rescale and translate the unit-scale localised
datum ψ to create a rich family of examples. Let ρ ≥ 1 and θT ⊂ Bn(0, 1) be a ball of
radius ρ−1/2 centred at ξT ∈ R̂n. Consider the L2-normalised function ψθT

given by(11)

(29) ψ̂θT
(ξ) := ρn/4ψ̂

(
ρ1/2(ξ − ξT )

)
.

In addition, for xT ∈ Rn we consider the translated datum

(30) ψT (x) := ψθT
(x− xT ).

Thus, ψT corresponds to a modulated bump function spatially localised in a ball of
radius ρ1/2 centred at xT and has frequency support lying in 4 · θT .

(11)The reason for the apparently superfluous subscript T will be made clear below.
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x

eit∆ψT (x)

(a) A wave packet at time t. The wave
packet is concentrated in an interval in the
physical space and, as time evolves, travels
with fixed velocity v(T ) = −2ξT propor-
tional to the frequency ξT .

t = 0

t = ρ/2

t = ρ

(b) A space-time tube T . The tube de-
scribes the spatial localistion of the solu-
tion UψT at each time slice. Three such
time slices are illustrated in the figure.

Figure 1. Two perspectives on wave packets.

It follows from parabolic rescaling in the form of Corollary 4.8, translation invariance
and (28) that

|eit∆ψT (x)| ≲N (1 + ρ−1/2|x− xT + 2tξT |)−N for all N ∈ N0 whenever |t| ≤ ρ.

Thus, during the time interval |t| ≤ ρ, the solution at time t is concentrated in the
spatial ball B(xT − 2tξT , ρ

1/2), in the sense that eit∆ψT rapidly decays away from this
set. We illustrate this phenomenon in 1 spatial dimension in Figure 1a. This solution
is an example of what is known as a wave packet.

We highlight the basic properties of the wave packets from Example 4.10:

– The initial datum ψT (and the solution eit∆ψT at each fixed time) is frequency
supported in a ball centred at ξT of radius ∼ ρ−1/2;

– For each time t satisfying |t| ≤ ρ the solution is concentrated in a spatial ball of
radius ρ1/2;

– The spatial ball travels from the initial position xT at t = 0 along a linear trajectory
with velocity −2ξT . In particular, the velocity is determined by the frequency.

This illustrates the fundamental dispersion relation between the velocity v of a
Schrödinger wave and its frequency ξ, summed up by the formula

v = −2ξ.

The fact that waves of different frequency travel with different velocities (and therefore
disperse at large time scales) is the defining characteristic of dispersive PDE.
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Remark 4.11. — For our wave packets ψT , we have localised the frequency at scale ρ−1/2

so that the distinct frequency modes making up the wave eit∆ψT travel at the same
velocity up to an error of O(ρ−1/2). Consequently, the wave packet remains ‘stable’ for
the time scale |t| ≤ ρ. Beyond this time scale, the difference in velocities between the
distinct modes causes the wave packet to disperse.

In view of what follows, it is useful to adopt a new perspective and visualise the wave
packet eit∆ψT (x) as a function on the spatio-temporal domain Rn+1.

Definition 4.12. — For ρ ≥ 1, a space-time ρ-tube, or simply a ρ-tube, is a set
T ⊂ Rn+1 of the form

T :=
{
(x, t) ∈ Rn+1 : |x− x(T ) − tv(T )| ≤ ρ1/2 and |t| ≤ ρ

}
for some x(T ), v(T ) ∈ Rn. In this case, we say T has initial position x(T ), velocity
v(T ), duration ρ and spatial radius ρ1/2.

As a function of (x, t), we see that the wave packet(12) UψT (x, t) is concentrated on
the space-time tube T centred at xT with velocity v(T ) = −2ξT , duration ρ and spatial
radius ρ1/2; see Figure 1b. In particular, if for 0 < δ < 1 we define the slightly enlarged
space-time tube

(31) T (δ) :=
{
(x, t) ∈ Rn+1 : |x− x(T ) − tv(T )| ≤ ρ1/2+δ and |t| ≤ ρ

}
,

then

(32) |UψT (x, t)| ≲δ,N ρ−N if (x, t) ∈ Bn+1(0, ρ) \ T (δ).

We update our notation to accommodate our change in perspective. If T ⊂ Rn+1 is a
space-time ρ-tube as in Definition 4.12, then we define θT ⊂ R̂n to be the ball centred
at ξT := −v(T )/2 of side-length ρ−1/2. Moreover, we let ψT denote the function (30)
from Example 4.10.

Note that a ρ-tube T is centred around its core line

ℓT := {(x, t) ∈ Rn+1 : x = xT − 2tξT }.

This has direction G(ξT ) where

(33) G(ξ) := 1√
1 + 4|ξ|2

(
−2ξ

1

)
;

we will also refer to G(ξT ) as the direction of T . Note that G is precisely the Gauss
map associated to the paraboloid Σ. Thus, the direction of the tube T corresponds to
the normal vector to the paraboloid at the centre of the cap ΣT associated to θT .

(12)By the hypothesis θ ⊆ Bn(0, 1), we have eit∆ψT (x) = UψT (x, t).
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G(ξT )

θT ⊂ τT

(a) Each ρ−1/2-cap θT is contained in a
rectangle τT of dimension approximately
ρ−1/2 × · · · × ρ−1/2 × ρ−1, with short side
in the direction of G(ξT ).

G(ξT )

T

(b) The space-time ρ-tube T associated to
the cap θT . This tube has dimensions
ρ1/2 × · · · × ρ1/2 × ρ, with long side in the
direction of G(ξT ).

Figure 2. The wave packets decomposition respects the uncertainty principle.

Remark 4.13. — These observations are consistent with the uncertainty principle and
should be compared with the statement of Corollary 4.2. Indeed, eit∆ψT (x) has spatio-
temporal Fourier support in ΣθT

. This cap is itself contained in a rectangle τT centred
at ξT with n sides of length O(ρ−1/2) lying in the tangent directions of Σ at Σ(ξT )
and a remaining side of length O(ρ−1) lying in the normal direction. The (essential)
spatial-temporal support T therefore corresponds to a translate of the dual τ ∗

T of the
frequency support τT . See Figure 2.

4.4. Wave packet decomposition

The examples considered of the previous section appear rather specialised. Never-
theless, using a Fourier series decomposition, any initial datum f ∈ L2(Rn) can be
expressed as a superposition

f =
∑
T ∈T

aTψT

where T is a (possibly infinite) collection of space-time tubes; the ψT are basic initial
data introduced above and (aT )T ∈T is a sequence of complex coefficients. Consequently,

eit∆f =
∑
T ∈T

aT e
it∆ψT

and so any solution can be realised as a superposition of wave packets. This observation
is referred to as the wave packet decomposition. It is essentially a consequence of the
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uncertainty principle and is closely related to the local constancy property described in
Corollary 4.2.

Definition and basic properties. — Turning to the precise details, we first introduce
some notation.

Definition 4.14. — For ρ ≥ 1, let T[ρ] denote the collection of all space-time ρ-tubes
as in Definition 4.12 where

– The initial position x(T ) is free to vary over the lattice ρ1/2Zn;
– The velocity v(T ) is free to vary over the lattice cnρ

−1/2Zn.
Here cn := 1/2n1/2 is a fixed constant which plays a minor technical rôle.

The precise form of the wave packet decomposition is given by the following lemma.

Lemma 4.15 (Wave packet decomposition). — Given f ∈ L2(Rn) with supp f̂ ⊆
Bn(0, 1/2) and ρ ≥ 10 we may write

(34) f =
∑

T ∈T[ρ]
fT

where the functions fT ∈ S(Rn) satisfy the following:
i) Dispersion relation. Let T ∈ T[ρ] and suppose fT is not identically 0. Then

|v(T ) + 2ξ| ≤ 2ρ−1/2 for some ξ ∈ supp f̂ .

ii) Orthogonality. For any collection W ⊆ T[ρ], we have

(35)
∥∥∥ ∑

T ∈W
fT

∥∥∥2

L2(Rn)
≲

∑
T ∈W

∥fT ∥2
L2(Rn) ≲ ∥f∥2

L2(Rn).

iii) Spatio-temporal localisation. If for T ∈ T[ρ] and 0 < δ < 1 we define the
slightly enlarged space-time tube T (δ) as in (31), then

(36) |UfT (x, t)| ≲δ,N ρ−N∥f∥L2(Rn) if (x, t) ∈ Bn+1(0, ρ) \ T (δ).

We refer to (34) as the wave packet decomposition of f at scale ρ.

The idea is to first decompose f as a sum of pieces fθ, each frequency supported in
some cap θ. The individual fθ are then further decomposed using Fourier series. Before
giving the details, we fix some notation. For ρ ≥ 1 and let

Θ[ρ] :=
{
B(ξT , ρ

−1/2) : ξT ∈ cnρ
−1/2Zn ∩Bn(0, 2)

}
denote a covering of Bn(0, 2) by ρ−1/2-caps. As at the end of §4.3, we associate to each
T ∈ T[ρ] a cap θT ∈ Θ[ρ] with centre ξT satisfying the dispersion relation v(T ) = −2ξT .

Fix ϕ ∈ S(Rn) satisfying(13)

supp ϕ̂ ⊆ [−cn, cn]n and
∑

k∈Zn

ϕ̂(ξ − cnk) = 1 for all ξ ∈ R̂n.

(13)To construct such a function, choose β ∈ C∞
c (Rn) such that suppβ ⊆ Q0 := [−1/2, 1/2]n and∫

R β = 1. Since
∑

k∈Zn χQ0 ∗ β( · − k) ≡ 1, we may take ϕ̂ to be a suitable scaling of χQ0 ∗ β.
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Furthermore, let ψ ∈ S(Rn) be as in Example 4.9, so that

(37) ϕ̂(ξ) = ϕ̂(ξ)ψ̂(ξ) for all ξ ∈ R̂n.

Given a cap θT ∈ Θ[ρ] with centre ξT , define ϕθT
∈ S(Rn) by

ϕ̂θT
(ξ) := ϕ̂(ρ1/2(ξ − ξT )).

The family of functions ϕ̂θT
then forms a partition of unity subordinate to the covering

Θ[ρ] of Bn(0, 2). Consequently,

(38) f =
∑

θT ∈Θ[ρ]
fθT

where fθT
:= ϕθT

∗ f.

With these definitions, we turn to the proof of the wave packet decomposition.
Proof (of Lemma 4.15). — For fθT

as defined in (38), it follows that f̂θT
is compactly

supported in a cube of side-length ρ−1/2. Consequently, we can expand f̂θT
as a (suitably

scaled) Fourier series, giving

(39) f̂θT
(ξ) =

∑
k∈ρ1/2Zn

ρn/2e−i⟨ξ,k⟩fθT
(k) =

∑
k∈ρ1/2Zn

ρn/4e−i⟨ξ,k⟩fθT
(k)ψ̂θT

(ξ).

Here the convergence can be taken in the L2 sense and ψθ is as defined in (29). For the
second step in (39) we have used (37). Note, by Plancherel’s theorem,∑

k∈ρ1/2Zn

|fθT
(k)|2 = ρ−n/2∥fθ∥2

L2(Rn).

In light of the above, we may write

f =
∑

T ∈T[ρ]
fT where fT (x) := ρn/4fθT

(x(T ))ψ̂T (x)

for ψT as defined in (30). It remains to prove the functions fT have the desired properties.
i) Dispersion relation. From the definitions, supp ϕ̂θT

lies in the ball θT of radius
ρ−1/2. If fT is not identically zero, then fθT

is not identically zero. In this case, θT must
intersect the frequency support of f , which immediately implies the desired property.
ii) Orthogonality. For each θ ∈ Θ[ρ], let Tθ[ρ] denote the collection of all tubes
T ∈ T[ρ] associated to θ and Wθ := W ∩ Tθ[ρ]. Since the functions ∑T ∈Wθ

fT have
finitely overlapping Fourier support,

(40)
∥∥∥ ∑

T ∈W
fT

∥∥∥2

L2(Rn)
=
∥∥∥ ∑

θ∈Θ[ρ]

∑
T ∈Wθ

fT

∥∥∥2

L2(Rn)
≲

∑
θ∈Θ[ρ]

∥∥∥ ∑
T ∈Wθ

fT

∥∥∥2

L2(Rn)
,

where in the final step we use Plancherel’s theorem and the Cauchy–Schwarz inequality.
Fix θ ∈ Θ[ρ] and note that supp ψ̂θ lies in the cube θ̃ concentric to θ with side-length

8ρ−1/2. In particular, by Plancherel’s theorem (and periodicity),

(41)
∥∥∥ ∑

T ∈Wθ

fT

∥∥∥2

L2(Rn)
≲ ρn

∥∥∥ ∑
T ∈Wθ

fθ(x(T ))e−i⟨ξ,x(T )⟩
∥∥∥2

L2(θ̃)
∼ ρn/2 ∑

T ∈Wθ

|fθ(x(T ))|2.

However, from the definition of fT and the choice of normalisation of ψT , it follows that

(42) ρn/2|fθ(x(T ))|2 ∼ ∥fT ∥2
L2(Rn) for any T ∈ Tθ[ρ].
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Combining (40), (41) and (42), we deduce∥∥∥ ∑
T ∈W

fT

∥∥∥2

L2(Rn)
≲

∑
T ∈W

∥fT ∥2
L2(Rn),

which is the first of the desired inequalities.
On the other hand, in view of (39) and (42), we have∑

T ∈W
∥fT ∥2

L2(Rn) ≲ ρn/2 ∑
θ∈Θ[ρ]

∑
T ∈Wθ

|fθ(x(T ))|2 ≲
∑

θ∈Θ[ρ]
∥fθ∥2

L2(Rn) ≲ ∥f∥L2(Rn),

where the last inequality follows since the fθ has finitely-overlapping frequency support.
iii) Spatio-temporal locality. It follows from (32) that
(43) |UfT (x, t)| ≲N ρ−N |fθT

(x(T ))| if (x, t) ∈ Bn+1(0, ρ) \ T (δ).
However, since fθT

has Fourier support in a small ball, it follows from Bernstein’s
inequality and the orthogonality properties of the wave packets that
(44) |fθT

(x(T ))| ≤ ∥fθT
∥L∞(Rn) ≲ ∥fθT

∥L2(Rn) ≲ ∥f∥L2(Rn).

Combining (44) and (43) gives the desired bound.

We can use Lemma 4.15 to address a point left open from §3. The following argument
is essentially taken from Lee (2006).
Proof (Proposition 3.2 ⇒ Theorem 3.1). — Assume Proposition 3.2 holds. For all ε >
0 and R ≥ 1, it suffices to show
(45) ∥ sup

0<t<R2
|eit∆f |∥L2(Bn(0,R)) ≲ε R

n/(2(n+1))+ε∥f∥L2(Rn)

for all f ∈ L2(Rn) with supp f̂ ⊆ A(1). Indeed, as discussed in §3.3, the desired result
then follows from a simple scaling argument and the Littlewood–Paley characterisation
of Hs(Rn).

Fix ε > 0, R ≥ 1 and f ∈ L2(Rn) with supp f̂ ⊆ A(1). Let IR be the collection of all
lattice R-intervals which intersect the long time interval [0, R2]. Trivially, we have

∥ sup
0<t≤R2

|eit∆f |∥L2(Bn(0,R)) = ∥ sup
I∈IR

sup
t∈I

|eit∆f |∥L2(Bn(0,R))

≤
( ∑

I∈IR

∥ sup
t∈I

|eit∆f |∥2
L2(Bn(0,R))

)1/2
.(46)

On the other hand, by Proposition 3.2 and the invariance of the estimates under temporal
translation,
(47) ∥ sup

t∈I
|eit∆g|∥L2(Bn(0,R)) ≲ε R

n/(2(n+1))+ε/2∥g∥L2(Rn) for all I ∈ IR

whenever g ∈ L2(Rn) with supp ĝ ⊆ A(1).
In order to sum the estimates from (47) we observe a certain orthogonality between

the localised maximal operators associated to distinct time intervals I. We first discuss
this orthogonality at a heuristic level. As above, let T[R] denote the collection of all
space-time R-tubes. Since supp f̂ ⊆ A(1), given T ∈ T[R] the wave packet eit∆fT has
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speed |v(T )| ∼ 1. This means that the wave eit∆fT spends roughly R units of time
in the spatial ball Bn(0, R). Hence, for each T ∈ T[R] there is essentially a unique
time interval I ∈ IR for which supt∈I |eit∆fT | is non-negligible. Thus, each wave packet
contributes only to a single term in the sum on the right-hand side of (46); since the
functions (fT )T ∈T[R] are themselves orthogonal, this leads to the desired orthogonality
between the maximal operators.

