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STRONG CONVERGENCE OF THE SPECTRUM OF RANDOM
PERMUTATIONS AND ALMOST-RAMANUJAN GRAPHS

[after Charles Bordenave and Benoît Collins]

by Mylène Maïda

1. INTRODUCTION

Consider the two following statements:
Independent random permutations, chosen uniformly among all permutations or all
matchings of n points, are strongly asymptotically free (viewed as operators on the

orthogonal of the constant vector 1).
versus

Random n-lifts of a fixed weighted base graph are close to being Ramanujan graphs.
They seem to belong to different mathematical landscapes, random matrix theory and

free probability for the first one, theory of expander graphs for the second one. They
are nevertheless two instances of the same result, due to Bordenave and Collins (2019)
and that we will present hereafter. In particular, we will try to explain the meaning of
the statement in each context and why it represents an important improvement with
respect to the previous results, starting with the motivation from graph theory and
then moving to free probability. This is not the only example of a result dealing with
strong asymptotic freeness that can be applied to a completely different context and we
will describe in detail, in the last part of these notes, some other applications of this
notion.

Je remercie Charles Bordenave pour son aide lors de la préparation de ces notes.
Elles ont été rédigées pendant mon séjour au Centre de recherches mathématiques de
Montréal (IRL CNRS 3457) que je remercie pour son hospitalité.

2. FROM RAMANUJAN GRAPHS TO THE SYMMETRIC RANDOM
PERMUTATION MODEL

The notion of Ramanujan graph was initially introduced by Lubotzky, Phillips, and
Sarnak (1988) for d-regular graphs. The terminology Ramanujan comes from the fact
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that the construction of the regular graphs considered by Lubotzky, Phillips, and Sarnak
(1988) was based on arithmetic properties of pairs of well-chosen prime numbers.

Let G = (V,E) be an undirected graph, with countable vertex set V and edge set E.
We allow loops but no multiple edges. The degree of a vertex v ∈ V is defined as

deg(v) :=
∑
u∈V

1{u,v}∈E.

If, for any v ∈ V, deg(v) < ∞, the graph is said to be locally finite and its adjacency
operator A is defined as follows: for any ψ ∈ ℓc(V ), which is the subset of ℓ2(V ) of
vectors with finite support,

Aψ(u) :=
∑

v∈V ;{u,v}∈E

ψ(v).

In the case when V is a finite set, A can be seen as the usual adjacency matrix of G. As
we are dealing with undirected graphs, the adjacency operator and matrix are self-adjoint.
For any integer d ≥ 2, we say that G is d-regular if all the vertices of G have degree d.
For finite d-regular graphs with n vertices, if we denote by λ0 ≥ λ1 ≥ · · · ≥ λn−1 the
eigenvalues of A in non-increasing order, one can check that λ0 = d and for all j ≤ n−1,
|λj| ≤ d. The eigenvalue λ0 is always simple and if G is bipartite, then λn−1 is equal
to −d and is simple. They are often called the Perron–Frobenius eigenvalues and λ0 is
associated to the constant eigenvector 1. On the other hand, if we denote by

λ(G) := max{|λj| such that |λj| < d}

the largest eigenvalue in absolute value which is not equal to ±d, we have the following
result, known as the Alon–Boppana bound:

Theorem 2.1 (Alon, 1986). — Let (Gn,d)n≥1 be any sequence of connected d-regular
graphs such that, for any n ∈ N∗, Gn,d has n vertices. Then

lim inf
n→∞

λ(Gn,d) ≥ 2
√
d− 1.

This lead to the following definition:

Definition 2.2 (Ramanujan graph, d-regular case). — A d-regular, connected, finite
graph G is called Ramanujan if and only if any eigenvalue λ of its adjacency operator
is such that λ ∈ {−d, d} or |λ| ≤ 2

√
d− 1.

Among connected d-regular graphs, Ramanujan graphs are the graphs with maximal
spectral gap. For this reason, sequences of such graphs have very good properties as
expander graphs (we refer to Kowalski (2019) for details on the link between spectral
gap and expander properties of graphs). The question is then how to construct such
sequences of graphs. In this direction, one has to mention the remarkable result of
Friedman (2008):
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Theorem 2.3. — Let d ≥ 3 be an integer. For each n such that nd is even, let Gn

be a random graph chosen uniformly among d-regular graphs with n vertices. Then the
sequence (Gn)n≥1 is almost-Ramanujan(1) in the sense that, for any ε > 0,

lim
n→∞

P(λ(Gn) ≥ 2
√
d− 1 + ε) = 0.

The notion of random lift is also very useful to construct almost-Ramanujan graphs.
On the way of defining them, we also give a more general definition of Ramanujan graphs.
Let G and H be undirected connected(2) graphs, with no self-loops and no multiple
edges. A map π : H → G is called a covering map if for every vertex h ∈ H, π gives
a bijection from the edges incident to h and those incident to π(h). When π : H → G

is a covering map, G is called the base graph and H is called a covering graph of G. If
the base graph G is connected, then the cardinal of π−1(g) is the same for any vertex
g of G. If this cardinal is equal to n, then H is called a n-lift of G. If H is a tree, it is
the universal cover of G. In particular, the universal cover of any non-empty, connected,
d-regular graph is the infinite d-regular tree Td. It is known that the spectrum of Td

is contained in the interval [−2
√
d− 1, 2

√
d− 1](3). Therefore, for a d-regular graph,

being a Ramanujan graph means that all eigenvalues, expect ±d, are contained inside
the spectrum of its universal cover.

This led Greenberg (1995), in his thesis, to give a more general definition of a Ra-
manujan graph, not necessarily restricted to d-regular graphs.

Definition 2.4 (Ramanujan graph, general case). — A finite connected graph X is
Ramanujan if the spectrum of its adjacency operator is contained in [−ρ, ρ] ∪ {−λ0, λ0},
where λ0 is the largest eigenvalue of the graph and ρ is the spectral radius of its universal
cover.