We now turn to the formal details of the proof. Fix δ := ε/2 and for each I ∈ IR, let
QI := Bn(0, R) × I and Q

(δ)
I := Rδ ·QI . Define

(48) TI [R] :=
{
T ∈ T[R] : T ∩Q

(δ)
I ̸= ∅ and 1/4 ≤ |v(T )| ≤ 2

}
so that, by frequency support hypotheses on f and the spatio-temporal locality of the
wave packets,

(49) ∥ sup
t∈I

|eit∆f |∥L2(Bn(0,R)) ≲ε ∥ sup
t∈I

|eit∆fI |∥L2(Bn(0,R)) +R−100n∥f∥L2(Rn)

where
fI :=

∑
T ∈TI [R]

fT .

The key observation is that the sets TI [R] are essentially disjoint: more precisely,

(50) max
T ∈T[R]

#{I ∈ IR : T ∈ TI [R]} ≲ Rδ.

Indeed, once we have (50), we may combine (46), (47) and (49) to deduce that

∥ sup
0<t≤R2

|eit∆f |∥L2(Bn(0,R)) ≲ε R
n/(2(n+1))+ε/2

( ∑
I∈IR

∥fI∥2
L2(Rn)

)1/2
+R−100n∥f∥L2(Rn)

≲ε R
n/(2(n+1))+ε

( ∑
T ∈T[R]

∥fT ∥2
L2(Rn)

)1/2
+R−100n∥f∥L2(Rn)

where the second step follows from orthogonality, interchanging the order of summation
and (50). The desired estimate (45) now follows by the orthogonality property of the
wave packets.

It remains to show (50). Fix T ∈ T[R] with initial position x(T ) and velocity v(T ).
Suppose T ∈ TI1 [R] ∩ TI2 [R] for a pair of time intervals I1, I2 ∈ IR. It suffices to show
dist(I1, I2) ≤ 30R1+δ. Suppose this is not the case and let t̄j denote the centre of Ij for
j = 1, 2. By the definition of the sets TIj

[R], there exist (xj, tj) ∈ Rn+1 such that

|xj − x(T ) − tjv(T )| ≤ R1/2, |xj| ≤ R1+δ and |tj − t̄j| ≤ R1+δ

for j = 1, 2. By the triangle inequality,

|t̄1 − t̄2||v(T )| ≤ |x1 − x2| +
2∑

j=1
|xj − x(T ) − tjv(T )| + |tj − t̄j| ≤ 6R1+δ.

Since, by hypothesis, |t̄1 − t̄2| ≥ 30R1+δ, it follows that |v(T )| ≤ 1/10. In view of the
definition of TIj

[R] from (48), this is a contradiction.
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4.5. Pseudo-local properties

Throughout the following, we fix a large spatio-temporal scale R ≥ 1. This scale plays
a similar rôle to R in the statement of Theorem 3.6 and, in particular, we shall consider
estimates for Uf which are localised in space-time to Bn+1(0, R). For this reason, it is
useful to perform a wave packet decomposition at scale R, so that the corresponding
space-time tubes have duration R.

We shall often work with an additional, much smaller, intermediate scale 1 ≤ K ≤
R1/2; this should be thought of as reasonably large, but still vastly smaller than R. For
instance, in applications we typically either take K to be a large dimensional constant
or K = Rδ for some very small δ > 0.

Let TK−1 be a finitely-overlapping covering of Bn(0, 1) by (2K)−1-caps with centres
lying in Bn(0, 2). Fix τ ∈ TK−1 with τ ⊆ Bn(0, 1) and suppose fτ ∈ L2(Rn) satisfies
supp f̂τ ⊆ τ .(14) By applying a wave packet decomposition to fτ at scale R, we have

fτ =
∑

T ∈Tτ [R]
fT where Tτ [R] :=

{
T ∈ T[R] : |v(T ) + 2ξτ | ≤ 4K−1

}
;

here the dispersion relation property from Lemma 4.15 is used to restrict the velocities.
Each T ∈ Tτ [R] is aligned in the directionG(ξτ ) up to an angular difference of O(K−1).

Consequently, we can group the wave packets together according to a partition of space-
time into disjoint strips S of dimension R/K × · · · × R/K × R: see Figure 3. In view
of this, the solution operator U essentially acts independently between distinct strips.

To describe these properties more precisely, let Sτ [R] denote the collection of all strips

S =
{
(x, t) ∈ Rn+1 : |x− x(S) − tv(S)| ≤ R/K and |t| ≤ R

}
where x(S) ∈ Rn is a choice of lattice point in R/K · Zn and v(S) := −2ξτ . Form a
partition TS[R] of Tτ [R], parameterised by the the strips S ∈ Sτ [R] such that

TS[R] ⊆
{
T ∈ Tτ [R] : T ∩ S ̸= ∅

}
.

Then we may write

(51) fτ =
∑

S∈Sτ [R]
fS where fS =

∑
T ∈TS [R]

fT for all S ∈ Sτ [R].

Morally, if S1, S2 ∈ Sτ [R] are distinct strips, then the waves UfS1 and UfS2 concen-
trate on S1 and S2, respectively, and therefore do not interact. To make this statement
precise, we define the slightly enlarged strip

S̄ =
{
(x, t) ∈ Rn+1 : |x− x(S) − tv(S)| ≤ 20R/K and |t| ≤ R

}
.

Then we have the following lemma.

(14)The caps are chosen to have radius (2K)−1 for technical reasons; one should think of fτ as supported
‘well within’ a cap of radius K−1.



1205–27

G(ξτ )

R1/2

R S

R/K

Figure 3. A schematic demonstrating the pseudolocal property. The tubes T
arising from the wave packet decomposition of fτ have directions lying in a K−1-
neighbourhood of G(ξτ ). Consequently, they can (essentially) be partitioned
into families which lie in disjoint strips S.

Lemma 4.16. — Suppose 0 < δ < 1 and 1 ≤ K ≤ R1/2−δ. With the above definitions,
for all S ∈ Sτ [R] we have

|UfS(z)| ≲δ,N |UfS(z)|χS̄(z) +R−N∥fτ ∥L2(Rn) for all z ∈ Bn+1(0, R) and N ∈ N.

Proof. — Let S ∈ Sτ [R] and T ∈ TS[R]. By the localisation of the wave packets from
(36), it suffices to show T (δ) ⊆ S̄, where T (δ) is the enlargement of T defined in (31).

Let z = (x, t) ∈ Bn+1(0, R) \ S̄, so that

|x− x(S) − tv(S)| > 20R/K.

Since T ∈ TS[R], it follows that |v(T ) − v(S)| ≤ 4K−1 and there exists some (x′, t′) ∈
Rn+1 satisfying

|x′ − x(T ) − t′v(T )| ≤ R1/2, |x′ − x(S) − t′v(S)| ≤ R/K and |t′| ≤ R.

Therefore, by the triangle inequality, |x(T ) − x(S)| ≤ 6R/K. Consequently,

|x− x(T ) − tv(T )| ≥ R/K > R1/2+δ

and so (x, t) /∈ T (δ), as required.

Remark 4.17. — Note that the time zero slice BS := S ∩ {(x, 0) : x ∈ Rn} is an R/K-
ball. Another interpretation of the preceding observations is that S ∈ Sτ [R] essentially
corresponds to the domain of influence for the initial datum fτ localised to BS, over the
time interval [−R,R].
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AS

R

R/K

G(ξτ )

R1/2

S Bn+1
R̃

R̃ := R/K2

R̃

R̃1/2

Figure 4. Rescaling in Lemma 4.18 in the (physical) space-time domain. The
strip S is mapped to Bn+1(0, R̃) under the affine map AS .

K−1-cap

R−1/2-cap

G(ξτ )

1-cap

KR−1/2-cap

Figure 5. Rescaling in Lemma 4.18 in the frequency domain. The K−1-
cap τ is mapped to the whole paraboloid. Note the relationship between the
directions of the space-time tubes in Figure 4 and the underlying frequencies.

For S ∈ Sτ [R] define the mapping

AS : (x, t) 7→ (K−1(x− x(S) − tv(S)), K−2t).

Thus, AS maps the strip S to the ball Bn+1(0, R/K2); see Figure 4. Furthermore, we
may write AS(z) = Lτ (z) − z(S) where Lτ is the scaling map associated to the cap τ

as defined in (24) and z(S) := (x(S), 0). In light of these observations, we obtain the
following Lp variant of the parabolic rescaling from Corollary 4.8.

Lemma 4.18. — Let 1 ≤ p ≤ ∞. With the above setup,

∥UfS∥Lp(S̄) ≤ K(n+2)/p−n/2∥Uf̃S∥Lp(Bn+1(0,R̃))

for R̃ = 20R/K2 and some function f̃S ∈ L2(Rn) satisfying

∥f̃S∥L2(Rn) = ∥fS∥L2(Rn) and supp F(f̃S) ⊆ Bn(0, 1).
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Proof. — This follows by applying parabolic rescaling in the form of Corollary 4.8,
exploiting the relationship between Lτ and AS and changing the spatio-temporal vari-
ables. The scaling is represented in the physical and frequency domains in Figure 4 and
Figure 5, respectively.(15)

4.6. Dyadic pigeonholing and reverse Hölder

We shall make extensive use of pigeonholing arguments in the proof of Theorem 3.6
in §7. Although such arguments are entirely elementary, they are nevertheless surpris-
ingly useful and it is worth discussing the dyadic pigeonholing method in particular.

Definition 4.19. — We say B ⊆ (0,∞) is dyadically constant if there exists some
j ∈ Z such that B ⊆ [2j, 2j+1].

Remark 4.20. — Typically, B = {H(a) : a ∈ A} is a sequence of positive numbers
indexed over some finite set A; in such cases we shall often write

H(a) is dyadically constant over a ∈ A

to mean B is dyadically constant.

Let M > 0, R ≥ 1. By taking logarithms, we see that there are only O(logR) values
of j ∈ Z such that 2j ∈ [MR−1,MR]. It follows that any set B ⊆ [MR−1,MR] can be
written as a union

(52) B =
J⋃

j=1
Bj

where each Bj is dyadically constant and J ≲ logR. Applying the pigeonhole principle
to the sets Bj arising from this decomposition, we deduce the following elementary (but
surprisingly powerful) lemma.

Lemma 4.21 (Dyadic pigeonholing). — Let M > 0, R ≥ 1 and B ⊆ [MR−1,MR] be a
finite set.

i) There exists some B′ ⊆ B which is dyadically constant and satisfies

#B′ ≳ (logR)−1#B.

ii) More generally, given F : B → (0,∞), there exists some BF ⊆ B which is dyadically
constant and satisfies ∑

a∈B
F (a) ≲ logR

∑
a∈BF

F (a).

A close relative of Lemma 4.21 is the following reverse form of Hölder’s inequality.

(15)There are some minor technical complications in the proof of Lemma 4.18 owing to slightly larger
frequency support of fS (compared with fτ ) and the use of the enlarged strip S̄ rather than S. This
accounts for the factor of 20 in the definition of R̃.
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Lemma 4.22 (Reverse Hölder). — Let M > 0, R ≥ 1 and H : A → [MR−1,MR] be a
function defined on a finite set A. Then we may write A = ⋃J

j=1 Aj where( ∑
a∈Aj

H(a)p
)1/p

≲ logR [#Aj]−(1/p−1/q)
( ∑

a∈Aj

H(a)q
)1/q

holds for all 1 ≤ p ≤ q < ∞ and all 1 ≤ j ≤ J and J ≲ logR.

Proof. — Let B := {H(a) : a ∈ A} and decompose this set into O(logR) disjoint
dyadically constant pieces Bj, 1 ≤ j ≤ J , as in (52). The result then follows by taking
Aj := H−1

(
Bj

)
for 1 ≤ j ≤ J .

In view of Lemma 4.22, the pigeonhole principle is useful for ‘real interpolation’
arguments; that is, when one wishes to reconcile distinct estimates involving different
Lp norms. We shall see multiple instances of this later in §7.

5. TOOLS FROM MUTLILINEAR HARMONIC ANALYSIS

5.1. Linear Strichartz estimates

Recall that our goal is to prove Theorem 3.6, which bounds the solution Uf over the
union ZQ of a family of space-time cubes. Here we consider a simpler class of estimates,
which bound the solution over the whole space-time domain.

Theorem 5.1 (Strichartz estimate). — Let 2 · n+2
n

≤ q ≤ ∞. The inequality

(53) ∥Uf∥Lq(Rn+1) ≲ ∥f∥L2(Rn)

holds for all f ∈ L2(Rn).

This is a reinterpretation of the Stein–Tomas Fourier restriction theorem, dating back
to Stein (1986), Tomas (1975), and Strichartz (1977).

Remark 5.2. — Theorem 5.1 is in fact a special case of the more general Strichartz
estimates for Schrödinger equation, which involve mixed norms in the spatio-temporal
variables.

Theorem 5.1 is clearly related to the theory of fractal energy estimates. Indeed, if Q
is a family of lattice unit cubes in Bn+1(0, R) and ZQ denotes their union, then

∥Uf∥L2(ZQ) ≤ |ZQ|1/(n+2)∥Uf∥
L2· n+2

n (Rn+1)

Applying the simple bound |ZQ| = #Q ≤ ∆α(Q)Rα and Theorem 5.1, we deduce that

∥Uf∥L2(ZQ) ≲ ∆α(Q)1/(n+2)Rα/(n+2)∥f∥L2(Rn).

Unfortunately, this is not strong enough to imply Theorem 3.6, since the R-exponent
α/(n+ 2) is always larger than the required value α/(2(n+ 1)).
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Remark 5.3. — The range q ≥ 2 · n+2
n

in Theorem 5.1 is sharp, so there is no hope of
directly improving the Strichartz estimate to give the desired fractal energy estimate
via the above argument. To see this, we fix a spatial scale R ≥ 1 and a wave packet ψT

as in §4.3 with ρ = R. Complementing the rapid decay property (32), it is not difficult
to show

|UψT (x, t)| ≳ R−n/4 for all (x, t) ∈ 1
100 · T .

In particular, for any 1 ≤ q ≤ ∞ we have
∥UψT ∥Lq(Bn+1(0,R)) ≳ R−n/4+(n+2)/(2q) and ∥ψT ∥L2(Rn) ≲ 1.

Since these inequalities hold for all R ≥ 1, it follows that (53) fails whenever q < 2 · n+2
n

.

Theorem 5.1 is not used in the proof of Theorem 3.6; the linear Strichartz estimate
is included here to motivate the multilinear Strichartz estimates introduced in the
following section. For this reason, the full proof of Theorem 5.1 is omitted.(16)

5.2. Multilinear Strichartz estimates
Suppose we have initial data ψT1 and ψT2 as in Example 4.10 which oscillate at well-

separated frequencies ξT1 and ξT2 , respectively. Since the waves UψT1 and UψT2 have
distinct frequencies, we expect destructive interference between them; indeed, a rigorous
manifestation of this is the orthogonality property (35). Furthermore, by the dispersion
relation, the velocities v(T1) and v(T2) are also well-separated. Thus, UψT1 and UψT2

only interact for a short time interval. By these considerations, we expect that the
product UψT1UψT2 is small, since it measures the interaction between the waves.

These heuristics naturally lead to the study of multilinear Stichartz estimates for the
Schrödinger equation. This multilinear theory is a central ingredient in the proof of
Theorem 3.6. To introduce the main results, we first discuss the basic example of the
bilinear estimate for n = 1.

As in §4.5, let TK−1 be a finitely-overlapping covering of Bn(0, 1) by K−1-caps with
centres lying in Bn(0, 2). Given τ ∈ TK−1 , we let G(τ) ⊆ Sn denote the image of τ
under the Gauss map G introduced in (33). If fτ is Fourier supported on τ , then G(τ)
is essentially the set of directions of the wavepackets in the wavepacket decomposition
of fτ .

We consider well-separated pairs of caps (τ1, τ2), corresponding to wavepackets with
distinct frequencies. By the dispersion relation, we may equivalently consider pairs of
caps (τ1, τ2) corresponding to transverse tubes (T1, T2). In particular, given ξ1, ξ2 ∈ R̂n,
let |G(ξ1) ∧G(ξ2)| denote the absolute value of the determinant of the 2 × 2 matrix with
jth column G(ξj). We then define

(54) T trans
K−1 :=

{
(τ1, τ2) ∈ (TK−1)2 : |G(τ1) ∧G(τ2)| ≥ K−1

}
,

where
|G(τ1) ∧G(τ2)| := inf

{
|G(ξ1) ∧G(ξ2)| : ξj ∈ τj for j = 1, 2

}
.

(16)See §6, however, where we do prove slightly weakened version of the n = 1 case.
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Let (τ1, τ2) ∈ T trans
K−1 and suppose f1, f2 ∈ L2(R) satisfy supp f̂j ⊆ τj for j = 1, 2. As

in the above discussion, the functions Ufj oscillate at distinct frequencies and their
constituent wave packets travel at distinct velocities. In view of this, we again expect
the two waves to interact weakly.

A rigorous manifestation of the above principle is the bilinear identity

(55)
∫
R1+1

|Uf1(z)Uf2(z)|2 dz = 2π2
∫
R2

|f̂1(ξ1)|2|f̂2(ξ2)|2
|ξ1 − ξ2|

dξ1dξ2,

which holds whenever the fj satisfy the above hypothesis. This identity dates back to
foundational work of Fefferman (1970). The proof is simple: we write

Uf1(z)Uf2(z) =
∫
R2
eix(ξ1+ξ2)+it(ξ2

1+ξ2
2)f̂1(ξ1)f̂2(ξ2) dξ1dξ2

and perform the change of variables η1 = ξ1 + ξ2, η2 = ξ2
1 + ξ2

2 to deduce

Uf1(z)Uf2(z) = F̌ (z) where F (η) := (2π)2 · f̂1 ◦ ξ1(η)f̂2 ◦ ξ2(η)
2|ξ1(η) − ξ2(η)| .

The desired identity (55) now follows by an application of Plancherel’s theorem and
changing back the variables.

As an immediate consequence of (55) and interpolation with trivial L∞ bounds, we
deduce the following bilinear Strichartz inequality.

Proposition 5.4 (1d Bilinear Strichartz). — Let 4 ≤ p ≤ ∞ and (τ1, τ2) ∈ T trans
K−1 .

The inequality

(56)
∥∥∥ 2∏

j=1
|Ufj|1/2

∥∥∥
Lp(R2)

≲ K1/p
2∏

j=1
∥fj∥1/2

L2(R)

holds whenever fj ∈ L2(R) satisfies supp f̂j ⊆ τj for j = 1, 2.

In applications, we typically take K = O(1) to be bounded (or to depend sub-
polynomially on a scale parameter R) so that the additional K1/p factor is admissible.
A key advantage of the bilinear setup of Proposition 5.4, as opposed to the n = 1 case
of Theorem 5.1, is that the estimate (56) is valid all the way down to the exponent
p = 4. By contrast, the linear inequality is only true down to p = 6. The wider range of
estimates in the bilinear setup reflects the principle that transverse wave packets interact
weakly. In particular, the ‘critical behaviour’ in Theorem 5.1 arises from non-transverse
interactions.

Establishing satisfactory higher dimensional analogues of Proposition 5.4 is a deep
problem. For our purposes, we are interested in the following sharp (n + 1)-linear
Strichartz estimate in Rn, which is a celebrated theorem of Bennett, Carbery, and Tao
(2006). Generalising the definition of the set of transverse pairs form (54), we consider
the set of transverse (n+ 1)-tuples

T trans
K−1 :=

{
(τ1, . . . , τn+1) ∈ (TK−1)n+1 : |G(τ1) ∧ · · · ∧G(τn+1)| ≥ K−n

}
.
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Here |G(τ1) ∧ · · · ∧ G(τn+1)| denotes the infimum of |G(ξ1) ∧ · · · ∧ G(ξn+1)| over all
ξj ∈ τj, 1 ≤ j ≤ n+ 1. The main result then reads as follows.

Theorem 5.5 (Bennett, Carbery, and Tao, 2006). — Let pn := 2 · n+1
n

and pn ≤ p ≤ ∞
and suppose (τ1, . . . , τn+1) ∈ T trans

K−1 . For all ε > 0 and all R ≥ 1, the inequality

(57)
∥∥∥ n+1∏

j=1
|Ufj|1/(n+1)

∥∥∥
Lp(Bn+1

R )
≲ε K

ERε
n+1∏
j=1

∥fj∥1/(n+1)
L2(Rn)

holds whenever fj ∈ L2(Rn) satisfies supp f̂j ⊆ τj for 1 ≤ j ≤ n + 1. Here E is a
dimensional constant.

The technique used to prove the n = 1 case in Proposition 5.4 does not generalise to
higher dimensions. The proof of Theorem 5.5 lies beyond the scope of this exposition.
A short argument, using ideas of a similar flavour to those explored in this article, is
given in Guth (2015).(17) We also refer the reader to Bennett (2014) for an accessible
introduction to this topic.

As a direct consequence of Theorem 5.5, we have the following multilinear variant of
the fractal energy estimate from Theorem 3.1.

Corollary 5.6 (Multilinear fractal energy estimate). — For all ε > 0 and all R ≥ 1,
1 ≤ α ≤ n+ 1 the inequality

(58)
∥∥∥ n+1∏

j=1
|Ufj|1/(n+1)

∥∥∥
L2(ZQ)

≲ε K
E∆α(Q)1/(2(n+1))Rα/(2(n+1))+ε

n+1∏
j=1

∥fj∥1/(n+1)
L2(Rn)

holds whenever fj ∈ L2(Rn) satisfy the hypotheses of Theorem 5.5 and Q is a family of
unit lattice cubes in Bn+1(0, R).

Proof. — This is a repeat of the simple argument discussed in the linear setting in §5.1.
We apply Hölder’s inequality and Theorem 5.5 to deduce that

∥∥∥ n+1∏
j=1

|Ufj|1/(n+1)
∥∥∥

L2(ZQ)
≤ |ZQ|1/(2(n+1))

∥∥∥ n+1∏
j=1

|Ufj|1/(n+1)
∥∥∥

Lpn (Bn+1
R )

≲ε K
E∆α(Q)1/(2(n+1))Rα/(2(n+1))+ε

n+1∏
j=1

∥fj∥1/(n+1)
L2(Rn) .

Here, in the second step, we use the bound |ZQ| = #Q ≤ ∆α(Q)Rα, which is a direct
consequence of the definitions.

(17)More precisely, Guth (2015) establishes the (non-endpoint) multilinear Kakeya inequality, which is
equivalent to Theorem 5.5 by an argument described in Bennett, Carbery, and Tao (2006). Alternatively,
one can apply the argument of Guth (2015) to directly prove the multilinear Strichartz inequality by
incorporating wave packet decomposition techniques.
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If we assume, say, K = Oε(1), then (58) is a multilinear analogue of the desired fractal
energy estimate (17) from Theorem 3.6 (and, in fact, (58) has a better dependence on
∆α(Q)). Note that transversality plays a crucial rôle in the multilinear Strichartz esti-
mate underpinning these observations. Indeed, if we were free to drop the transversality
hypothesis in Theorem 5.5 and take f = f1 = · · · = fn+1, then we would arrive at the
linear estimate

(59) ∥Uf∥Lpn (B(0,R)) ≲ε R
ε∥f∥L2(Rn);

however, taking f to be a wave packet as defined in Example 4.10, it is easy to see that
(59) fails (see Remark 5.3). Thus, the key difficulty in proving Theorem 3.6 is to control
the non-transversal interactions.

5.3. Multilinear Bernstein inequality
In this subsection we address some slightly technical multilinear extensions of the

results discussed in §4.1 which will be of use in later arguments.

Lemma 5.7 (Multilinear Bernstein inequality). — Let 1 ≤ p ≤ q ≤ ∞ and suppose
Fj ∈ S(Rd) satisfy supp F̂j ⊆ Q0 := [−1/2, 1/2]d for 1 ≤ j ≤ d. Then∥∥∥ d∏

j=1
|Fj|1/d

∥∥∥
Lq(Rd)

≲
∥∥∥ d∏

j=1
|Fj|1/d

∥∥∥
Lp(Rd)

.

Remark 5.8. — By applying an affine scaling, Lemma 5.7 immediately implies a gener-
alisation of itself for functions Fourier supported in some fixed parallelepiped π. Since,
for our purposes, we only require the result at unit scale, we omit the details.

There is, in fact, nothing particularly multilinear per se about Lemma 5.7: it is a
direct consequence of linear Bernstein inequalities. Indeed, under the hypothesis of
Lemma 5.7, if we define F := F1 · · ·Fd, then we may equivalently express (5.7) as

∥F∥Lq/d(Rd) ≲ ∥F∥Lp/d(Rd).

Suppose for p/d ≥ 1. Since F has Fourier support in Q0 + · · ·+Q0, the d-fold Minkowski
sum, in this case Lemma 5.7 is a direct consequence of the linear Bernstein inequality
applied to F . To deal with the remaining case p/d < 1, we establish a variant of
Lemma 4.1.

Lemma 5.9. — Let 0 < s ≤ 1 and M ≥ 1. There exists a function ηM : Rd → [0,∞)
satisfying the following:

i) If F ∈ S(Rd) satisfies supp F̂ ⊆ Q0 := [−1/2, 1/2]d, then

|F (z)|s ≤
∑

Q∈QM,all

|aQ|sχQ(z) ≲Md|F |s ∗ ηM(z) for all z ∈ Rd

where QM,all is the collection of all lattice M-cubes and

aQ := sup
z∈Q

|F (z)| for all Q ∈ QM,all.
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ii) The function ηM is L1-normalised and rapidly decaying away from [−M/2,M/2]d
in the sense that

ηM(z) ≲N,s M
−d(1 + 2M−1|z|∞)−N for all N ∈ N.

Once Lemma 5.9 is proved, Lemma 5.7 follows easily by adapting the argument used
to prove the linear Bernstein inequality in Lemma 4.3. Note that we only need the
case M = 1 of Lemma 5.9 for this purpose; it is useful, however, to have the result for
general M in view of later applications.
Proof (of Lemma 5.9). — Fix η0 ∈ S(Rd) satisfying supp η̂0 ⊆ [−2, 2]d and η̂0(ξ) = 1
for all ξ ∈ [−1, 1]d . Let F ∈ S(Rd) satisfy the hypothesis of part i). Given Q ∈ QM,all
and zQ ∈ Q such that |F (zQ)| = aQ, we have

(60) aQ = |F (zQ)| ≤
∫
Rd

|F (w)||η0(zQ − w)| dw.

We interpret the right-hand side as the norm ∥GR∥L1(Rd), where

GR(w) := F (w)η0(zQ − w).

It is not difficult to see ĜR is supported in [−10, 10]d. We claim that, by Bernstein’s
inequality,

(61) ∥GR∥L1(Rd) ≲ ∥GR∥Ls(Rd).

The issue here is that 0 < s ≤ 1 and so we cannot appeal to Lemma 4.3 directly.
However, applying Bernstein’s inequality with exponents p = 1 and q = ∞ gives

∥GR∥L1(Rd) ≤ ∥F∥1−s
L∞(Rd)∥F∥s

Ls(Rd) ≲ ∥F∥1−s
L1(Rd)∥F∥s

Ls(Rd),

which then rearranges to produce the desired bound (61).
In light of the above, we can upgrade (60) to

|aQ|s ≲
∫
Rd

|F (w)|s|η0(zQ − w)|s dw.

If we now define ηM : Rd → [0,∞) by

ηM(z) := M−d sup
|w−z|∞≤M

|η0(w)|s,

then the desired result follows as in the proof of Lemma 4.1.

We may also spatially localise the multlinear Bernstein inequality, as in Corollary 4.5.

Corollary 5.10. — Under the hypotheses of Lemma 5.7, if Q ⊆ Rd is any cube of
side-length at least 1, then∥∥∥ d∏

j=1
|Fj|1/d

∥∥∥
Lq(Q)

≲
∥∥∥ d∏

j=1
|Fj|1/d

∥∥∥
Lp(wQ)

,

where wQ : Rd → [0,∞) is a weight adapted to Q (see Definition 4.4).

Proof. — This follows from Lemma 5.7 via the same argument used to prove Corol-
lary 4.5.
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6. BROAD-NARROW ANALYSIS

6.1. Motivation

In the previous section we derived a multilinear variant of the fractal energy estimate,
Corollary 5.6, as a direct consequence of the multilinear Strichartz estimates of Bennett,
Carbery, and Tao (2006). The problem now is to obtain bona fide linear estimates from
their multilinear counterparts.

On the face of it, passing from multilinear to linear estimates appears challenging. In-
deed, the proof of Corollary 5.6 crucially exploits the transversality hypothesis, required
in order to invoke Theorem 5.5. Consequently, the methods of §5 are ill equipped to
deal with interactions between resonant wave packets.

In this section we describe an ingenious method induced in Bourgain and Guth (2011)
which does in fact allow passage from multilinear to linear estimates. This is now
commonly referred to as the Bourgain–Guth method or broad-narrow analysis and forms
the backbone of many recent advances in harmonic analysis.

Broad-narrow analysis was originally introduced to study the famous Fourier restric-
tion conjecture, but was later adapted in Bourgain (2013b) to make progress on the
Carleson problem. It relies on decomposition, scaling and induction-on-scale techniques
which have their roots in earlier works of Tao, Vargas, and Vega (1998) and Wolff (2001),
amongst others.

6.2. Broad-narrow analysis for n = 1: an illustration

To begin, we illustrate the core ideas behind broad-narrow analysis in a very simple
setting. In particular, we use the bilinear estimate from Proposition 5.4 to prove the
following (slightly weaker) variant of the n = 1 case of Theorem 5.1.

Proposition 6.1. — For all ε > 0 and all R ≥ 1, the inequality

∥Uf∥L6(B1+1(0,R)) ≲ε R
ε∥f∥L2(R)

holds whenever f ∈ L2(R).

The following proof of Proposition 6.1 is included for illustrative purposes only: we
do not require the result later in the discussion. The proof does, however, provide a
simple and effective introduction to broad-narrow methods.

The first step is to relate the linear operator Uf to bilinear Uf1Uf2 expressions
involving functions f1, f2 satisfying the transversality hypothesis of Proposition 5.4. For
n = 1, this is easily achieved via an elementary pointwise inequality.

Let f ∈ L2(R) and assume, without loss of generality, that supp f̂ ⊆ B1(0, 1/2). We
decompose

f =
∑

τ∈TK−1

fτ ,

similarly to the discussion in §4.4, so that each fτ ∈ L2(R) satisfies supp f̂τ ⊆ τ .
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Lemma 6.2 (Broad-narrow decomposition, n = 1). — For all z = (x, t) ∈ R1+1, we
have

(62) |Uf(z)| ≲ max
τ∈TK−1

|Ufτ (z)| +K max
(τ1,τ2)∈T trans

K−1

2∏
j=1

|Ufτj
(z)|1/2.

Here T trans
K−1 denotes the collection of all K−1-transverse pairs of caps in TK−1 , as

defined in (54). The first term on the right-hand side of (62) is referred to as the narrow
term, whilst the second is referred to as the broad term.
Proof (of Lemma 6.2). — Given z = (x, t) ∈ R1+1, we let τz ∈ TK−1 be a choice of cap
satisfying

|Ufτz(z)| = max
τ∈TK−1

|Ufτ (z)|.

We define the set of narrow and broad caps (for Uf at z) by

Nz :=
{
τ ∈ TK−1 : |G(τ) ∧G(τz)| < K−1

}
and Bz := TK−1 \ Nz,

respectively. Note that Nz simply consists of the cap τz and some of its neighbours.
The decomposition of TK−1 into broad and narrow caps induces a decomposition of

the operator

(63) |Uf(z)| =
∣∣∣ ∑

τ∈TK−1

Ufτ (z)
∣∣∣ ≤

∣∣∣ ∑
τ∈Nz

Ufτ (z)
∣∣∣+ ∑

τ∈Bz

|Ufτ (z)|.

For the term involving narrow caps, we simply note that #Nz ≲ 1 and so

(64)
∣∣∣ ∑

τ∈Nz

Ufτ (z)
∣∣∣ ≲ max

τ∈TK−1
|Ufτ (z)|.

On the other hand, clearly (τ, τz) ∈ T trans
K−1 for all τ ∈ Bz and so∑

τ∈Bz

|Ufτ (z)| ≤
∑

τ∈Bz

|Ufτ (z)|1/2|Ufτz(z)|1/2

≲ K max
(τ1,τ2)∈T trans

K−1

2∏
j=1

|Ufτj
(z)|1/2.(65)

Plugging (64) and (65) into (63), we deduce the desired estimate.

As an immediate consequence of the pointwise bound in Lemma 6.2, we deduce the
following norm bound.

Corollary 6.3 (Lq broad-narrow decomposition, n = 1). — For all 1 ≤ q ≤ ∞ and
all R ≥ 1, we have

(66) ∥Uf∥Lq(B1+1
R ) ≲

( ∑
τ∈TK−1

∥Ufτ ∥q

Lq(B1+1
R )

)1/q

+K3 max
(τ1,τ2)∈T trans

K−1

∥∥∥∥ 2∏
j=1

|Ufτj
|1/2

∥∥∥∥
Lq(B1+1

R )
.

For q = ∞ the ℓq expression is understood as a maximum.

Proof. — The q = ∞ case is immediate. Fixing 1 ≤ q < ∞, dominate the maxima in
(62) by the corresponding ℓq sum and take the Lq-norm in z of both sides of the resulting
expression. The desired result then follows by interchanging ℓq and Lq norms.
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To motivate what follows, we pause to consider the terms appearing on the right-hand
side of (66).