Let us describe a standard model, due to Amit and Linial (2002) for constructing
random lifts. Given a base graph G = (VG, EG) and an integer n ≥ 2, to each vertex v
of G we associate a set of n vertices (v, 1), . . . , (v, n). For each edge e = {u, v} of G,
we choose an orientation, say (u, v), and a uniform permutation σe of [n] := {1, . . . , n},
independent of all other edges. Then, if the vertex set of H is {(u, i), u ∈ VG, i ∈ [n]}
and the edge set is {{(u, i), (v, σ(u,v)(i))}, {u, v} ∈ EG, i ∈ [n]}, then H is a random
n-lift of G and its law is uniform over all possible n-lifts of G. Note that the choice of
the orientations of the edges made for the construction does not change the distribution
of the random lift H. Improving on Theorem 2.3, Bordenave (2020) showed that, under
very general conditions on the base graph, the sequence of random n-lifts form a sequence
of almost-Ramanujan graphs.

The model that we describe now is the main object studied by Bordenave and Collins
(2019) and can be seen as a generalization of the notion of random lift; we will call it

(1)or weakly Ramanujan
(2)Covering maps can be defined in a more general framework but we only need the case of connected
graphs.
(3)Its spectral measure is known as the Kesten–McKay distribution.
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the symmetric random permutation model. Let X be a countable set. Let σ1, . . . , σd

be d permutations of the set X. We consider ℓ2(X) the Hilbert space space spanned
by the orthonormal basis (δx)x∈X . The identity operator on ℓ2(X) is denoted by 1. A
permutation σi acts naturally as a unitary operator Si on ℓ2(X) by Si(g)(x) = g(σi(x)),
for any g ∈ ℓ2(X). Let a0, a1, . . . , ad be matrices of size r×r. The main object of interest

in Bordenave and Collins (2019) is the operator A := a0 ⊗1+
d∑

i=1
ai ⊗Si acting on ℓ2(X).

When X = [n], we denote by σ1,n, . . . , σd,n the permutations of X, by S1,n, . . . , Sd,n the
corresponding operators, 1(n) the identity operator and

(1) An := a0 ⊗ 1(n) +
d∑

i=1
ai ⊗ Si,n.

Two symmetry conditions are added, one on the matrices a1, . . . , ad and one on the
permutations σ1,n, . . . , σd,n.

Assumption 2.5 (Symmetric random permutation model)
We equip [d] with the following involution: let q ≤ d

2 be an integer; for any i ∈ [q],
set i∗ = i+ q, for q + 1 ≤ i ≤ 2q, set i∗ = i− q, and for 2q + 1 ≤ i ≤ d, set i∗ = i. We
assume that:

(Ha) a0 = a∗
0 and ∀i ∈ {1, . . . , d}, ai∗ = (ai)∗ and σi∗ = (σi)−1.

(Hσ) The permutations {σ1,n, . . . , σq,n} ∪ {σ2q+1,n, . . . , σd,n} on [n] are independent,
{σ1,n, . . . , σq,n} are uniformly distributed among the permutations of [n] and
{σ2q+1,n, . . . , σd,n} are uniformly distributed among the matchings(4) of [n] and for
any i ∈ [d], σi∗,n = (σi,n)−1.

Let us explain how it can be seen as a generalization of the model of random lift.
Assume that d is even, q = d/2, a0 = 0 and the matrices a1, . . . , ad are of the form
ai = Euivi

, with ui, vi ∈ [r]. The base graph will be the graph G with vertex set [r] and
adjacency matrix A1 = ∑d

i=1 ai. Under Assumption (Ha), it will be undirected, with d/2
edges. The graph H with vertex set [n]× [r] and edges of the form {(x, ui), (σi(x), vi)} is
a n-lift of G. If the permutations σ1,n, . . . , σd,n fulfill Assumption (Hσ), then the random
lift we obtain has the same distribution as in the construction of Amit and Linial (2002).

Bordenave and Collins (2019) show that the An, n ≥ 1, are the adjacency operators
of an almost-Ramanujan sequence of weighted graphs, in a sense related to Defini-
tion 2.4 (we refer to Theorem 3.13 for a precise statement). But in parallel to this
graph-theoretical motivation, the symmetric random permutation model is linked with
asymptotic freeness properties of random permutations and we develop this point of
view in the next section.

(4)A matching (or pair matching) is a permutation for which all the cycles are of length 2, that is an
involution without fixed point.
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3. FREENESS, ASYMPTOTIC FREENESS AND STRONG
ASYMPTOTIC FREENESS

In the eighties, Dan Voiculescu introduced the concept of freeness (or free indepen-
dence) in the context of operator algebras and created the field of free probability theory.
In the early nineties, he discovered that many models of random matrices were asymp-
totically free, leading to model elements in operator algebras through random matrices.
Since then, there has been a constant interplay between free probability theory and
random matrix theory (RMT). We will try to give the main lines of these fruitful interac-
tions. Among many nice references on free probability theory, we have chosen to follow
the recent book of Mingo and Speicher (2017) and the lecture notes of Speicher (2019).

3.1. The notion of freeness

Let us start with the definition of freeness.

Definition 3.1 (Freeness). — Consider a unital algebra A over C, equipped with a
linear functional τ : A → C such that τ(1) = 1. (A, τ) is called a non-commutative
probability space. Unital subalgebras (Ai)i∈I are called free (or freely independent) in
(A, τ) if, for any a1, . . . , ak such that ∀j ∈ [k], τ(aj) = 0, aj ∈ Ai(j) and i(1) ̸= i(2) ̸=
· · · ≠ i(k),

τ(a1 · · · ak) = 0.

An important example, which is particularly relevant in our context, is the following:

Example 3.2. — Let G be a group and CG its group algebra, that is

CG =
{∑

g∈G

αgg, αg ∈ C,∀g ∈ G,αg ̸= 0 for finitely many g
}
.

Then CG is a unital algebra and one can define τG : CG → C,

τG

(∑
g∈G

αgg
)

= αe,

where e is the neutral element in G, so that (CG, τG) is a non-commutative probability
space. It is related with the notion of freeness for subgroups in the algebraic sense : a
family (Gi)i∈I of subgroups of G is free if, for any g1, . . . , gk such that ∀j ∈ [k], gj ∈ Gi(j)
and i(1) ̸= i(2) ̸= · · · ≠ i(k), g1 . . . gk ̸= e whenever g1 ̸= e, . . . , gk ̸= e. The link between
free independence of subalgebras in the sense of Definition 3.1 and freeness for subgroups
in the algebraic sense is made clear by the following proposition:

Proposition 3.3. — Let (Gi)i∈I be subgroups of a group G. Then the following state-
ments are equivalent:

– The subgroups (Gi)i∈I are free in G.