– The broad term involves a bilinear expression and, for appropriate q, can be
estimated using the bilinear Strichartz estimate from Proposition 5.4.

– To estimate the narrow term, the key observation is that the expressions
∥Ufτ ∥Lq(B1+1

R ) appearing on the right-hand side are of the same form as the
expression ∥Uf∥Lq(B1+1

R ) appearing on the left-hand side. This is a symmetry (or
self-similarity) of the inequality. Moreover, the functions fτ appearing on the right
are frequency localised versions of the function f on the left; in this sense the fτ

are simpler objects than f . These considerations naturally lead to an inductive
argument.

Proof (of Proposition 6.1). — Fix ε > 0. We let Cε ≥ 1 and K ≥ 2 denote fixed
constants, depending only on the admissible parameter ε, which are chosen large enough
to satisfy the forthcoming requirements of the proof.

We argue by induction on the scale parameter R. As a simple consequence of the
Cauchy–Schwarz inequality and Plancherel’s theorem, we have

∥Uf∥L6(B1+1(0,R)) ≲ R1/3∥Uf∥L∞(B1+1(0,R)) ≲ R1/3∥f̂∥L2(R) = R1/3∥f∥L2(R).

Thus, Proposition 6.1 holds trivially for small scales, say R ≤ 100; this serves as a base
case for the induction.

Fix R ≥ 100 and f ∈ L2(R) and assume, without loss of generality, that supp f̂ ⊆
B1(0, 1/2). We further assume the following holds.

Induction hypothesis. — For all 1 ≤ R̃ ≤ R/2, the inequality

∥Ug∥L6(B1+1(0,R̃)) ≤ CεR̃
ε∥g∥L2(R)

holds whenever g ∈ L2(R).

For 2 ≤ q < ∞ we apply the broad-narrow decomposition from Corollary 6.3 to
deduce that(18)

(67) ∥Uf∥Lq(B1+1
R ) ≲

( ∑
τ∈TK−1

∥Ufτ ∥2
Lq(B1+1

R )

)1/2
+K3 max

(τ1,τ2)∈T trans
K−1

∥∥∥∥ 2∏
j=1

|Ufτj
|1/2

∥∥∥∥
Lq(B1+1

R )
.

Here we have weakened the ℓq sum to an ℓ2 sum in the narrow term, using the nesting
of ℓq norms.
The broad term. We begin by estimating the broad contribution: that is, the second
term on the right-hand side of (67). This is achieved by direct application of the bilinear
Strichartz estimate from Proposition 5.4. In particular, by (56), for 4 ≤ q < ∞ we have

(68) ∥Uf∥Lq(B1+1
R ) ≲

( ∑
τ∈TK−1

∥Ufτ ∥2
Lq(B1+1

R )

)1/2
+K4∥f∥L2(R).

(18)Later we fix q = 6, but it is useful to keep the parameter q free for the time being to see how the
numerology works out in general.
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The narrow term. It remains to estimate the narrow contribution, corresponding to the
first term of the right-hand side of (67). This is achieved via a combination of parabolic
rescaling and appeal to the induction hypothesis.

For each τ ∈ TK−1 , as in (51) we decompose(19)

(69) fτ =
∑

S∈Sτ [R]
fS where fS :=

∑
T ∈TS [R]

fT .

By Lemma 4.16, we have

(70) ∥Ufτ ∥q

Lq(B1+1
R ) ≲

∑
S∈Sτ [R]

∥UfS∥q

Lq(S̄) +R−100nq∥f∥q
L2(R).

We now invoke parabolic rescaling in the form of Lemma 4.18. In particular, for each
S ∈ Sτ [R] there exists a function f̃S ∈ L2(R) which is Fourier supported in B1(0, 1) and
satisfies

(71) ∥UfS∥Lq(S̄) ≤ K3/q−1/2∥Uf̃S∥Lq(B1+1(0,R̃)) and ∥f̃S∥L2(R) = ∥fS∥L2(R),

where R̃ := 20R/K2. Provided K is chosen sufficiently large, R̃ ≤ R/2, and so we may
apply the induction hypothesis to conclude that

(72) ∥Uf̃S∥Lq(B1+1(0,R̃)) ≤ CεR̃
ε∥f̃S∥L2(R) ≲ CεK

−2εRε∥fS∥L2(R).

Combining (70), (71) and (72), we therefore deduce that
(73)( ∑

τ∈TK−1

∥Ufτ ∥2
Lq(B1+1

R )

)1/2
≲ CεK

3/q−1/2−2εRε
( ∑

S∈S[R]
∥fS∥2

L2(R)

)1/2
+R−10n∥f∥L2(R),

where S[R] denotes the union of all the sets Sτ [R] over all τ ∈ TK−1 . The families of
wave packets TS[R] appearing in the definition (69) are essentially disjoint as S varies
over S[R]. Thus, by the orthogonality properties of the wave packets,( ∑

S∈S[R]
∥fS∥2

L2(R)

)1/2
≲ ∥f∥L2(R).

Applying this bound to (73), we deduce that

(74)
( ∑

τ∈TK−1

∥Ufτ ∥2
Lq(B1+1

R )

)1/2
≲ CεK

3/q−1/2−2εRε∥f∥L2(R),

which is the final estimate for the narrow term.
To conclude the proof, we combine (68) and (74); thus, for 4 ≤ q ≤ ∞, we have

∥Uf∥Lq(B1+1
R ) ≤ C

(
CεK

3/q−1/2K−2εRε +K4
)
∥f∥L2(R),

where C is suitable a choice of absolute constant, which accounts for all the factors
arising from the implicit constants in the above argument. Note that the exponent

(19)The decomposition according to the strips S is somewhat overkill for the purposes of this argument,
but is an important feature when adapting these methods to prove Theorem 3.6 in §7. An alternative
approach to the current proof is to rescale Ufτ directly using Corollary 4.8.
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3/q − 1/2 is non-positive precisely when q ≥ 6. In particular, specialising to the case
q = 6, we have

(75) ∥Uf∥L6(B1+1
R ) ≤ C

(
CεK

−2ε +K4
)
Rε∥f∥L2(R).

The estimate (75) involves two free parameters (both of which must be chosen inde-
pendently of f and R):

– The constant Cε appearing in the induction hypothesis;
– The intermediate scale K.

We fine tune these parameters to ensure that the induction closes. We first choose Cε

in terms of K so as to satisfy Cε = 2CK4. Thus, (74) becomes

∥Uf∥L6(B1+1
R ) ≤

(
CCεK

−2εRε + Cε

2

)
∥f∥L2(R).

Finally, we choose K, depending only on ε, so that CK−2ε ≤ 1/2. With this choice, we
conclude

∥Uf∥L6(B1+1
R ) ≤ CεR

ε∥f∥L2(R),

which closes the induction and completes the proof.

The simple argument presented above is particular to the n = 1 case. This is due to
the innocuous nature of the narrow term when n = 1; in higher dimensions we shall see
that the narrow term is significantly more complex.

6.3. What is going on here?
The induction argument used in the proof of Proposition 6.1 is very neat, but perhaps

obscures the mechanics of what is happening in the proof. Indeed, arguments like this
can sometimes seem a little magical. To get a better sense of what is going on, it is
helpful to ‘unpack’ the induction argument and think of it as a recursive process. This
tends to be messier, but can give a better sense of how the argument works. Here
we give an informal sketch of this recursive process, reinterpreting the proof from the
previous subsection.

As the process progresses, we pass through a decreasing chain of spatial scales

(76) R → R/K2 → R/K4 → · · · → R/K2N ,

where N corresponds to the total number of steps in the recursion. At the terminal
step (corresponding to the base case in the proof of Proposition 6.1), we have reached
the unit scale, and so we have, say, R/K2N ≤ 100. From this, we see that the total
number of steps is roughly

N ∼ logR
logK .

At each step we use Corollary 6.3 to split the norm into two parts: the broad term,
which is analysed directly, and the narrow term which we continue to decompose. Thus,
at each step we gain one additional piece in the decomposition so that throughout the
whole process we split the norm into N + 1 pieces. In particular, we have:
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– A broad term for each step of the process;
– A narrow term for the terminal step only.

Since N + 1 ≲ logR ≲ Rε/2, it suffices to show that the contribution from each piece of
this decomposition is Oε(Rε/2∥f∥L2(R)).

The remaining narrow term from the terminal step is controlled using the trivial
energy estimate, corresponding to the analysis of the base case in the inductive setup.
On the other hand, each of the broad terms is estimated using the bilinear Strichartz
inequality from Proposition 5.4. By applying parabolic rescaling, we can always separate
the pairs of caps appearing in the broad term to ensure they are K−1-transverse. This
means that the constant arising from the bilinear estimate is uniform over all steps of
the recursion.(20)

There is one final subtlety. When carrying out the broad-narrow decomposition
at each step, we incur some additional absolute constant C◦ in our inequality, say
C◦ = 10. On their own, these constants are harmless, but as we iterate the procedure
they accumulate as powers Ck

◦ . At the terminal stage, we will have gained an additional
factor of CN

◦ : since N is logarithmic in R, this could be catastrophic. The parameter K
is used to deal with this issue. In particular, by choosing K sufficiently large, depending
only on ε, we can ensure

CN
◦ = RC log C◦/ log K ≤ Rε/2,

which is admissible for our purposes. In short, the larger K, the larger the jumps between
scales in (76) and, consequently, the fewer the number of steps N in the recursive process.
By choosing K sufficiently large, we can favourably control the constant CN

◦ which arises
through the recursive procedure.

6.4. Pointwise broad-narrow decomposition in higher dimensions
In the remainder of this section we explore extensions of the simple ideas introduced

in §6.2 to higher spatial dimensions. This provides the framework for the proof of the
fractal energy estimate (Theorem 3.6) in the next section.(21)

For our purposes, the correct implementation of the broad-narrow decomposition for
n ≥ 2 turns out to be highly non-trivial and relies on the deep decoupling theory of
Bourgain and Demeter (2015). Our first step is to generalise the simple pointwise broad-
narrow decomposition from Lemma 6.2 to higher dimensions. This will in fact prove a
misstep, and we shall go back and refine our estimates in the proof of Lemma 6.7 below.

(20)We did not apply parabolic rescaling to the broad term directly in the inductive proof of Propo-
sition 6.1. However, by applying parabolic rescaling to the narrow term at step k of the process, we
effectively rescale the broad term at step k + 1 (which is formed from decomposing the step k narrow
term). Thus, the above is indeed an accurate representation of the proof of Proposition 6.1.
(21)In particular, the goal is not to extend the proof of Proposition 6.1 (which is included for illustrative
purposes only) to higher dimensions. Whilst broad-narrow analysis can be used to prove Strichartz
estimates for n ≥ 2, this approach is cumbersome in the extreme compared with, say, the original proof
of Theorem 5.1 from Tomas (1975). On the other hand, the tools developed here are effective when it
comes to studying Theorem 3.6 in general dimensions.
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Nevertheless, we consider the pointwise decomposition to gain an initial understanding
of the problem.

Recall in the proof of Lemma 6.2 we defined a collection of narrow caps, which
were caps with normals G(τ) aligned along some fixed 1-dimensional subspace. More
generally, given a d-dimensional linear subspace V ⊆ Rn+1, we define

(77) TK−1(V ) :=
{
τ ∈ TK−1 : | sin∠(G(τ), V )| ≤ CnK

−1
}
.

Here ∠(G(τ), V ) denotes the infimum of the angles ∠(G(ξ), V ) over all ξ ∈ τ and Cn ≥ 1
is a dimensional constant, chosen large enough to satisfy the forthcoming requirements
of the proof. With this definition, the general from of Lemma 6.2 reads thus.

Lemma 6.4 (Pointwise broad-narrow decomposition). — For all z = (x, t) ∈ Rn+1, we
have

(78) |Uf(z)| ≲ max
V ∈Gr(n,Rn+1)

∣∣∣∣ ∑
τ∈TK−1 (V )

Ufτ (z)
∣∣∣∣+Kn max

(τ1,...,τn+1)∈T trans
K−1

n+1∏
j=1

|Ufτj
(z)|1/(n+1).

Here the left-hand maximum is taken over all n-dimensional linear subspaces in Rn+1.

We immediate see that Lemma 6.4 implies Lemma 6.2 in the n = 1 case. Comparing
(78) with (62), a significant additional complication in higher dimensions is the form of
the narrow term. This involves the function

fV :=
∑

τ∈TK−1 (V )
fτ ,

which is localised to a whole family of caps (aligned along a strip), rather than a single
cap. For n ≥ 2, the analysis of this term involves highly non-trivial tools from decoupling
theory, described in §6.5 below.

We remark that the precise form of Lemma 6.4 is not used in our subsequent analysis;
instead, we will rely on an Lq variant introduced in Lemma 6.7 below.(22) Nevertheless,
Lemma 6.4 provides a useful conceptual stepping stone.
Proof (of Lemma 6.4). — The proof is an elaboration of the argument used to establish
the n = 1 case in Lemma 6.2. The first step is to identify a codimension 1 subspace
Vz ∈ Gr(n,Rn+1) which ‘captures’ as many of the large |Ufτ (z)| as possible. More
precisely, define the broad part of the operator

(79) UBrf(z) := min
V ∈Gr(n,Rn+1)

max
τ /∈TK−1 (V )

|Ufτ (z)|

and suppose Vz ∈ Gr(n,Rn+1) realises the minimum in (79). Then Vz has the desired
property, in the sense that the largest value of |Ufτ (z)| for τ /∈ TK−1(V ) is minimised.

For slightly technical reasons, we also define

TK−1(V, z) :=
{
τ ∈ TK−1(V ) : |Ufτ (z)| ≥ UBrf(z)

}
(22)In contrast with the n = 1 case, in higher dimensions our formulation of the Lq broad-narrow
decomposition does not directly follow from the pointwise decomposition.
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and further choose Vz so that, of all spaces realising the minimum in (79), the space Vz

also maximises #TK−1(V, z). Once again, we can think of this condition as ensuring Vz

captures as many large |Ufτ (z)| as possible.
From the definition, the caps τ ∈ TK−1(Vz, z) (or, more precisely, their normals) are

aligned around the n-dimensional subspace Vz. However, they do not align around
around any lower dimensional subspace.

Claim. There does not exist a subspace W ⊆ Rn+1 of dimension n − 1 such that
TK−1(Vz, z) ⊆ TK−1(W ).

The idea is that if all the caps in TK−1(Vz, z) are ‘captured’ by a subspace W of
dimension n−1, then we have the freedom to extend W to a subspace V ′

z of dimension n
which captures even more large caps. But this contradicts the maximality of Vz. We
postpone the precise details of this argument until the end of the proof.

Assuming the claim, it is a simple matter to conclude the proof of Lemma 6.4. In
analogy with the proof of Lemma 6.2, we define the collections of narrow and broad
caps (for Uf at z) by

Nz := TK−1(Vz) and Bz := TK−1 \ TK−1(Vz),

respectively. By the triangle inequality and the defining properties of Vz, we have

|Uf(z)| ≤
∣∣∣ ∑

τ∈Nz

Ufτ (z)
∣∣∣+ ∑

τ∈Bz

|Ufτ (z)|

≲ max
V ∈Gr(n,Rn+1)

∣∣∣ ∑
τ∈TK−1 (V )

Ufτ (z)
∣∣∣+KnUBrf(z).(80)

In view of the claim, there exists an n-tuple of caps (τz,1, . . . , τz,n) ∈ TK−1(Vz, z)n

which is K−(n+1)-transverse in the sense that

(81)
∣∣∣G(τz,1) ∧ · · · ∧G(τz,n)

∣∣∣ ≥ K−(n−1).

To see this, simply take (τz,1, . . . , τz,n) to be a tuple which maximises the left-hand
wedge product. If (81) fails for this choice, then∣∣∣G(τz,1) ∧ · · · ∧G(τz,n−1) ∧G(τ)

∣∣∣ < K−(n−1) for all τ ∈ TK−1(Vz, z).

Define W := span{G(ξτz,1), . . . , G(ξτz,n−1)}, where ξτz,j
denotes the centre of τz,j for

1 ≤ j ≤ n−1. If the constant Cn ≥ 1 in (77) is chosen sufficiently large, depending only
on n, then W is an (n − 1)-dimensional subspace satisfying TK−1(Vz, z) ⊆ TK−1(W ),
contradicting the claim. Hence (81) must hold.

By the definition of the broad functional, there exists a cap τz,n+1 /∈ TK−1(Vz) such
that

|Ufτz,n+1(z)| = UBrf(z).
It follows that the (n+ 1)-tuple (τz,1, . . . , τz,n+1) is K−n-transverse and satisfies

(82) UBrf(z) ≤
n+1∏
j=1

|Ufτz,j
(z)|1/(n+1) ≤ max

(τ1,...,τn+1)∈T trans
K−1

n+1∏
j=1

|Ufτj
(z)|1/(n+1).
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The desired result now follows by combining (82) and (80).

It remains to prove the claim. Following the proof sketch, we argue by contradiction,
assuming such a subspace W exists. Let τ ∗ := τz,n+1 be as above, so that τ ∗ /∈ TK−1(Vz)
realises the maximum in the definition (79) for V = Vz. Define V ′

z to be a subspace of
dimension n which contains W and G(ξτ∗), where ξτ∗ is the centre of τ ∗.

First note that V ′
z realises the minimum in (79). Indeed, from the hypothesis on W

and the definition of V ′
z we have TK−1(Vz) ⊆ TK−1(V ′

z ) and so

UBrf(x) = max
τ /∈TK−1 (Vz)

|Ufτ (z)| ≥ max
τ /∈TK−1 (V ′

z )
|Ufτ (z)| ≥ UBrf(x).

In light of the maximality of Vz, it follows that #TK−1(V ′
z , z) ≤ #TK−1(Vz, z). How-

ever, it is clear from the definitions that

TK−1(Vz, z) ⊆ TK−1(V ′
z , z), whilst τ ∗ ∈ TK−1(V ′

z , z) and τ ∗ /∈ TK−1(Vz, z).

Thus, #TK−1(Vz, z) < #TK−1(V ′
z , z), which is a contradiction.

As in the n = 1 case discussed in §6.2, the inequality (78) is designed to access the
multilinear theory from §5. In particular, the multilinear Strichartz estimates can be
used to control the ‘broad’ contribution coming from the second term on the right-hand
side of (78). What remains is to devise a method to analyse the ‘narrow’ contribution,
corresponding to the first term on the right-hand side of (78).

In the proof of 1-dimensional Strichartz estimate (Proposition 6.1), we used a combi-
nation of parabolic rescaling and induction-on-scale to estimate the narrow contribution.
This direct approach is particular to the 1-dimensional setting and significant complica-
tions arise when trying to extending these ideas to higher dimensions.

To understand the difficulties, recall that the narrow term involves the operator U
applied to functions of the form

fV :=
∑

τ∈TK−1 (V )
fτ for V ∈ Gr(d,Rn+1).

When n = d = 1, the function fV essentially corresponds to some fτ .(23) In this case,
UfV is Fourier supported on a cap on the parabola and we can exploit the scaling
structure of the parabola in the guise of Lemma 4.18. However, for higher dimensions,
the best we can say is that the function UfV is supported on a parabolic strip. There
is no viable scaling which maps a strip to the whole paraboloid.

(23)More precisely, fV is a sum of fτ over a family of O(1) adjacent caps, but this distinction is
unimportant.
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6.5. Analysis of the narrow term: decoupling

To analyse the narrow term in (78), we appeal to decoupling estimates and the
following celebrated theorem of Bourgain and Demeter. To introduce the result, let
QK2 denote the collection of space-time lattice K2-cubes which intersect Bn+1(0, R).

Theorem 6.5 (Bourgain and Demeter, 2015). — Let 1 ≤ d ≤ n+1 and 2 ≤ q ≤ 2 · d+1
d−1 .

For all ε > 0, K ≥ 1 we have

(83) ∥UfV ∥Lq(Q) ≲ε K
ε
( ∑

τ∈TK−1 (V )
∥Ufτ ∥2

Lq(wQ)

)1/2

whenever Q ∈ QK2 and V ⊆ Rn+1 be a linear subspace of dimension d.

The inequality (83) is understood to hold for all f ∈ L2(Rn) with fV and fτ as defined
above. The weight wQ is as in Definition 4.4. A crucial feature of Theorem 6.5 is that
the implied constant does not depend on the scale parameter K.

Remark 6.6. — Theorem 6.5 is not explicitly stated in Bourgain and Demeter (2015),
but it can be easily be deduced as a consequence of Theorem 1.1 in Bourgain and
Demeter (2015): see the proof of Lemma 9.5 in Guth (2018).

Theorem 6.5 provides an effective comparison between the function fV and its con-
stituent parts fτ for τ ∈ TK−1(V ). Note that the right-hand side of (83) involves the
norms ∥Ufτ ∥Lq(wQ), which are amenable to parabolic rescaling. Thus, the Bourgain–
Demeter theorem allows us to access in higher dimensions the parabolic rescaling and
induction-on-scale arguments which are more readily available in the 1-dimensional case.

We will not present a proof of Theorem 6.5; indeed, the argument of Bourgain and
Demeter (2015) is lengthy and complex, incorporating all the techniques we have so far
encountered (wave packet analysis, parabolic rescaling, multilinear Strichartz estimates,
broad-narrow analysis, and so on). We will, however, make some elementary remarks
to contextualise the result.

We first note that there are elementary ways to compare fV with the fτ . One example
is the triangle inequality, which can be combined with Cauchy–Schwarz to give

(84) ∥UfV ∥Lq(Q) ≤
∑

τ∈TK−1 (V )
∥Ufτ ∥Lq(Q) ≲ K(d−1)/2

( ∑
τ∈TK−1 (V )

∥Ufτ ∥2
Lq(Q)

)1/2

for all 1 ≤ q ≤ ∞. However, (for large K) the K(d−1)/2 factor on the right-hand side
of (84) is much larger than corresponding factor on the right-hand side of (83). The
weakness in the triangle inequality is that it does not take into account cancellation
between the terms Ufτ in the sum defining UfV = ∑

τ∈TK−1 (V ) Ufτ . Indeed, the Ufτ

oscillate with distinct frequencies (that is, they have disjoint Fourier support) and so it
is natural to expect significant cancellation.
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For q = 2, we can use Plancherel’s theorem to exploit the disjoint frequency support
and arrive at the substantially stronger estimate

∥UfV ∥L2(Q) ≤
( ∑

τ∈TK−1 (V )
∥Ufτ ∥2

L2(wQ)

)1/2
.

This can then be interpolated(24) with a trivial Cauchy–Schwarz estimate at q = ∞
(using the fact that #TK−1(V ) ≲ Kd−1) to give

(85) ∥UfV ∥Lq(Q) ≲ K(d−1)(1/2−1/q)
( ∑

τ∈TK−1 (V )
∥Ufτ ∥2

Lq(wQ)

)1/2

for 2 ≤ q ≤ ∞. Although (85) improves over (84) by taking into account orthogonality
properties, it still falls far short of the decoupling estimate in (83). To improve over,
(85) it is necessary to not only use the basic disjointness of the Fourier support, but
also the specific parabolic geometry. Thus, all the techniques we have encountered in §4
and §5 are relevant to the proof of Theorem 6.5.

6.6. Lp broad-narrow decomposition in higher dimensions
We wish to apply the decoupling estimate from Theorem 6.5 to bound the narrow

term arising from our broad-narrow decomposition. However, the form of the pointwise
broad-narrow decomposition from Lemma 6.4 is not suited to this. The main problem
is that the maximum over V ∈ Gr(n,Rn+1) is taken pointwise, and so the maximising
subspace Vz can vary from point to point. In order to apply Theorem 6.5, we need to
fix a single subspace V over a whole K2-cube.

To get around this issue, we use the locally constant properties of the solution
operator U , dictated by the uncertainty principle. In particular, since Uf (or Ufτ , or
UfV ) is frequency localised at unit scale, |Uf | (or |Ufτ |, or |UfV |) should be locally
constant at unit scale. Thus, we should be able to fix a single maximising subspace V
over any given unit cube.

Unit scale cubes are still too small to apply Theorem 6.5, which requires cubes of
side-length at least K2. Nevertheless, we can adapt the above argument to work at
the K2 spatial scale. The idea is that |Uf | will still be ‘locally constant up to K2

factors’ over K2-cubes.(25) We then proceed as before, working with a fixed maximising
subspace V over any given K2-cube, but including additional K2 factors due to the lack
of true local constancy at this scale. It is vital, however, that matters are arranged so
that these additional powers of K2 appear only in the broad term. Indeed, as we saw
in the proof of Proposition 6.1, we must carefully control the K power in the narrow
term in order for the decomposition to be effective.

(24)The decoupling inequalities are not norm inequalities for linear operators in the usual sense, so one
has to be somewhat careful when it comes to interpolation. Nevertheless, it is possible to appeal to
classical interpolation results by suitably interpreting the estimates.
(25)Indeed, on a heuristic level, this is just a consequence of the local constancy property at unit scale.
To rigorously implement this principle, we shall apply Lemma 5.9 with M = K2.
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Rigorous implementation of these ideas leads to the following bound.

Lemma 6.7 (Lq broad-narrow decomposition). — For all 1 ≤ q ≤ ∞ and Q ∈ QK2,
we have
(86)

∥Uf∥Lq(Q) ≲ max
V ∈Gr(n,Rn+1)

∥UfV ∥Lq(Q) +KE max
(τ1,...,τn+1)∈T trans

K−1

∥∥∥∥ n+1∏
j=1

|Ufτj
|1/(n+1)

∥∥∥∥
Lq,∗(Q)

.

Here E = En is a dimensional constant.

Here the Lq,∗ expression is a ‘fuzzy’ variant of the usual Lq norm, which plays a
largely unimportant technical rôle. In particular, let ηK2 be a continuous, L1-normalised
function which is concentrated in [−K2/2, K2/2]n+1, as in the statement of Lemma 5.9.
For

η⃗K2(w⃗) := ηK2(w1) · · · ηK2(wn+1), w⃗ = (w1, . . . , wn+1) ∈ (Rn+1)n+1,

and any choice of measurable set S ⊆ Rn+1, we then define∥∥∥∥ n+1∏
j=1

|Ufτj
|1/(n+1)

∥∥∥∥
Lq,∗(S)

:=
∫

(Rn+1)n+1

∥∥∥∥ n+1∏
j=1

|Ufτj
( · − wj)|1/(n+1)

∥∥∥∥
Lq(S)

η⃗K2(w⃗) dw⃗.

Such expressions arise due to the appearance of the mollifier in the rigorous formulation
of the locally constant property from Lemma 4.1 and Lemma 5.9. In view of the
translation invariance, multilinear estimates such as (57) automatically imply ‘fuzzy’
variants, with the left-hand Lp norm replaced with the corresponding Lp,∗ norm.

Before presenting the proof of Lemma 6.7, we discuss an immediate consequence.
By combining the Lq broad-narrow decomposition with the decoupling inequality from
Theorem 6.5, we arrive at the following broad-narrow decomposition.

Proposition 6.8. — For all 2 ≤ q ≤ qn := 2 · n+1
n−1 , Q ∈ QK2 and all ε > 0, we have

∥Uf∥Lq(Q) ≲ε K
ε
( ∑

τ∈TK−1

∥Ufτ ∥2
Lq(wQ)

)1/2

+KE max
(τ1,...,τn+1)∈T trans

K−1

∥∥∥∥ n+1∏
j=1

|Ufτj
|1/(n+1)

∥∥∥∥
Lq,∗(Q)

.(87)

Here E = En is a dimensional constant.

Remark 6.9. — By examining the proof below, it is possible to take E := 4n2 in both
Lemma 6.7 and Proposition 6.8.

Proposition 6.8 plays a central rôle in the proof of Theorem 3.6. The narrow term
is now of a similar form to that of the n = 1 case in (67), and therefore amenable
to parabolic rescaling and induction arguments. A crucial feature of Proposition 6.8
is the large range of exponents 2 ≤ q ≤ 2 · n+1

n−1 for which the estimate holds. One
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could attempt to dispense with the broad-narrow decomposition entirely and apply
Theorem 6.5 directly with d = n+ 1. This leads to the bound

∥Uf∥Lq(Q) ≲ε K
ε
( ∑

τ∈TK−1

∥Ufτ ∥2
Lq(wQ)

)1/2
for 2 ≤ q ≤ 2 · n+2

n
.

However, in a similar spirit to the observations of §5.1, the more restrictive range
2 ≤ q ≤ 2 · n+2

n
is insufficient for the purpose of proving Theorem 3.6.

Remark 6.10. — Proposition 6.8 essentially appears in Bourgain and Guth (2011) for
the restricted range 2 ≤ q ≤ 2 · n

n+1 . More precisely, the arguments of Bourgain and
Guth (2011) can be used to show that if the decoupling estimate (83) is valid for some
q ≥ 2 (and d = n), then (87) holds for the same q. It also follows from the methods of
Bourgain and Guth (2011) that the decoupling estimate holds for 2 ≤ q ≤ 2 · n

n+1 (see
also Bourgain (2013a), where the connection with decoupling is more explicit). The full
range 2 ≤ q ≤ qn for decoupling followed later in Bourgain and Demeter (2015).

Proof (of Lemma 6.7). — Given a cube Q ∈ QK2 , we define the Lq broad functional

(88) ∥Uf∥BLq(Q) := min
V ∈Gr(n,Rn+1)

max
τ /∈TK−1 (V )

∥Ufτ ∥Lq(Q)

and let
TK−1(V,Q) :=

{
τ ∈ TK−1(V ) : ∥Ufτ ∥Lq(Q) ≥ ∥Uf∥BLq(Q)

}
;

these definitions are the natural Lq analogues of the pointwise definitions appearing in
the proof of Lemma 6.4.

From all spaces realising the minimum in (88), choose VQ ∈ Gr(n,Rn+1) so as to also
maximise #TK−1(V,Q). Define the collections of narrow and broad caps (for Uf over Q)
by

NQ := TK−1(VQ) and BQ := TK−1 \ TK−1(VQ).
Arguing as in the proof of Lemma 6.4, we then have

∥Uf∥Lq(Q) ≤
∥∥∥ ∑

τ∈NQ

Ufτ

∥∥∥
Lq(Q)

+
∑

τ∈BQ

∥Ufτ ∥Lq(Q)

≲ max
V ∈Gr(n,Rn+1)

∥UfV ∥Lq(Q) +Kn∥Uf∥BLq(Q).(89)

Furthermore,

(90) ∥Uf∥BLq(Q) ≤ max
(τ1,...,τn+1)∈T trans

K−1

n+1∏
j=1

∥Ufτj
∥1/(n+1)

Lq(Q) .

Comparing the ‘broad’ term on the right-hand side of (90) with the corresponding
term in (86), we can see that the order of the geometric mean and Lq norms are
interchanged. We can in fact bound the right-hand side of (86) by the right-hand side
of (90) simply by Hölder’s inequality, but this estimate goes in the wrong direction.
Thus, the problem is to prove a reverse Hölder inequality, which is achieved using the
locally constant properties.
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Let χ̃ ∈ S(Rn+1) satisfy |χ̃(z)| ≳ 1 for all |z| ≤ 2 and supp F χ̃ ⊆ Bn+1(0, 1). Fix
caps τj ∈ TK−1 for 1 ≤ j ≤ n+ 1 and define the functions

Fj(z) := Ufτj
(z) · χ̃(R−1z), for 1 ≤ j ≤ n+ 1.

Since each cube Q ∈ QK2 satisfies Q ⊆ Bn+1(0, 2R), it follows that
n+1∏
j=1

∥Ufτj
∥1/(n+1)

Lq(Q) ≲
n+1∏
j=1

∥Fj∥1/(n+1)
Lq(Q) ≤

[ n+1∏
j=1

|aj,Q|1/(n+1)
]
|Q|1/q,

where aj,Q denotes the supremum of |Fj(z)| over all z ∈ Q. Applying Lemma 5.9 to
each function Fj with exponent s := 1/(n+ 1) and M := K2, we deduce that

n+1∏
j=1

∥Ufτj
∥1/(n+1)

Lq(Q) ≲ K2(n+1)
∥∥∥∥ n+1∏

j=1
|Fj|1/(n+1) ∗ ηK2

∥∥∥∥
Lq(Q)

≲ K2(n+1)
∥∥∥∥ n+1∏

j=1
|Ufτj

|1/(n+1)
∥∥∥∥

Lq,∗(Q)
,(91)

where the second step follows by Minkowski’s inequality. Note that the additional
factor of K2(n+1) arises since the Fj are only Fourier localised to scale 1 (rather than
scale K−2) and therefore only enjoy local constancy at unit scale. Combining (91)
with (89) and (90), we deduce the desired bound.

7. PROOF OF THE FRACTAL ENERGY ESTIMATE

7.1. Recap and a final reduction

We now combine all the tools introduced in the previous sections to prove the fractal
energy estimate. For convenience, here we reproduce the statement.

Theorem 7.1 (Du and Zhang, 2019, c.f. Theorem 3.6). — For all ε > 0 and all R ≥ 1,
1 ≤ α ≤ n+ 1, the inequality

(92) ∥Uf∥L2(ZQ) ≲ε ∆α(Q)1/(n+1)Rα/(2(n+1))+ε∥f∥L2(Rn)

holds whenever f ∈ L2(Rn) and Q is a family of lattice unit cubes in Bn+1(0, R).