– The subalgebras (CGi)i∈I are freely independent in the non-commutative probability
space (CG, τG).
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It is possible to enrich the structure of a non-commutative probability space as follows:

Definition 3.4. — Let (A, τ) be a non-commutative probability space.

– If τ is a trace, i.e. if τ(ab) = τ(ba), for all a, b ∈ A, then we call (A, τ) a tracial
non-commutative probability space.

– If A is a ∗-algebra (resp. a C∗-algebra) and τ is positive, i.e. if τ(a∗a) ≥ 0 for all
a ∈ A, then we call τ a state and (A, τ) a ∗-probability space (resp. a C∗-probability
space).

– A state τ is faithful if for all a ∈ A, τ(a∗a) = 0 implies a = 0.

If (A, τ) a ∗-probability space and (a1, . . . , am) is a family of m elements in A, then
the ∗-distribution (or simply the distribution) of (a1, . . . , am) is given by the collection
{τ(P (a1, a

∗
1, . . . , am, a

∗
m)), P ∈ C⟨X1, . . . , X2m⟩}, where C⟨X1, . . . , X2m⟩ is the set of

non-commutative polynomials(5) in 2m variables with complex coefficients. By analogy
with classical probability theory, elements of a ∗-probability space are called random
variables and the random variables (ai)i∈I are freely independent if the subalgebras
generated respectively by (1, ai, a

∗
i ) are freely independent.

3.2. The notion of asymptotic freeness

Roughly speaking, we say that a sequence of non-commutative random variables, say
random matrices, are asymptotically free if they converge in distribution to a family of
freely independent random variables. Let us give a precise meaning of this sentence.

Definition 3.5. — Let ((An, τn))n≥1 be a sequence of ∗-probability spaces and (A, τ)
a ∗-probability space. If, for any n ≥ 1, a1,n, . . . , ak,n is a k-tuple of random variables in
(An, τn) and if there exists a1, . . . , ak ∈ A such that, for any non-commutative polynomial
P in 2k variables, we have

τn(P (a1,n, a
∗
1,n, . . . , ak,n, a

∗
k,n)) −−−→

n→∞
τ(P (a1, a

∗
1, . . . , ak, a

∗
k)),

we say that (a1,n, . . . , ak,n)n≥1 converges in ∗-distribution to (a1, . . . , ak). If, in addition,
(a1, . . . , ak) is a family of random variables that are freely independent (with respect to
τ), we say that (a1,n, . . . , ak,n) are asymptotically free (for n → ∞).

This notion appeared in Voiculescu’s work (see e.g. Voiculescu, 1991), a few years
after introducing free independence. Since random matrices are typical examples of
asymptotically free random variables, it built an important bridge between operator
space theory and random matrix theory. This was first identified on the most emblematic
ensemble of random matrices: the Gaussian Unitary Ensemble (Gue). Before stating a
precise result, let us explain how one can define an ensemble of random matrices in the
framework of ∗-probability spaces.

(5)in the sense that e.g. X1X2 ̸= X2X1
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Lemma 3.6. — For every n ≥ 1, if we set (An, τn) := (Mn(L∞−(Ω,P)), trn ⊗E), where
(Ω,P) is a classical probability space, where L∞−(Ω,P) := ⋂

1≤p<∞ Lp(Ω,P) and for any
complex algebra A, Mn(A) ≃ Mn(C)⊗A denotes the n×n matrices with entries from A,
where E denotes the expectation with respect to P and trn := 1

n
tr the normalized trace

on Mn(C), then a (An, τn) is a ∗-probability space.

It means that we will consider in the sequel n × n random matrices of the form
A = (aij)i,j∈[n], with, for all i, j ∈ [n], aij ∈ L∞−(Ω,P), and a state given by

τn(A) = trn ⊗ E(A) = 1
n

n∑
i=1

E(aii).

An important example is provided by Gaussian random matrices:

Example 3.7. — For n ≥ 1, we say that A belongs to the Gaussian unitary ensemble of
dimension n, and write A ∈ Gue(n), if A = (aij)i,j∈[n] is a random n × n matrix such
that A = A∗ and such that the entries form a centred complex Gaussian family with
covariance

Cov(aij, akℓ) = 1
n
δi,ℓδj,k.

If we consider a sequence of matrices (Gn)n∈N such that, for any n ∈ N∗, Gn ∈ Gue(n),
then one can show that, for any k ∈ N,

E
(
trn(Gk

n)
)

−−−→
n→∞

Ck :=

 0 if k is odd,
1

m+1

(
2m
m

)
if k = 2m,m ∈ N.

In a ∗-probability space (A, τ), one can define a self-adjoint element s such that, for
any k in N, τ(sk) = Ck. Then s is called a semi-circular element and (Gn)n∈N converges
in ∗-distribution to s. Now, asymptotic freeness for independent matrices from the
Gue(n) can be stated as follows :

Theorem 3.8 (Voiculescu, 1991). — Let ℓ ∈ N∗ be fixed and, for every n ∈ N,
let (A1,n, . . . , Aℓ,n) be ℓ independent matrices from the Gue(n). Then the sequence
(A1,n, . . . , Aℓ,n)n≥1 converges in ∗-distribution to a family (s1, . . . , sℓ) of freely inde-
pendent semi-circular elements. The random matrices (A1,n, . . . , Aℓ,n) are therefore
asymptotically free.

An important property of the Gue(n) is its invariance by conjugation by a unitary
matrix. This remark opened the way to asymptotic freeness for other ensembles of
matrices. We denote by U(n) := {U ∈ Mn(C), UU∗ = In} the group of unitary matrices
of size n. It is a compact group and therefore there exists a unique probability measure
which is invariant by multiplication, called the Haar measure on U(n). If Un is distributed
according to the Haar measure on U(n), one can check that, for any k ∈ Z,

E
(
trn(Uk

n)
)

−−−→
n→∞

δk,0.
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By analogy, if u is a unitary element in a ∗-probability space (A, τ) which satisfies
τ(uk) = δk,0, for any k in Z, then u is called Haar unitary. A first asymptotic freeness
property in this context is the following:

Proposition 3.9. — Let ℓ ∈ N∗ be fixed and, for every n ∈ N, let (U1,n, . . . , Uℓ,n) be ℓ
independent random matrices distributed according to the Haar measure on U(n). Then
the sequence (U1,n, . . . , Uℓ,n)n≥1 converges in ∗-distribution to a family (u1, . . . , uℓ) of
freely independent Haar unitaries. The random matrices (U1,n, . . . , Uℓ,n)n≥1 are therefore
asymptotically free.

But Haar distributed random matrices can also convey asymptotic freeness to deter-
ministic matrices.

Theorem 3.10. — For every n ∈ N, let Un be a Haar unitary random n×n-matrix, let
An, Bn ∈ Mn(C), and suppose that (An)n≥1 converges in ∗-distribution to a and (Bn)n≥1
converges in ∗-distribution to b for random variables a and b in some ∗-probability
space, and that the sequences (An)n≥1 and (Bn)n≥1 are deterministic or independent of
(Un)n≥1. Then, (UnAnU

∗
n, Bn)n≥1 converges in distribution to (a, b), where a and b are

freely independent. In particular, the random matrices (UnAnU
∗
n)n≥1 and (Bn)n≥1 are

asymptotically free from each other.

If we now go to the group Sn of permutations of [n], then the uniform law on Sn is
the Haar measure and it is natural to ask if a result similar to Theorem 3.10 holds true
in this context. A positive answer has been brought by Nica (1993):

Theorem 3.11. — Let ℓ ∈ N∗ be fixed and, for every n ≥ 1, let (S1,n, . . . , Sℓ,n) be ℓ
independent random matrices distributed uniformly over the set of permutation matrices
of size n. Then the sequence (S1,n, . . . , Sℓ,n)n≥1 converges in ∗-distribution to a family
(u1, . . . , uℓ) of freely independent Haar unitaries. The random matrices (S1,n, . . . , Sℓ,n)n≥1
are therefore asymptotically free.

We will in fact use an extension of this result. Beyond the uniform distribution of the
set of permutations of size n, we will also be interested in the uniform distribution of the
set of matchings of n points, that is the subset of involutions without fixed point within
the permutations of size n. Obviously, if (Rn)n≥1 is a sequence of random variables with
this distribution, it converges in ∗-distribution to a free random variable r such that
τ(rk) = 1 if k is even and τ(rk) = 0 if k is odd. We say that r is a free Rademacher
variable. We have the following asymptotic freeness result:

Proposition 3.12. — With the notations of Theorem 3.11 and if (R1,n, . . . , Rm,n) are
m independent random matrices distributed uniformly over the set of pair-matchings of
n points, independent of (S1,n, . . . , Sℓ,n), the sequence (S1,n, . . . , Sℓ,n, R1,n, . . . , Rm,n)n≥1
converges in ∗-distribution to (u1, . . . , uℓ, r1, . . . , rm), where (r1, . . . , rm) are freely inde-
pendent free Rademacher variables, freely independent from (u1, . . . , uℓ).
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3.3. Limiting operator for the symmetric random permutation model

As explained above, we want to study the convergence of the sequence of operators
(An)n≥1 defined in (1), under Assumption 2.5. The goal of this section is to construct
the limiting object it converges to. From Proposition 3.12, we know it will involve a
family of freely independent Haar unitaries and free Rademacher variables. To describe
them more concretely, we go back to our very first example 3.2 of non-commutative
probability space but we will enrich the structure of the group algebra.

On a discrete group G, we define the inner product ⟨g, h⟩ = δg,h and extend it to a
bilinear form on CG. Then

ℓ2(G) :=
{∑

g∈G

αgg,
∑
g∈G

|αg|2 < ∞
}

is a Hilbert space. If B(ℓ2(G)) is the space of bounded operators on ℓ2(G), then we can
define λ : G → B(ℓ2(G)) as follows: if ∑g∈G |αg|2 < ∞,∀g ∈ G, we define

λ(g) · α = λ(g) ·
∑
h∈G

αhh :=
∑
h∈G

αh g
−1h.

It is called the left regular representation and one can check that it is unitary. We then
extend the application λ to CG

λ(α) :=
∑
g∈G

αgλ(g)

and the linear form τG to λ(CG) by

τG(λ(g)) = τG(g) = δg,e.

We have λ(CG) ⊂ B(ℓ2(G)) and the closure of λ(CG) with respect to the operator norm
topology is a C∗-algebra called the reduced group C∗-algebra of G, denoted by Cred(G).

In the context of the work of Bordenave and Collins (2019), the discrete group G

(hereafter denoted by X∗) we start with takes the form of a free product:

X∗ := Z∗q ∗ (Z/2Z)∗(d−2q),

where Z∗q denotes the free product of q copies of Z and τX∗ will be simply denoted by τ
when there is no ambiguity.

More concretely, in our case, if g1, . . . , gd are generators of X∗ such that, for i ∈
[q], (gi, gi+q) generates the ith copy of Z, then ((λ(gi), λ(gi+q))i∈[q], (λ(gi))2q+1≤i≤d) is a
family of freely independent random variables. Moreover, for i ∈ [2q], for all k ∈ Z,
τ(λ(gi)k) = τ(gk

i ) = δk,0, so that these random variables are Haar unitaries, whereas
when 2q + 1 ≤ i ≤ d, τ(gk

i ) = 1 if k is even and 0 if k is odd so that these random
variables are free Rademacher variables. Otherwise stated, (λ(gi))i∈[d] is a concrete
realization of the limit in ∗-distribution of the operators (S1,n, . . . , Sd,n)n≥1 satisfying
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Assumption (Hσ) and it is a straightforward consequence of Proposition 3.12 that the
sequence of operators (An)n≥1 we are interested in should converges to

(2) A∗ := a0 ⊗ 1 +
d∑

i=1
ai ⊗ λ(gi),

acting on Cr ⊗ ℓ2(X⋆). This is an element of the unital ∗-algebra A := Mr(Cred(X⋆)),
equipped with the trace trr ⊗ τ. This implies also the convergence of the sequence of
operators (An)n≥1 to A∗ in the topology of local convergence of Benjamini and Schramm
but we don’t want to insist here on this aspect. Bordenave and Collins (2019) rather
focus on the convergence of the spectrum. We denote by σ(T ) the spectrum of an
operator T, that is

σ(T ) := {λ ∈ C, T − λI is not invertible}.