From §3, we know that Theorem 7.1 implies the sharp L2 maximal estimate in
Theorem 3.1 and therefore also the pointwise convergence result for the Schrödinger
equation in Theorem 1.3.

The proof of Theorem 7.1 hinges on the broad-narrow decomposition and induction-
on-scale methods. Prior to Du and Zhang (2019), these techniques were applied to bound
the Schrödinger maximal function in Bourgain (2013b). The latter work establishes
Hs → L2 bounds for the maximal function in the range s > 2n−1

4n
, which is more

restrictive than the (essentially sharp) condition s > n
2(n+1) from Du and Zhang (2019).

One of the main advantages of the approach of Du and Zhang (2019) is the novel form
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of the inductive statement, which allows a great deal of information to be translated
between scales.

Rather than attempting to prove (92) directly, we work with an auxiliary L2 → Lqn

estimate, where qn := 2 · n+1
n−1 . This is the exponent featured in the broad-narrow

decomposition from Proposition 6.8 (which arises from the application of the lower-
dimensional decoupling inequality from Theorem 6.5).

Proposition 7.2. — Let qn := 2 · n+1
n−1 . For all 0 < ε < 1 and R ≥ 1, defining

δ := ε/100n2 and K := Rδ, the following holds. Suppose f ∈ L2(Rn) and Q is a family
of lattice K2-cubes contained in Bn+1(0, R) such that(26)

(93) ∥Uf∥Lqn (Q) are dyadically constant over Q ∈ Q.

Then for all 1 ≤ α ≤ n+ 1, we have

(94) ∥Uf∥Lqn (ZQ) ≲ε

[∆α(Q)
#Q

]1/(n+1)
Rα/(2(n+1))+ε∥f∥L2(Rn).

It is not difficult to show that Proposition 7.2 implies Theorem 7.1. This relies on a
pigeonholing argument, used to pass to the dyadically constant setup, which we isolate
in Lemma 7.3 below. Before giving the details of this reduction, we indicate why the
formulation of Proposition 7.2 is useful. Two major ingredients in our analysis are
the multilinear Strichartz estimates from Theorem 5.5 and the decoupling inequality
used in the broad-narrow decomposition in Proposition 6.8. The critical exponent
for the former is pn := 2 · n+1

n
and for the latter is qn. Roughly speaking, the setup

in Proposition 7.2 allows us to apply both these estimates at their respective critical
exponents. The proposition itself is stated for the exponent qn, whilst the dyadic
constancy hypothesis (93) allows one to efficiently pass to the exponent pn using reverse
Hölder-type arguments (see §7.4 below). Thus, the pigeonholing can be thought of
roughly as a weak form of real interpolation, which allows us to reconcile two very
different estimates at distinct Lebesgue exponents.

Lemma 7.3. — Let 2 ≤ q ≤ ∞ and 1 ≤ M ≤ R. Suppose f ∈ L2(Rn) and QM is a
collection of lattice M-cubes contained in Bn+1(0, R). Then there exists a subcollection
Q′

M ⊆ QM such that

(95) ∥Uf∥Lq(Q) are dyadically constant over Q ∈ Q′
M .

and

(96) ∥Uf∥L2(ZQM
) ≲ (logR)1/2∥Uf∥L2(ZQ′

M
) +R−100n∥f∥L2(Rn).

Proof. — Begin by bounding

(97) ∥Uf∥L2(ZQM
) ≤

( ∑
Q∈QM,0

∥Uf∥2
L2(Q)

)1/2
+
( ∑

Q∈QM,1

∥Uf∥2
L2(Q)

)1/2

(26)For the definition of dyadically constant, see §4.6.



1205–51

where QM,0 and QM,1 are defined by

QM,0 :=
{
Q ∈ QM : ∥Uf∥Lq(Q) < R−200n∥f∥L2(Rn)

}
, QM,1 := QM \ QM,0.

The net contribution to (97) arising from the cubes Q ∈ QM,0 is negligible, and can be
bounded by the second term on the right-hand side of (96).

By the definition of QM,0 and elementary estimates,

R−200n∥f∥L2(Rn) ≤ ∥Uf∥Lq(Q) ≲ R(n+1)/q∥f∥L2(Rn) for all Q ∈ QM,1.

Consequently, we may apply dyadic pigeonholing in the form of Lemma 4.21 ii) to find
Q′

M ⊆ QM satisfying (95) and such that( ∑
Q∈QM,1

∥Uf∥2
L2(Q)

)1/2
≲ (logR)1/2

( ∑
Q∈Q′

M

∥Uf∥2
L2(Q)

)1/2
,

which combines with (97) and our earlier observation to give the desired bound.

Proof (Proposition 7.2 ⇒ Theorem 7.1). — Let Q be a family of lattice unit cubes in
Bn+1(0, R) and QK2 the collection of lattice K2-cubes which intersect ZQ. Here K := Rδ

is as in the statement of Proposition 7.2.
By Lemma 7.3, there exists a subcollection Q′

K2 ⊆ QK2 such that

∥Uf∥Lqn (Q) are dyadically constant over Q ∈ Q′
K2 .

and

(98) ∥Uf∥L2(ZQ) ≤ ∥Uf∥L2(ZQ
K2 ) ≲ (logR)1/2∥Uf∥L2(ZQ′

K2
) +R−100n∥f∥L2(Rn).

We can therefore apply Proposition 7.2 to the family Q′
K2 to deduce that

(99) ∥Uf∥Lqn (ZQ′
K2

) ≲ε

[∆α(Q′
K2)

#Q′
K2

]1/(n+1)
Rα/(2(n+1))+ε/2∥f∥L2(Rn).

We now apply Hölder’s inequality and combine (98) and (99) to deduce that

∥Uf∥L2(ZQ) ≲ (logR)1/2|ZQ′
K2

|1/(n+1)∥Uf∥Lqn (ZQ′
K2

) +R−100n∥f∥L2(Rn)

≲ε R
2δ(logR)1/2∆α(Q′

K2)1/(n+1)Rα/(2(n+1))+ε/2∥f∥L2(Rn),

where we have used the elementary bound

|ZQ′
K2

| ≤ K2(n+1)[#Q′
K2 ] = R2(n+1)δ[#Q′

K2 ]

Note that the factor R2δ(logR)1/2 can be bounded by Rε/2.
Finally, since each QK2 ∈ QK2 has the property that 2 · QK2 contains at least one

cube from Q, it easily follows that ∆α(Q′
K2) ≲ ∆α(Q). Consequently,

∥Uf∥L2(ZQ) ≲ε ∆α(Q)1/(n+1)Rα/(2(n+1))+ε∥f∥L2(Rn),

which is precisely the desired bound.
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7.2. Induction-on-scale

The proof of Proposition 7.2 follows by induction on the scale parameter R. Here we
introduce the underlying induction scheme.

Fix ε > 0, 1 ≤ α ≤ n+1 and set δ := ε/100n2. We shall say a parameter is admissible
if it depends only on the dimension n and ε. Recall from (18) that the basic energy
estimate

∥Uf∥L2(ZQ) ≲ ∆α(Q)1/(n+1)R1/2∥f∥L2(Rn)

always holds. Thus, Proposition 7.2 is trivial for small scales. In particular, let R0 ≥ 1
denote a fixed scale, depending only on admissible parameters n and ε. For Cε ≥ 1 a
suitable choice of admissible constant,

(100) ∥Uf∥Lqn (ZQ) ≤ Cε

[∆α(Q)
#Q

]1/(n+1)
Rα/(2(n+1))+ε∥f∥L2(Rn),

holds under the hypotheses of Proposition 7.2 whenever 1 ≤ R ≤ R0. This serves as
the base case for our induction.

Henceforth we assume R0 and Cε are fixed admissible constants, chosen so that the
above base case holds and large enough to satisfy the forthcoming requirements of the
proof. Let R ≥ R0 and define K := Rδ. We shall work under the following induction
hypothesis.

Induction hypothesis. — Let 1 ≤ R̃ ≤ R/2 and define K̃ := R̃δ. The inequality

∥Ug∥Lqn (ZQ̃) ≤ Cε

[∆α(Q̃)
#Q̃

]1/(n+1)
R̃α/(2(n+1))+ε∥g∥L2(Rn).

holds whenever g ∈ L2(Rn) and Q̃ is a non-empty family of lattice K̃2-cubes contained
in Bn+1(0, R) such that

∥Ug∥Lqn (Q̃) are dyadically constant over Q̃ ∈ Q̃.

We now fix f ∈ L2(Rn) and for R ≥ R0 as above let Q be a family of K2-cubes
satisfying the hypotheses of Proposition 7.2. The goal is to prove (100). Without loss
of generality, we may assume supp f̂ ⊆ Bn(0, 1/2).

Remark 7.4. — The high-level structure of the proof is similar to the induction-on-scale
argument used earlier to prove the 1-dimensional Strichartz estimate (Proposition 6.1).
There are, however, some notable differences:

– The intermediate scale K introduced in the statement of Proposition 7.2 plays the
same rôle as the K parameter in the proof of Proposition 6.1. Here, however, K =
Rδ depends on the inadmissible parameter R whereas in the proof of Proposition 6.1
the parameter K was chosen independently of R. This choice of K allows us to
compensate for small losses in the narrow term arising from the Kε factor in the
decoupling inequality (Theorem 6.5).
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– To close the induction, later in the argument we must ensure that K is sufficiently
large. Rather than fix a specific value of K, as in the proof of Proposition 6.1, here
we fix a lower bound for K = Rδ by introducing the parameter R0.

7.3. Broad / narrow dichotomy
The next step is to apply the broad-narrow decomposition described in §6.6. This

will allow us to bring the powerful multilinear Strichartz estimates into play.
By Proposition 6.8, there exists admissible constants Cbn

ε , E ≥ 1 such that

∥Uf∥Lqn (Q) ≤ Cbn
ε Kε

( ∑
τ∈TK−1

∥Ufτ ∥2
Lqn (wQ)

)1/2

+ Cbn
ε KE max

τ∈T trans
K−1

∥∥∥∥ n+1∏
j=1

|Ufτj
|1/(n+1)

∥∥∥∥
Lqn,∗(Q)

.(101)

holds for all Q ∈ Q. Here the maximum is taken over all transverse (n + 1)-tuples
τ = (τ1, . . . , τn+1) ∈ T trans

K−1 . By Remark 6.9 we may (and shall) take E := 4n2.
We say a cube Q ∈ Q is narrow if

∥Uf∥Lqn (Q) ≤ 2Cbn
ε Kε

( ∑
τ∈TK−1

∥Ufτ ∥2
Lqn (wQ)

)1/2
;

otherwise, we say Q is broad. As a consequence of (101), the inequality

(102) ∥Uf∥Lqn (Q) ≤ 2Cbn
ε KE max

τ∈T trans
K−1

∥∥∥∥ n+1∏
j=1

|Ufτj
|1/(n+1)

∥∥∥∥
Lqn,∗(Q)

holds whenever Q ∈ Q is broad.
We denote by Qbroad and Qnarrow the collections of broad and narrow cubes, respec-

tively. The proof will split into two subcases, depending on whether the majority of the
cubes are broad or narrow.

7.4. Broad-dominant case
Suppose the majority of the cubes Q ∈ Q are broad: that is,

(103) #Qbroad ≥ #Q/2.
We refer to this as the broad-dominant case. Here we bound our operator by direct
appeal to the multilinear Strichartz estimate from Theorem 5.5. This should come
as no surprise, since we have already seen in Corollary 5.6 that Theorem 5.5 implies
multilinear fractal energy estimates. Due to the form of the desired estimate in (94),
we do not appeal directly to Corollary 5.6, but the underlying idea is nevertheless the
same.

Let λ ≥ 1 and Q′ ⊆ Qbroad be any collection of broad cubes which satisfies #Q′ ≥
λ−1#Q. Then, by the dyadic constancy hypothesis (93), we may bound

∥Uf∥Lqn (ZQ) ≲ λ1/qn∥Uf∥Lqn (ZQ′ ) ≤ λ
( ∑

Q∈Q′
∥Uf∥qn

Lqn (Q)

)1/qn

.
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Combining this with (102), there exists an assignment of a transverse (n+ 1)-tuple of
caps τQ = (τQ,1, . . . , τQ,n+1) ∈ T trans

K−1 to each Q ∈ Q′ such that

∥Uf∥Lqn (ZQ) ≲ λKE
( ∑

Q∈Q′

∥∥∥∥ n+1∏
j=1

|UfτQ,j
|1/(n+1)

∥∥∥∥qn

Lqn,∗(Q)

)1/qn

.

Let pn := 2 · n+1
n

denote the critical exponent in the multilinear Strichartz estimate
(Theorem 5.5). By the local multilinear Bernstein inequality from Corollary 5.10, we
deduce that(27)

(104) ∥Uf∥Lqn (ZQ) ≲ λKE
( ∑

Q∈Q′

∥∥∥∥ n+1∏
j=1

|UfτQ,j
|1/(n+1)

∥∥∥∥qn

Lpn,∗(wQ)

)1/qn

.

One way to estimate the ℓqn sum on the right-hand side of (104) is to simply use the
nesting of ℓp-norms to deduce that
(105)( ∑

Q∈Q′

∥∥∥∥ n+1∏
j=1

|UfτQ,j
|1/(n+1)

∥∥∥∥qn

Lpn,∗(wQ)

)1/qn

≲ KE max
τ∈T trans

K−1

∥∥∥∥ n+1∏
j=1

|Ufτj
|1/(n+1)

∥∥∥∥
Lpn,∗(wBR

)
.

Here we have interchanged the ℓpn-norm and maximum in τ at the expense of an addi-
tional factor of KE. The multilinear expression can now be bounded using Theorem 5.5.
However, the resulting estimates are insufficient for our purpose and we shall instead
use the flexibility to choose Q′ to improve (105). In particular, we choose Q′ via a pi-
geonholing argument, along the lines of the reverse Hölder inequality from Lemma 4.22.

Pigeonholing will repeatedly feature in the forthcoming arguments; it is convenient
to introduce asymptotic notation to suppress the resulting logarithmic factors.

Notation. — Let A, B be non-negative real numbers. We write A ⪅ B or B ⪆ A if
for all η > 0 there exists a constant Cε,η ≥ 1, depending only on η and the admissible
parameters n and ε, such that A ≤ Cε,ηR

ηB.

Let Qtiny denote the collection of all cubes Q ∈ Qbroad such that∥∥∥∥ n+1∏
j=1

|UfτQ,j
|1/(n+1)

∥∥∥∥
Lpn,∗(wQ)

≤ R−100n∥f∥L2(Rn).

If #Qtiny ≥ #Qbroad/2, then we may apply (104) with Q′ := Qtiny to obtain a very
favourable estimate. Thus, we assume #Qtiny < #Qbroad/2.

Note that

R−100n∥f∥L2(Rn) <

∥∥∥∥ n+1∏
j=1

|UfτQ,j
|1/(n+1)

∥∥∥∥
Lpn,∗(wQ)

≲ R∥f∥L2(Rn)

(27)The weighted Lpn,∗-norms are defined in the obvious manner; we omit the details.
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for all Q ∈ Qbroad \Qtiny, where the upper bound is a trivial consequence of the Cauchy–
Schwarz inequality and Plancherel’s theorem. Thus, by dyadic pigeonholing, there exists
some Q′ ⊆ Qbroad satisfying #Q′ ⪆ #Q such that∥∥∥∥ n+1∏

j=1
|UfτQ,j

|1/(n+1)
∥∥∥∥

Lpn,∗(wQ)
are dyadically constant over Q ∈ Q′.

For this choice of set Q′, we can upgrade (105) to the reverse Hölder inequality( ∑
Q∈Q′

∥∥∥∥ n+1∏
j=1

|UfτQ,j
|1/(n+1)

∥∥∥∥qn

Lpn,∗(wQ)

)1/qn

⪅ KE[#Q]−1/(2(n+1)) max
τ∈T trans

K−1

∥∥∥∥ n+1∏
j=1

|Ufτj
|1/(n+1)

∥∥∥∥
Lpn,∗(wBR

)
.(106)

Combining (104) (for the choice of Q′ above) and (106), we deduce that

∥Uf∥Lqn (ZQ) ⪅ K2E[#Q]−1/(2(n+1)) max
τ∈T trans

K−1

∥∥∥∥ n+1∏
j=1

|Ufτj
|1/(n+1)

∥∥∥∥
Lpn,∗(wBR

)
.

Now applying the multilinear Strichartz estimate,(28)

∥Uf∥Lqn (ZQ) ⪅ K3E[#Q]−1/(n+1)[#Q]1/(2(n+1))Rε/2∥f∥L2(Rn).

Recall that #Q ≤ ∆α(Q)Rα, and therefore

∥Uf∥Lqn (ZQ) ⪅ K3E[#Q]−1/(n+1)∆α(Q)1/(2(n+1))Rα/(2(n+1))+ε/2∥f∥L2(Rn).

Finally, since ∆α(Q) ≳ K−2α and K = Rδ where δ ≤ ε/8E, we conclude that

(107) ∥Uf∥Lqn (ZQ) ≲ε

[∆α(Q)
#Q

]1/(n+1)
Rα/(2(n+1))+ε∥f∥L2(Rn).

This provides a favourable estimate in the broad-dominant case.

7.5. Narrow-dominant case: introduction

Now suppose (103) fails, so that

#Qnarrow ≥ #Q/2

We refer to this as the narrow-dominant case. Here we estimate our operator using a
combination of parabolic rescaling and appeal to the induction hypothesis.

The analysis of the narrow-dominant case is a major innovation of Du and Zhang
(2019). Indeed, as remarked earlier, Bourgain (2013b) introduced the broad/narrow
dichotomy to the study of the Schrödinger maximal operator. Many aspects of the
arguments of Bourgain (2013b) and Du and Zhang (2019) are similar (the use of

(28)Here we are estimating a weighted norm Lpn(wBR
) rather than a Lpn(BR)-norm with sharp cut-off

as in Theorem 5.5. However, Theorem 5.5 automatically extends to the weighted case, using the
translation invariance of the estimate and rapid decay of the weight.
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induction-on-scale,(29) broad/narrow dichotomy, decoupling-type estimates, multilinear
Strichartz); however, the novel form of the key estimate (94) of Du and Zhang (2019)
allows information to be efficiently passed between scales and, consequently, leads to a
much tighter bound in the narrow-dominant case.

We shall discuss the narrow-dominant case at length, and attempt to develop both
a heuristic and technically detailed understanding of the argument. In particular, the
following subsections are structured as follows:

– In §7.6 we describe the initial steps of the analysis of the narrow-dominant case,
setting the scene for the main argument.

– In §7.7 we provide a non-technical overview of the main argument. For this
overview, we make a number of simplifying assumptions.

– In §7.8 we provide a rigorous description of main argument. The goal here is
primarily to remove the simplifying assumptions used in the previous subsection.

7.6. Narrow-dominant case: initial steps
The first few steps of the argument mirror those of the inductive proof of the 1-

dimensional Strichartz estimate (Proposition 6.1). For τ ∈ TK−1 recall that, since fτ has
frequency localisation to the cube τ , the wave Ufτ behaves pseudo-locally. In particular,
we may write

fτ =
∑

S∈Sτ [R]
fS

as in (51) where, by Lemma 4.16, the pointwise inequality

|Ufτ (z)| ≲
∑

S∈Sτ [R]
|UfS(z)|χS̄(z) +R−10n∥f∥L2(Rn)

holds for all z ∈ Bn+1(0, R).
Fix a narrow cube Q ∈ Qnarrow. Since the sets S̄ have bounded overlap,

(108) ∥Ufτ ∥Lqn (wQ) ≲
( ∑

S∈Sτ [R]
∥UfS∥qn

Lqn (wQ)

)1/qn

+R−5n∥f∥L2(Rn).

Let S denote the (disjoint) union of the sets Sτ [R] over all τ ∈ TK−1 . By (108), the
definition of Qnarrow and the nesting of the ℓp spaces,

∥Uf∥Lqn (Q) ≲ε K
ε
( ∑

τ∈TK−1

∥Ufτ ∥2
Lqn (wQ)

)1/2

≲ε K
ε
(∑

S∈S
∥UfS∥2

Lqn (wQ)

)1/2
+R−5n∥f∥L2(Rn).(109)

This situation looks very similar to the analysis of the narrow case in the proof of
Proposition 6.1. The key difference, however, is that we must now keep track of the
localisation to the various cubes Q ∈ Q.

(29)The argument of Bourgain (2013b) is presented as a recursive process rather than an induction, but
this is tantamount to the same thing.
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7.7. Analysis of the narrow case: non-technical overview

We now give a non-technical overview of the remainder of the proof. Any outstanding
technical details are discussed in the following subsection.

Since the weight wQ is rapidly decaying away from Q, the only strips S which
significantly contribute to the sum in (109) are those belonging to

S(Q) := {S ∈ S : S ∩Q ̸= ∅}.

Thus, we essentially have(30)

∥Uf∥Lqn (Q) ≲ε K
ε
( ∑

S∈S(Q)
∥UfS∥2

Lqn (Q)

)1/2
.

We remark that, for any fixed τ ∈ TK−1 , the collection S(Q) contains only O(1) strips
lying in Sτ [R]. We may therefore think of S(Q) as a collection of strips passing throughQ
which are oriented in K−1-separated directions.

We wish to sum the contributions over all Q ∈ Q. To do this effectively, we apply
Hölder’s inequality to convert the ℓ2 expression into an ℓq expression:

∥Uf∥Lqn (Q) ≲ε K
ε[#S(Q)]1/(n+1)

(∑
S∈S

∥UfS∥qn

Lqn (Q)

)1/qn

.

We may now take the ℓq sum over all Q ∈ Qnarrow to deduce that

(110) ∥Uf∥Lqn (ZQ) ≲ε K
ε[max

Q∈Q
#S(Q)]1/(n+1)

(∑
S∈S

∥UfS∥qn

Lqn (ZQ)

)1/qn

.

Parabolic rescaling and the induction hypothesis. — At this stage, we wish to apply
parabolic rescaling and the induction hypothesis to bound each of the terms ∥UfS∥Lq(ZQ).
This is exactly as in the inductive proof of Proposition 6.1. However, one major compli-
cation in the present setup is that our induction hypothesis involves some underlying
family of K̃2-cubes Q̃. We must therefore prepare the ground so that, after rescaling, a
suitable family of K̃2-cubes arises.

Fix S ∈ S, so that

S =
{
(x, t) ∈ Rn+1 : |x− x(S) − tv(S)| ≤ R/K and |t| ≤ R

}
for some choice of initial position x(S) ∈ Bn(0, R) and velocity v(S) ∈ Bn(0, 1). As in
§4.5, let AS : Rn+1 → Rn+1 denote the affine transformation

AS : (x, t) 7→
(
K−1(x− x(S) − tv(S)), K−2t

)
which maps bijectively between S and Bn+1(0, R/K2). Define

(111) R̃ := 20R/K2 and K̃ := R̃δ.

(30)For the sake of this discussion, we will ignore rapidly decaying error terms in the estimates and
assume we have sharp cutoffs rather than weighted Lq norms. We address such technical points in the
following subsection.
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AS

R

K2K̃2

R/K

KK̃2

S Bn+1
R̃

R̃ := 20R/K2

R̃

K̃2

K̃2

Figure 6. The map AS sends S to Bn+1(0, R/K2) and each parallelepiped
P to a lattice K̃2-cube. Note that the left and right-hand sides are drawn at
different scales (the right-hand ball is in fact much smaller than the strip).

Let P(S) denote a cover of the strip S by parallelepipeds aligned parallel to S and
of dimensions KK̃2 × · · · ×KK̃2 ×K2K̃2. In particular, P(S) consists of the sets

(112) P :=
{
(x, t) ∈ Rn+1 : |x−x(P ) − tv(S)|∞ ≤ KK̃2/2 and |t− t(P )| ≤ K2K̃2/2

}
,

where the centres z(P ) = (x(P ), t(P )) vary over the lattice points KK̃2Zn × K2K̃2Z.
The dimensions of these sets are chosen so that the transformation AS maps each
parallelepiped P ∈ P(S) to a lattice K̃2-cube

AS(P ) = {(x̃, t̃) ∈ Rn+1 : |x̃−K−1(x(S)−x(P ))|∞ ≤ K̃2/2 and |t̃−K−2t(P )| ≤ K̃2/2
}
;

see Figure 6.
Since we are forming our Lq-norms over the set ZQ, it suffices to only consider the

subcollection P(S; Q) of all parallelepipeds P ∈ P(S) which intersect some cube Q ∈ Q.
By the preceding discussion,

(113) Q̃(S) :=
{
AS(P ) : P ∈ P(S; Q)

}
is a collection of lattice K̃2-cubes in Bn+1(0, R̃).

Since the set S ∩ ZQ is contained in

ZP(S;Q) :=
⋃

P ∈P(S;Q)
P,

and by Lemma 4.16, the function UfS is essentially supported on S, we may estimate

(114) ∥UfS∥Lqn (ZQ) ≲ ∥UfS∥Lqn (ZP(S;Q)).
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which combines with (110) to give

(115) ∥Uf∥Lqn (ZQ) ≲ε K
ε[max

Q∈Q
#S(Q)]1/(n+1)

(∑
S∈S

∥UfS∥qn

Lqn (ZP(S;Q))

)1/qn

.

In order to apply the induction hypothesis later in the argument, it is useful to make
the following assumption.
Simplifying Assumption P1. For each S ∈ S, we assume that

(116) ∥UfS∥Lqn (P ) are dyadically constant over P ∈ P(S; Q).

For the purpose of this non-technical discussion, we shall make a number of such sim-
plifying assumptions. Later, in §7.7, we give a rigorous justification of these assumptions
using pigeonholing.

We now rescale the norm on the right-hand side of (114) using Lemma 4.18. In
particular,

∥UfS∥Lqn (ZP(S;Q)) ≤ K(n+2)/qn−n/2∥Uf̃S∥Lqn (ZQ̃(S)) = K−1/(n+1)∥Uf̃S∥Lqn (ZQ̃(S))

for some function f̃S ∈ L2(Rn) satisfying

∥f̃S∥L2(Rn) = ∥fS∥L2(Rn) and supp F(f̃S) ⊆ Bn(0, 1).

Each localised norm ∥Uf̃S∥Lqn (P ) rescales to some K−1/(n+1)∥Uf̃S∥Lqn (Q̃). Thus,

∥Uf̃S∥Lqn (Q̃) are dyadically constant over Q̃ ∈ Q̃(S),

as a consequence of (116). Therefore, we may apply the induction hypothesis to conclude
that

∥UfS∥Lqn (ZP(S;Q)) ≲ CεK
−1/(n+1)

[∆α(Q̃(S))
#Q̃(S)

]1/(n+1)
R̃α/(2(n+1))+ε∥f∥L2(Rn).

Since R̃ = 20R/K2, this becomes

(117) ∥UfS∥Lqn (ZP(S;Q)) ≲ CεK
−2ε
[
K−1−α ∆α(Q̃(S))

#Q̃(S)

]1/(n+1)
Rα/(2(n+1))+ε∥f∥L2(Rn).

The decay factor of K−2ε arising from the application of the induction hypothesis is
crucial for closing the argument.

Summing the estimates. — The next step is to sum the localised estimate (117) over
all choices of strip S ∈ S. Substituting the estimate (117) into (115), we deduce that
(118)

∥Uf∥Lqn (ZQ) ≲ CεK
−εMK(Q)1/(n+1)Rα/(2(n+1))+ε[#S]1/(n+1)

(∑
S∈S

∥fS∥qn

L2(Rn)

)1/qn

where

MK(Q) := K−1−α
[

max
Q∈Q

#S(Q)
#S

][
max
S∈S

∆α(Q̃(S))
#Q̃(S)

]
.
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One way to estimate the ℓq sum on the right-hand side of (118) is to simply use the
nesting of ℓq-norms and orthogonality between the wave packets:

(119)
(∑

S∈S
∥fS∥qn

L2(Rn)

)1/qn

≤
(∑

S∈S
∥fS∥2

L2(Rn)

)1/2
≲ ∥fS∥L2(Rn+1).

However, we shall use a more nuanced bound, improving over the above. The idea is to
use a reverse Hölder inequality, similar to that used in §7.4. Ideally,
(120)(∑

S∈S
∥fS∥qn

L2(Rn)

)1/qn

≲ [#S]−1/(n+1)
(∑

S∈S
∥fS∥2

L2(Rn)

)1/2
≲ [#S]−1/(n+1)∥f∥L2(Rn).

which gains an additional factor of [#S]−1/(n+1) over (119). This leads us to our next
simplifying assumption.
Simplifying Assumption S2.

(121) ∥fS∥L2(R) are dyadically constant over S ∈ S.

Under this assumption, the desired reverse Hölder inequality in (119) holds.
Combining (118) and (120), we obtain

(122) ∥Uf∥Lqn (ZQ) ≲ CεK
−εMK(Q)1/(n+1)Rα/(2(n+1))+ε∥f∥L2(Rn).

It remains to estimate the MK(Q) factor.

Closing the induction. — In order to conclude the argument, we shall show

(123) MK(Q) ≲ ∆α(Q)
#Q

.

Indeed, once we have this bound, we can plug it into (122) and then choose Cε and R0
appropriately to close the induction and complete the proof.

The definition of MK(Q) involves two factors:

(124)
[

max
Q∈Q

#S(Q)
#S

]
and K−1−α

[
max
S∈S

∆α(Q̃(S))
#Q̃(S)

]
.

We shall split the proof of (123) into 3 steps: the first two steps shall treat the first
factor in (124) and the remaining step treats the remaining.

1. Multiplicity bounds. Recall from the definitions that #S(Q)/#S is the proportion
of all strips S ∈ S which pass through Q. Hence, we refer to this quantity as the
multiplicity of Q. On the other hand, if we define

Q(S) := {Q ∈ Q : S ∩Q ̸= ∅}, S ∈ S,

then #Q(S)/#Q is the proportion of all cubes Q ∈ Q which lie in a fixed strip S. We
refer to this quantity as the multiplicity of S. Ideally, we would like to show

(125) max
Q∈Q

#S(Q)
#S

≲ max
S∈S

#Q(S)
#Q

;
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in other words, if there exists a high multiplicity cube, then there must exist a high
multiplicity strip.

Example 7.5. — Without further hypotheses, it is easy to see (125) may fail. For
instance, suppose there are M strips in S, there are M + 1 cubes in Q. We may arrange
things so that:

– There exists precisely one cube Q0 ∈ Q which lies in every strip: #S(Q0) = M ;
– Every other cube in Q lies in precisely one strip: #S(Q) = 1 for all Q ∈ Q \ {Q0};
– Every strip contains 2 cubes: #Q(S) = 2 for all S ∈ S.

Then
max
Q∈Q

#S(Q)
#S

= #S(Q0)
#S

= 1 and max
S∈S

#Q(S)
#Q

= 2
M + 1 .

Thus, if M ≫ 1, then this violates (125). The idea here, however, is that the violation
arises from the single ‘outlier’ cube Q0; if we throw away such outliers, and focus only
on ‘typical’ cubes, then we can hope for (125) to hold.

By double-counting we always have a trivial inequality

(126) min
Q∈Q

#S(Q)
#S

≤ max
S∈S

#Q(S)
#Q

.

Indeed, (126) immediately follows once we note∑
Q∈Q

#S(Q) = #{(S,Q) : S ∈ S, Q ∈ Q(S)} =
∑
S∈S

#Q(S).

To exploit the bound (126), we make a further assumption on the multiplicities of the
cubes.
Simplifying Assumption Q.

(127) #S(Q) are dyadically constant over Q ∈ Q.

This assumption ensures there are no ‘outlier’ cubes as in Example 7.5. In particular,
using (127), we may upgrade (126) to the desired bound (125). This helps us to control
the first factor in (124).

2. From strips to parallelepipeds. The next step is to relate #Q(S) to #Q̃(S). We
begin by recalling some of the definitions. For each strip S ∈ S there is an associated
family of parallelepipeds P(S; Q). Furthermore, the family of cubes Q̃(S) is obtained
by transforming the P ∈ P(S; Q) under AS (see (113)). In particular,

(128) #P(S; Q) = #Q̃(S).

Thus, our task here is to relate #Q(S) to #P(S; Q).
Let P(Q) denote the union of the P(S; Q) over all S ∈ S and let

Q(P ) := {Q ∈ Q : P ∩Q ̸= ∅} for all P ∈ P(Q).
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It follows from the definitions that

Q(S) =
⋃

P ∈P(S;Q)
Q(P ).

We can therefore compare the multiplicity of a strip to the multiplicities of the paral-
lelepipeds via the simple inequality

#Q(S) ≤
∑

P ∈P(S;Q)
#Q(P ) ≤ [ max

P ∈P(S;Q)
#Q(P )][#P(S; Q)].

Thus, in view of (125) and (128), we have

max
Q∈Q

#S(Q)
#S

≤ [ max
P ∈P(Q)

#Q(P )][max
S∈S

#Q̃(S)].

The maxima on the right-hand side of the above inequality are awkward to bound.
However, the situation is improved if we introduce the following additional assumptions.
Simplifying Assumption P2.

(129) #Q(P ) are dyadically constant over all P ∈ P(Q).

Simplifying Assumption S2.

#P(S; Q) are dyadically constant over S ∈ S.

These are (thankfully!) our final simplifying assumptions. By (129) and (121), it
follows that

(130)
[

max
Q∈Q

#S(Q)
#S

]
≲

1
#Q

[ min
P ∈P(Q)

#Q(P )][min
S∈S

#Q̃(S)].