The convergence in ∗-distribution of (An)n≥1 to A∗ implies that, if [a, b] is an interval
that does not intersect the spectrum of the limiting operator A∗, then the expected
proportion of eigenvalues of An in [a, b] tends to zero as n grows to infinity. Therefore,
∀ε > 0, for n large enough, with high probability,

(3) σ(A∗) ⊂ σ(An) + [−ε, ε].

The main object of the paper of Bordenave and Collins (2019) is to establish the reverse
inclusion. This is related to the notion of strong convergence, that we introduce in the
next section.

3.4. Strong convergence, strong asymptotic freeness, linearization trick

The fact that (An)n≥1 converge in ∗-distribution to A∗ does not rule out the possibility
of o(n) eigenvalues staying away from the limiting spectrum. These eigenvalues are
usually called outliers. In our context, there are obvious outliers, coming from the
Perron–Frobenius eigenvalues of the operators Si,n. For example, one can check that
S1,n + S∗

1,n + · · · + Sk,n + S∗
k,n will always have an eigenvalue equal to 2k associated

to the constant vector 1. This will produce an outlier as long as k ≥ 2. To get rid
of these trivial eigenvalues, we will only consider the operators Si,n restricted to the
orthogonal 1⊥ of the constant vector 1, or equivalently the operator An restricted to
H0 := (Cr ⊗ 1)⊥. Their main theorem is the following:

Theorem 3.13. — Consider a sequence of random operators (An)n≥1 distributed ac-
cording to the symmetric random permutation model (1). Then the Hausdorff distance
between the spectrum σ(A∗) of the operator A∗ defined in (2) and the spectrum σ((An)|H0)
of the operator An restricted to H0 converges to zero in probability as n goes to infinity.
Otherwise stated, ∀ε > 0,

P
(
σ((An)|H0) ⊂ σ(A∗) + [−ε, ε]

)
−−−→
n→∞

1(4)

P
(
σ(A∗) ⊂ σ((An)|H0) + [−ε, ε]

)
−−−→
n→∞

1(5)
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The second point comes directly from (3) and the fact that the spectrum of A∗ does
not contain the Perron–Frobenius eigenvalue (as the constant vector 1 is not in ℓ2(X∗)).
We will develop in detail the proof of (4). Before that, we want to relate this inclusion
with the notion of strong asymptotic freeness. With Definition 3.5 in mind, we define
strong convergence as follows:

Definition 3.14. — Let ((An, τn))n≥1 be a sequence of C∗-probability spaces and (A, τ)
a C∗-probability space. If, for any n ≥ 1, a1,n, . . . , ak,n is a k-tuple of random variables
in (An, τn) and if there exist a1, . . . , ak ∈ A such that, for any non-commutative polyno-
mial P in 2k variables, we have

τn(P (a1,n, a
∗
1,n, . . . , ak,n, a

∗
k,n)) −−−→

n→∞
τ(P (a1, a

∗
1, . . . , ak, a

∗
k)),

and in operator norm we have

∥P (a1,n, a
∗
1,n, . . . , ak,n, a

∗
k,n)∥ −−−→

n→∞
∥P (a1, a

∗
1, . . . , ak, a

∗
k)∥,

we say that (a1,n, . . . , ak,n)n≥1 converges strongly to (a1, . . . , ak). If (a1, . . . , ak) is a
family of random variables that are freely independent (with respect to τ), we say that
(a1,n, . . . , ak,n) are strongly asymptotically free.

The following proposition, that can be found e.g. in (Collins and Male, 2014), clarifies
the link between strong convergence and control of outliers. If h is a self-adjoint element
in a C∗-probability space (A, τ), its spectral measure µh is the unique probability
measure on R such that, for any k ≥ 1, τ(hk) =

∫
tkdµh(t); we denote its support by

supp(µh).

Proposition 3.15. — Let ((An, τn))n≥1 be a sequence of ∗-probability spaces and (A, τ)
a ∗-probability space. For any n ≥ 1, let a1,n, . . . , ak,n be k-tuple of random variables in
(An, τn) and a1, . . . , ak ∈ (A, τ). Then the two following statements are equivalent :

– (a1,n, . . . , ak,n)n≥1 converges strongly to (a1, . . . , ak),
– for any polynomial P such that hn := P (a1,n, . . . , ak,n) is self-adjoint,

(P (a1,n, . . . , ak,n))n≥1 converges in ∗-distribution to h := P (a1, . . . , ak) and
∀ε > 0, for n large enough,

supp(µhn) ⊂ supp(µh) + [−ε, ε],

where µhn and µh are respectively the spectral measures of hn and h.

The strong convergence result obtained by Bordenave and Collins (2019) can be stated
as follows:

Theorem 3.16. — Let d ≥ 1 be fixed. For every n ≥ 1, consider a d-uple (S1,n, . . . , Sd,n)
of random permutations of [n] satisfying (Hσ). Then, for any non-commutative polyno-
mial P, for any ε > 0,

P
(∣∣∣∥P ((S1,n)|H0 , . . . , (Sd,n)|H0)∥ − ∥P (λ(g1), . . . , λ(gd))∥

∣∣∣ > ε
)

−−−→
n→∞

0,
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where ∥ · ∥ stands for the operator norm (on the space of matrices for the first term and
in the C∗-algebra Cred(X∗) for the second term).

Since (λ(g1), . . . , λ(gd)) are freely independent(6), we say that ((S1,n)|H0 , . . . , (Sd,n)|H0)
are strongly asymptotically free.

This result may look stronger than Theorem 3.13 as it implies convergence of the
norm of any polynomial P in the operators Si,n whereas Theorem 3.13 only deals with
polynomials of degree one (with matrix coefficients). In fact, due to the lineariza-
tion trick, Theorem 3.16 can be seen as a corollary of Theorem 3.13. In the context
of strong convergence, the argument is due to Haagerup and Thorbjørnsen (2005),
although the idea of linearizing polynomial problems by going to matrices is much
older and known under different names in different mathematical communities. More
precisely, for P a non-commutative polynomial in d variables and r ∈ N∗, a matrix

P̂ :=
(

0 U

V Q

)
∈ Mr(C) ⊗ C⟨X1, . . . , Xd⟩, where Q ∈ Mr−1(C) ⊗ C⟨X1, . . . , Xd⟩ and U

and V are respectively row and column vectors of size r−1 with entries in C⟨X1, . . . , Xd⟩,
is a linearization of P if

P̂ = b0 ⊗ 1 + b1 ⊗X1 + · · · + bd ⊗Xd,

and P = −UQ−1V.

For example, a possible linearization of a monomial P = Xi1 . . . Xir is

P̂ =


Xi1

Xi2 −1

. .
.

. .
.

Xir −1


One can show that any polynomial P admits a linearization and if P is self-adjoint, the
linearization can be chosen self-adjoint.

From there, one can get a criterion which is crucial for proving strong convergence:

Proposition 3.17 (Linearization trick). — If u := (u1, . . . , ud) is a d-uple of elements
of a C∗-algebra A and v := (v1, . . . , vd) is a d-uple of elements of a C∗-algebra B, then
the following are equivalent:

– for any non-commutative polynomial P in d variables and their adjoints, ∥P (u)∥ =
∥P (v)∥,

– for any integer r, and r×r matrices a0, . . . , ad such that a0⊗1+a1⊗u1+· · ·+ad⊗ud

and a0 ⊗ 1 + a1 ⊗ v1 + · · · + ad ⊗ vd are self-adjoint, we have

∥a0 ⊗ 1 + a1 ⊗ u1 + · · · + ad ⊗ ud∥ = ∥a0 ⊗ 1 + a1 ⊗ v1 + · · · + ad ⊗ vd∥.

(6)This is a slight abuse of notation: it would be more correct to say that
((λ(gi), λ(gi+q))i∈[q], (λ(gi))2q+1≤i≤d) is a family of freely independent random variables and
that the corresponding family for the Si,n’s are strongly asymptotically free.
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This explains how Theorem 3.16 is a corollary of Theorem 3.13.
In the next section, we will develop the main lines of the proof of Theorem 3.13 and

introduce in particular the notion of non-backtracking operators. We will go back to
free probability, in particular strong asymptotic freeness, in the last section of these
notes, where we will describe in detail some applications of this property.

4. THE USE OF NON-BACKTRACKING OPERATORS

4.1. Ihara–Bass formula and applications

For a matrix H := (Hij)i,j∈[n] ∈ Mn(C) with complex entries, the non-backtracking
matrix associated to H is B := (Bej)e,f∈[n]2 defined, for e = (i, j) and f = (k, ℓ), by

Bef = Hkℓδj,k(1 − δi,ℓ).

The name non-backtracking comes from the following interpretation: ifH is the adjacency
matrix of a graph G, then, for any ℓ ∈ N∗, (Hm)ij is the number of paths from i to j
of length m in G, whereas, if e = (i, j) and f = (k, ℓ), (Bm)ef is the number of non-
backtracking paths of length m starting with the edge e and ending with the edge f.
A non-backtracking path may have cycles but cannot immediately go back to the
vertex it comes from. Although the non-backtracking operator is non-normal even when
H is self-adjoint, it is a powerful tool for the study of spectral properties of random
graphs. The Ihara–Bass formula allows to link the spectrum of H with the spectrum
of its non-backtracking counterpart. This statement and its proof can be found e.g. in
(Benaych-Georges, Bordenave, and Knowles, 2020).

Proposition 4.1 (Ihara–Bass formula). — Let λ ∈ C be such that λ2 ≠ HijHji, for i, j ∈
[n], and define

Hij(λ) := λHij

λ2 −HijHji

and mi(λ) := 1 +
N∑

k=1

HikHki

λ2 −HikHki

.

Then λ ∈ σ(B) if and only if det(M(λ) −H(λ)) = 0, where M(λ) is the diagonal matrix
with non-zero entries equal to m1(λ), . . . ,mn(λ).

In the model of Bordenave and Collins (2019), An can be seen as the adjacency matrix
of a weighted graph where each vertex carries a loop edge with weight a0 and for each
(x, i) ∈ [n] × [d], we draw an edge between x and σi(x) with weight ai. The associated
non-backtracking operator can be written

Bn =
∑
j ̸=i∗

aj ⊗ Si,n ⊗ Eij.

This means that, if e = (x, i) and f = (y, j),

(Bn)ef = ajδy,σi(x)(1 − δj,i∗).
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Therefore, if γ = (γ1, . . . , γk) is a path with γt = (xt, it), we denote by a(γ) := ∏k
t=1 ait .

The path γ is non-backtracking if ∀t ∈ [k − 1], it+1 ≠ i∗t . For e, f ∈ [n] × [d], let Γk
ef be

the set of non-backtracking paths of length k such that γ1 = e and γk = f, so that

(6) (Bk)ef =
∑

γ∈Γk+1
ef

a(γ)
k∏

t=1
(Si,n)xtxt+1 .

The Ihara–Bass formula reads:

Proposition 4.2 (Ihara–Bass - symmetric random permutation model)
Let λ /∈ {σ(aiai∗), i ∈ [d]}, and define An,λ := a0(λ) +∑d

i=1 ai(λ) ⊗ Si,n, with

ai(λ) = λai(λ2 − ai∗ai)−1,

and

a0(λ) := −1 −
d∑

i=1
ai(λ2 − ai∗ai)−1ai∗ .

Then λ ∈ σ(Bn) if and only if 0 ∈ σ(An,λ).

To exploit this relation for the study of the spectrum of An, we perform some reverse
engineering: for a given µ, we want to construct an operator An,µ of the same form
as An and its non-backtracking operator Bn,µ such that

(7) µ ∈ σ(An) if and only if 1 ∈ σ(Bn,µ).