3. Comparing densities. The final step is to relate the densities ∆α(Q̃(S)) and
∆α(Q). This is achieved via the following simple lemma.

Lemma 7.6. — With the above setup, for any S ∈ S we have

(131) [ min
P ∈P(Q)

#Q(P )]∆α(Q̃(S)) ≲ K1+α∆α(Q).

Proof. — Let B̃ ⊆ Bn−1(0, R̃) be a ball of radius r := rad(B̃) ≥ K̃2. Note that

#{Q̃ ∈ Q̃(S) : Q̃ ⊆ B̃} = #{P ∈ P(S; Q) : P ⊆ A−1
S (B̃)},

where we have used the definition of the family of cubes Q̃(S) from (113). Letting
T := A−1

S (B̃), it follows that

[ min
P ∈P(Q)

#Q(P )][#{Q̃ ∈ Q̃(S) : Q̃ ⊆ B̃}] ≤ #{Q ∈ Q : Q ⊆ T}.

Since T is a strip of dimension Kr × · · · × Kr × K2r, it can be covered by O(K)
balls B ⊆ Bn+1(0, R) of radius Kr. Furthermore, this cover can be chosen such that if
Q ∈ Q satisfies Q ⊆ T , then Q ⊆ B for some choice of ball in the cover. Thus,

(132) #{Q ∈ Q : Q ⊆ T} ≲ K[ max
B⊆Bn+1(0,R)

rad(B)=Kr

#{Q ∈ Q : Q ⊆ B}] ≤ K1+αrα∆α(Q).
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Combining (7.7) and (132), we deduce that

[ min
P ∈P(Q)

#Q(P )]∆α(Q̃; B̃) ≲ K1+α∆α(Q)

and the desired result follows by taking a supremum over all choices of B̃.

Combining (130) and (131), we therefore have[
max
Q∈Q

#S(Q)
#S

][
max
S∈S

∆α(Q̃(S))
#Q̃(S)

]
≲ K1+α ∆α(Q)

#Q
.

Recalling the definition of Mk(Q), this immediately implies the desired bound (123).
Consequently, we have the narrow estimate

∥Uf∥Lqn (ZQ) ≲ CεK
−ε
[∆α(Q)

#Q

]1/(n+1)
Rα/(2(n+1))+ε∥f∥L2(Rn),

at least under the Simplifying Assumptions P1, P2, S1, S2 and Q introduced above.

7.8. Analysis of the narrow case: technical details

We now reexamine the argument from §7.7, including technical details. The main
additional ingredient is a sequence of pigeonholing steps used to rigorously justify the
various simplifying assumptions used above.

Define the scales R̃ and K̃ as in (111). For each S ∈ S, we decompose each enlarged
strip S̄ into parallel parallelepipeds P(S) as in (112). In particular, each P ∈ P(S) is
aligned parallel to S and has dimensions KK̃2 × · · · ×KK̃2 ×K2K̃2. By Lemma 4.16,
we have the pointwise bound

(133) |UfS(z)| ≲
∑

P ∈P(S)
|UfS(z)|χP (z) +R−100n∥f∥L2(Rn).

We let Pall denote the disjoint union of the sets P(S) over all S ∈ S. Thus, given a
parallelepiped P ∈ Pall, there exists a unique element S ∈ S such that P ∈ P(S), which
we denote by S(P ).

Pigeonholing. — We first pigeonhole in the parallelepipeds P ∈ Pall. To this end, define

Ptiny :=
{
P ∈ P : ∥UfS(P )∥Lqn (P ) ≤ R−100n∥f∥L2(Rn)

}
.

Parallelepipeds P ∈ Ptiny are negligible for our purpose: for a formal interpretation of
this see (135) below. On the other hand, if P ∈ Pall \ Ptiny, then a trivial estimate using
the Cauchy–Schwarz inequality and Plancherel’s theorem shows that

R−100n∥f∥L2(Rn) ≤ ∥UfS(P )∥Lqn (P ) ≲ |P |1/q∥f∥L2(Rn) ≲ R∥f∥L2(Rn).

This will allow us to dyadically pigeonhole in ∥UfS(P )∥Lqn (P ). We shall also pigeonhole
in the cardinality of the sets

Q(P ) :=
{
Q ∈ Q : P ∩Q(δ) ̸= ∅

}
, where Q(δ) := Kδ ·Q for Q ∈ Q;

that is, the number of K2-cubes Q ∈ Q which lie in the vicinity of a given P .
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Pigeonholing the parallelepipeds. The family of parallelepipeds Pall \ Ptiny can be
written as a disjoint union Pall \ Ptiny = P1 ∪ · · · ∪ PI where

(134) ∥UfS(P )∥Lqn (P ) are dyadically constant over P ∈ Pi

and
#Q(P ) are dyadically constant over P ∈ Pi

for each 1 ≤ i ≤ I and I ⪅ 1. This corresponds to Simplifying Assumptions P1 and P2
in §7.7.

We now turn to pigeonholing the strips S ∈ S. To this end, first define

Stiny :=
{
S ∈ S : ∥fS∥L2(Rn) ≤ R−100n∥f∥L2(Rn)

}
.

The strips S ∈ Stiny are negligible for our purpose. More precisely, let Qtiny denote the
set of cubes Q ∈ Q such that(∑

S∈S
∥UfS∥2

Lqn (wQ)

)1/2
≤ 2

( ∑
S∈Stiny

∥UfS∥2
Lqn (wQ)

)1/2
.

If #Qtiny ≥ #Q/2, then (109) and the dyadically constant hypothesis (93) immediately
yield a very favourable estimate. Henceforth, we assume Qmain := Q \ Qtiny satisfies
#Qmain ≥ #Q/2.

If S ∈ S\Stiny, then the orthogonality properties of the wave packets (see Lemma 4.15)
imply that

R−100n∥f∥L2(Rn) ≤ ∥fS∥L2(Rn) ≲ ∥f∥L2(Rn).

This will allow us to dyadically pigeonhole in ∥fS∥L2(Rn). We shall also pigeonhole in
the cardinalities of the sets

Pi(S) := P(S) ∩ Pi for S ∈ S and 1 ≤ i ≤ I.

Pigeonholing the strips. For each 1 ≤ i ≤ I, the family of strips S \ Stiny can be
written as a disjoint union S \ Stiny = Si,1 ∪ · · · ∪ Si,Ji

where

∥fS∥L2(Rn) are dyadically constant over S ∈ Si,j

and
#Pi(S) are dyadically constant over S ∈ Si,j

and Ji ⪅ 1 for all 1 ≤ i ≤ I, 1 ≤ j ≤ Ji. This corresponds to Simplifying Assumptions S1
and S2 in §7.7.

Finally, we pigeonhole in the cubes Q ∈ Q. This step is a little more involved and
we require a number of preliminary observations.

Given Q ∈ Q and any set P ⊆ Pall, define

wQ|P := wQ ·
∑
P ∈P

χP .
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Fix Q ∈ Qmain. By the pointwise bound (133) and nesting of ℓq norms, we have

(135) ∥UfS∥Lqn (wQ) ≲
( I∑

i=1
∥UfS∥2

Lqn (wQ|Pi(S))

)1/2
+R−10n∥f∥L2(Rn).

Here the contribution from the parallelepipeds P ∈ Ptiny is absorbed into the rapidly
decaying term. Taking the ℓ2-norm over S ∈ S, we have(∑

S∈S
∥UfS∥2

Lqn (wQ)

)1/2
≲
( ∑

S∈S\Stiny

I∑
i=1

∥UfS∥2
Lqn (wQ|Pi(S))

)1/2
+R−5n∥f∥L2(Rn);

note that, since Q ∈ Qmain, the contribution from the strips S ∈ Stiny is negligible. By
reordering the right-hand sum in the above expression, we have

∑
S∈S\Stiny

I∑
i=1

∥UfS∥2
Lqn (wQ|Pi(S)) =

I∑
i=1

Ji∑
j=1

∑
S∈Si,j

∥UfS∥2
Lqn (wQ|Pi(S)).

Finally, we combine the above observations with (109) to deduce that

(136) ∥Uf∥Lqn (Q) ≲ε K
ε
( I∑

i=1

Ji∑
j=1

∑
S∈Si,j

∥UfS∥2
Lqn (wQ|Pi(S))

)1/2
+R−5n∥f∥L2(Rn).

We now turn to pigeonholing the cubes Q ∈ Q, which involves a two-step process.

Pigeonholing the cubes. Let Q ∈ Qmain. Applying pigeonholing to (136), there
exists some index pair (iQ, jQ) such that SQ := SiQ,jQ

and PQ(S) := PiQ
(S) satisfy

∥Uf∥Lqn (Q) ⪅ Kε
( ∑

S∈SQ

∥UfS∥2
Lqn (wQ|PQ(S))

)1/2
+R−5n∥f∥L2(Rn).

Furthermore, by pigeonholing, there exists some refinement Q′
0 ⊆ Qmain and index

(i0, j0) such that S′ := Si0,j0 and P ′ := Pi0 satisfy

SQ = S′ for all Q ∈ Q′
0 and #Q′

0 ⪆ #Q

Given Q ∈ Q, define

S′(Q) :=
{
S ∈ S′ : S̄ ∩Q(δ) ̸= ∅

}
where, as above, Q(δ) := Kδ ·Q for Q ∈ Q. By a second application of the pigeonhole
principle, we can find a further refinement Q′ ⊆ Q′

0 such that

(137) #S′(Q) are dyadically constant over Q ∈ Q′.

This corresponds to Simplifying Assumption Q in §7.7.

If Q ∈ Q′, then it follows from the above construction and definitions that

∥Uf∥Lqn (Q) ⪅ Kε
( ∑

S∈S′(Q)
∥UfS∥2

Lqn (wQ|P′(S))

)1/2
+R−5n∥f∥L2(Rn).
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In order to sum in Q, we apply Hölder’s inequality to pass from an ℓ2 to an ℓq norm.
Furthermore, since the weight wQ is rapidly decaying away from Q, we may pass from
wQ|P ′(S) to the weight wQ|P ′(S;Q′) supported on the parallelepipeds

P ′(S; Q′) :=
{
P ∈ P ′(S) : P ∩Q(δ) ̸= ∅ for some Q ∈ Q′

}
.

In particular,

∥Uf∥Lqn (Q) ⪅ Kε[#S′(Q)]1/(n+1)
( ∑

S∈S′(Q)
∥UfS∥qn

Lqn (wQ|P′(S;Q′))

)1/qn

+R−5n∥f∥L2(Rn).

Taking qn-powers and summing over all the cubes in the refined collection,

(138) ∥Uf∥Lqn (ZQ) ⪅ Kε[min
Q∈Q′

#S′(Q)]1/(n+1)
( ∑

S∈S′
∥UfS∥qn

Lqn (ZP′(S;Q′))

)1/qn

+ ∥f∥L2(Rn)

where ZP ′(S;Q′) denotes the union of the P ∈ P ′(S; Q′). Here we have used the dyadically
constant hypothesis (93) and (137).

Parabolic rescaling and the induction hypothesis. — Fix S ∈ S′. We applying parabolic
rescaling from Lemma 4.18 to deduce that

∥UfS∥Lqn (ZP′(S;Q′)) ≤ K−1/(n+1)∥Uf̃S∥Lqn (ZQ̃(S))

where f̃S ∈ L2(Rn) satisfies

∥f̃S∥L2(Rn) = ∥fS∥L2(Rn) and supp F(f̃S) ⊆ Bn(0, 1).

Here Q̃(S) is a collection of lattice K̃2-cubes contained in Bn+1(0, R̃). Furthermore, for
each Q̃ ∈ Q̃(S) there exists some P ∈ P ′(S; Q′) such that

∥UfS∥Lqn (P ) = K−1/(n+1)∥Uf̃S∥Lqn (Q̃);

it therefore follows from (134) that

∥Uf̃S∥Lqn (Q̃) are dyadically constant over Q̃ ∈ Q̃(S).

In light of the above, we may apply the induction hypothesis to conclude that

(139) ∥UfS∥Lqn (ZP′(S;Q′)) ≲ CεK
−2ε
[
K−1−α ∆α(Q̃(S))

#Q̃(S)

]1/(n+1)
Rα/(2(n+1))+ε∥fS∥L2(Rn).

This is, of course, the analogue of the estimate (117) from the non-technical argument
in §7.7. The key difference here is that the family of cubes Q̃(S) is formed from the
refined set of parallelepipeds P ′(S; Q′); this will allow us to (rigorously) exploit the
various dyadically constancy properties.
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Summing the estimates. — As in §7.7, the next step is to sum the localised estimate
(139) over all choices of strip S ∈ S′. Substituting (139) into (138), we deduce that
(140)

∥Uf∥Lqn (ZQ) ⪅ CεK
−εM ′

K(Q′)1/(n+1)Rα/(2(n+1))+ε[#S′ ]1/(n+1)
( ∑

S∈S′
∥fS∥qn

L2(Rn)

)1/qn

,

where

(141) M ′
K(Q′) := K−1−α

[
max
Q∈Q′

#S′(Q)
#S′

][
max
S∈S′

∆α(Q̃(S))
#Q̃(S)

]
.

is defined in a similar manner to the corresponding quantity in §7.7.
To estimate the ℓq sum on the right-hand side of (140), we use a reverse Hölder

inequality as in (120). Indeed, reverse Hölder can now be applied rigorously without
further assumptions, since the norms ∥fS∥L2(Rn) for S ∈ S′ are dyadically constant by
construction. Consequently,

∥Uf∥Lqn (ZQ) ≲ CεK
−εM ′

K(Q′)1/(n+1)Rα/(2(n+1))+ε∥f∥L2(Rn).

Multiplicity bounds. — The final step of the narrow analysis is to control the constant
M ′

K(Q′) and, in particular, show that

(142) M ′
K(Q′) ⪅ KO(δ) ∆α(Q)

#Q
.

Recall from our initial pigeonholing:
#S′(Q) are dyadically constant over Q ∈ Q′;
#P ′(S; Q′) are dyadically constant over S ∈ S′;
#Q′(P ) are dyadically constant over P ∈ P ′.

Arguing exactly as in §7.7, we therefore deduce that

(143)
[

max
Q∈Q′

#S′(Q)
#S′

][
max
S∈S′

∆α(Q̃(S))
#Q̃(S)

]
≲

1
#Q′ [ min

P ∈P ′(Q′)
#Q′(P )][max

S∈S′
∆α(Q̃(S))].

As before, we can use Lemma 7.6 to compare the densities, giving

(144) [ min
P ∈P ′(Q′)

#Q′(P )][max
S∈S′

∆α(Q̃(S))] ≲ KO(δ)K1+α∆α(Q′).

Note that here we lose a factor of KO(δ) due to the fact that the set of parallelepipeds
P(S; Q) is defined with the enlarged cubes Q(δ).

Combining (143) and (144), we have[
max
Q∈Q′

#S′(Q)
#S′

][
max
S∈S′

∆α(Q̃(S))
#Q̃(S)

]
⪅ KO(δ)K1+α ∆α(Q)

#Q
;

here we have also used the fact that #Q′ ⪆ #Q and ∆α(Q′) ≤ ∆α(Q). Recalling
the definition of M ′

K(Q′) from (141), this immediately implies the desired bound (142).
Consequently, we have the narrow estimate

(145) ∥Uf∥Lqn (ZQ) ≲ε CεK
−ε/2

[∆α(Q)
#Q

]1/(n+1)
Rα/(2(n+1))+ε∥f∥L2(Rn),
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which essentially agrees with the bound derived in §7.7.

7.9. Concluding the argument
To conclude the proof, it remains to collect together the estimates proved above and

show that they can be used to close the induction. Recall:
– In §7.4, we showed that (107) holds in the broad-dominant case;
– In §§7.6-7.8, we showed that (145) holds in the narrow-dominant case.
Combining (107) and (145), we see that there exists a constant Cε ≥ 1 such that the

bound

(146) ∥Uf∥Lqn (ZQ) ≤ Cε

(
CεK

−ε/2 + 1
)
K−ε/2

[∆α(Q)
#Q

]1/(n+1)
Rα/(2(n+1))+ε∥f∥L2(Rn).

holds in either case.
The estimate (146) involves two free parameters:
– We are free to choose the cutoff R0 for the base case;
– We are free to choose the constant Cε appearing in the induction hypothesis,

provided our choice is independent of R.(31)

At this point, we fine tune these parameters to ensure that the induction closes. Recalling
that K = Rδ, we choose R0 large enough so that CεK

−ε/2 ≤ 1/2 whenever R ≥ R0 and
take Cε = 2Cε. With these parameters, (146) implies

∥Uf∥Lqn (ZQ) ≤ Cε

[∆α(Q)
#Q

]1/(n+1)
Rα/(2(n+1))+ε∥f∥L2(Rn),

which is precisely what is required to close the induction.
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