This is in fact possible if µ /∈ full(σ(A∗)). For a bounded D, full(D) = C \ U, where
U is the unique infinite component of C \D(7). For such a µ, we now explain the recipe
to construct An,µ and therefore Bn,µ satisfying (7). Let G(µ) := (µ − A∗)−1 be the
resolvent operator of A∗. This is also an operator on Cr ⊗ ℓ2(X∗). It can be seen as an
infinite block matrix where each block is an r × r matrix indexed by a pair of indices
x, y ∈ X∗ ×X∗. We let

âi(µ) := Gee(µ)−1Gegi
(µ),

with e the neutral element in X∗ and g1, . . . , gd the generators, and define

An,µ :=
d∑

i=1
âi(µ) ⊗ Si,n and Bn,µ :=

∑
j ̸=i∗

âj(µ) ⊗ Si,n ⊗ Eij.

Then (7) holds.
We also denote by

A∗,µ :=
d∑

i=1
âi(µ) ⊗ λ(gi) and B∗,µ :=

∑
j ̸=i∗

âj(µ) ⊗ λ(gi) ⊗ Eij.

For any operator T, we denote by ρ(T ) := sup{|λ|, λ ∈ σ(T )} its spectral radius. One
can show that, for µ /∈ full(σ(A∗)), ρ(B∗,µ) < 1. This leads to the following criterion for
comparing the spectrum of An and A∗:

(7)full(D) “fills the holes” of D.
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Theorem 4.3. — For any ε > 0, ∃δ > 0, such that

if for all µ ∈ C, ρ(Bn,µ) < ρ(B∗,µ) + δ,

then full(σ(An)) is in an ε-neighborhood of a slight modification(8) of σ(A∗). Moreover,if
we define K0 := (Cr ⊗ 1 ⊗Cd)⊥ = {f,∑x f(x, i) = 0, ∀i ∈ [d]}, then the same holds true
if we replace Bn,µ by (Bn,µ)|K0 and An by (An)|H0 .

Therefore, to get (4), it is enough to show the following:

Theorem 4.4. — For any ε > 0, under Assumption 2.5,

P
(
∀ai such that max(∥ai∥ ∨ ∥a−1

i ∥−1) ≤ 1/ε, ρ((Bn)|K0) ≤ ρ(B∗) + ε
)

−−−→
n→∞

1.

4.2. A glimpse of the Füredi–Komlós moment method

The core of the proof to show Theorem 4.4 is to use a moment method. In RMT,
moment methods were first used to study the empirical spectral measure. This goes back
at least to the pioneering work of Wigner. For a random matrix Mn, with eigenvalues
λ1,n, . . . , λn,n, we denote by µ̂n := 1

n

∑n
i=1 δλi,n

the empirical measure of its eigenvalues.
The main idea is to rewrite the moments of this spectral empirical measure mn(k) :=∫
xkdµ̂n in terms of traces of powers of the matrix Mn, namely mn(k) = trn(Mk

n), where
trn is the normalized trace on Mn(C). We then expand

E
[
trn(Mk

n)
]

= 1
n

∑
i1,...,ik∈[n]

E (Mi1i2 · · ·Miki1) ,

look at the sequence (i1, . . . , ik) as a path γ1 = (i1, i2), . . . , γk = (ik, i1) and identify the
contributions to the sum according to the geometric or combinatorial properties of the
paths. For example, in the case when Mn ∈ Gue(n), the paths contributing to the sum
are the contours of rooted trees, leading to limiting moments given by Catalan numbers.

Later, the method has been adapted by Füredi and Komlós (1981) to study the
spectral radius or the spectral norm of the matrix Mn. The idea is the following: to
capture the behavior of the largest eigenvalue, one has to compute moments of order kn

growing with the size n of the matrix. Indeed, for ρ > 0, if we want to show that, for
any ε > 0,

P(∥Mn∥ ≤ ρ(1 + ε)) −−−→
n→∞

1,
we write

∥Mn∥2kn = ∥MnM
∗
n∥kn ≤ ntrn((MnM

∗
n)kn),

and we might lose a factor n in the last bound. Now, if we choose kn ≫ log n and show
that

E
[
trn((MnM

∗
n)kn)

]
≤ ρ2kn(1 + ε)2kn ,

(8)We do not detail it here. For more details, see the definition of full(σ̂(A∗)) in Bordenave and Collins
(2019)
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then, for any δ > 0,

P(∥Mn∥ ≤ ρ(1 + ε)(1 + δ)) ≥ 1 −
nE

[
trn((MnM

∗
n)kn)

]
(1 + δ)2kn

≥ 1 − exp (−2kn log(1 + δ) + log n) −−−→
n→∞

1.

This method has been very successful and has led in particular to the first universality
results for the Tracy–Widom distribution by Soshnikov (1999). However, in the sym-
metric permutation model, it is hopeless to apply directly this method to the operators
(An)|H0 but one can circumvent this obstacle by applying it to the non-backtracking
operators.

4.3. High order moments of the non-backtracking operators

The moment method for the non-backtracking operator Bn is very involved, it is the
main technical part and we do not intend here to give a precise account of the proof.
We rather want to explain what are the main steps and the main difficulties. In this
paragraph, we will omit the n subscript to lighten the notation a bit.

Following the method we have just explained above, to prove Theorem 4.4, we need
to bound the spectral radius by the spectral norm of powers of the operator. More
precisely, recalling that K0 = (Cr ⊗ 1 ⊗ Cd)⊥, we will use that

ρ(B|K0) = ρ(Bℓ
|K0)1/ℓ ≤ sup

g∈K0,∥g∥2=1
∥Bℓg∥1/ℓ

2 .

Restricting B to the subspace K0 boils down to performing an orthogonal projection of
the operators Si onto 1⊥. More explicitely, if for every i ∈ [d], Si := Si − 1

n
1 ⊗ 1 is such

a projection, we define
B :=

∑
j ̸=i∗

aj ⊗ Si ⊗ Eij

and one can check that, for any g ∈ K0, B
ℓg = Bℓg.

But the matrix B won’t be used directly. Before projecting on K0, we will replace Bℓ

by a matrix B(ℓ) that coincide with Bℓ with high probability but has better properties.
This step is known as removing the tangles, and will be described right after. We will
then project on K0, that is consider B(ℓ). However, as K0 is not necessarily invariant
under B(ℓ), there will be some remainder term. Let us describe these steps more precisely.
We first recall from (6) that, for any ℓ ∈ N∗,

(Bℓ)ef =
∑

γ∈Γℓ+1
ef

a(γ)
ℓ∏

t=1
(Si)xtxt+1 ,

with Γℓ+1
ef the set of non-backtracking paths of length ℓ+1 such that γ1 = e and γℓ+1 = f.

For a path γ ∈ Γℓ+1
ef , let Gγ be the graph with vertices Vγ := {xt, t ∈ [ℓ+ 1]} and edges

Eγ := {[xt, it, xt+1], t ∈ [ℓ]}, where it can be seen as the color of the edge [xt, it, xt+1].
We can now define the notion of tangle.
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Definition 4.5 (Tangles). — A graph H is tangle-free if it contains at most one cycle.
For any ℓ ∈ N∗, a graph H is ℓ-tangle-free if, for every vertex x, (H, x)ℓ contains at
most one cycle, where (H, x)ℓ is the subgraph of H restricted to the vertices at distance
at most ℓ from x for the graph distance. We say that a path γ is tangle-free if Gγ is.

We denote by F k (respectively F k
ef ) the subset of tangle-free paths in Γk (resp. Γk

ef ).
For ℓ fixed, we denote by

(B(ℓ))ef :=
∑

γ∈F ℓ+1
ef

a(γ)
ℓ∏

t=1
(Si)xtxt+1 .

If the permutations σ1, . . . , σd satisfy Assumption (Hσ), we denote by Gσ the graph
whose vertex set is [n] and whose edges are [x, i, y] such that σi(x) = y and σi∗(y) = x.

For any ℓ ∈ N∗, if Gσ is ℓ-tangle-free, then ∀0 ≤ k ≤ 2ℓ, Bk = B(k). As above, if we
denote by

(B(ℓ))ef :=
∑

γ∈F ℓ+1
ef

a(γ)
ℓ∏

t=1
(Si)xtxt+1 ,

then even if Gσ is ℓ-tangle-free, we have a priori that Bk ≠ B(k). Let us write down
more explicitely the difference between the two quantities. If we set

B :=
∑
j ̸=i∗

aj ⊗ (1 ⊗ 1) ⊗ Eij,

one can check that

(8) B(ℓ) = B(ℓ) + 1
n

ℓ∑
k=1

B(k−1)BB(ℓ−k) − 1
n

ℓ∑
k=1

R
(ℓ)
k ,

where R(ℓ)
k can be thought of as an error term equal to

(R(ℓ)
k )ef =

∑
γ∈F ℓ+1

k,ef
\F ℓ+1

ef

a(γ)
(k−1∏

t=1
(Si)xtxt+1

)( ℓ∏
t=k+1

(Si)xtxt+1

)
,

where F ℓ+1
k is the set of paths of length ℓ+1 that can be decomposed in γ′ ∈ F k, γ′′ ∈ F 2

and γ′′′ ∈ F ℓ−k+1 and F ℓ+1
k,ef = F ℓ+1

k ∩ Γℓ+1
ef . Note that the concatenation of three tangle-

free paths is not necessarily tangle-free.
Now, if Gσ is ℓ-tangle-free, then one can check that the second term in (8) cancels on

K0, thus, for any g ∈ K0,

Bℓg = B(ℓ)g = B(ℓ)g − 1
n

ℓ∑
k=1

R
(ℓ)
k g,

so that if Gσ is ℓ-tangle-free,

ρ(B|K0) ≤
(

∥B(ℓ)∥ + 1
n

ℓ∑
k=1

∥R(ℓ)
k ∥

)1/ℓ

.

Remember that, in the Füredi–Komlós method, we need to choose ℓ = ℓn growing
with n. The next natural question to ask is: for which values of ℓn is the probability
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that Gσ is ℓn-tangle-free large enough ? This is a nice question on random permutations
that boils down to estimating the expected number of cycles of length ℓ in Gσ. Through
such an estimate, Bordenave and Collins (2019) got the following:

Lemma 4.6. — For random permutations satisfying (Hσ), there exists c > 0 such that
∀1 ≤ ℓ ≤

√
n,

P (Gσ is ℓ-tangled ) ≤ cℓ3 (d− 1)4ℓ

n
.

Then, for ℓ = ℓn large enough, we need to show that ∥B(ℓ)∥ is close to ρ(B∗)ℓ and
that ∥R(ℓ)

k ∥ is negligible. The adequate controls can be stated as follows:

Proposition 4.7. — Let (ai)i∈[d] be fixed, satisfying the symmetry condition (Ha) and
assume that max(∥ai∥ ∨ ∥a−1

i ∥−1) ≤ 1/ε. Then, ∃c, ρ1 > 0,∀1 ≤ ℓ ≤ log n,

P
(
∥B(ℓ)∥ ≤ (log n)20(ρ(B∗) + ε)ℓ

)
≥ 1 − c exp

(
− ℓ log n
c log log n

)
,

P
(
∥R(ℓ)

k ∥ ≤ (log n)40ρℓ
1

)
≥ 1 − c exp

(
− ℓ log n
c log log n

)
.

Now, by choosing ℓn ∼ log n
κ
, with κ > 1, satisfying κ > log

(
(d− 1)4 ∨

(
4ρ1
ε

))
and

using a net argument on the ai’s that we do not detail here, one can get the required
bound (4). This concludes the proof of Theorem 3.13. As explained above, through the
linearization trick, we get Theorem 3.16 as a corollary.

5. APPLICATIONS OF STRONG ASYMPTOTIC FREENESS

To summarize, the construction of a sequence of almost-Ramanujan (colored, weighted)
graphs for which (An)n≥1 plays the role of (generalized) adjacency operators is equivalent
to strong asymptotic freeness for a family of permutation matrices. We conclude
this presentation by listing a few other results involving strong convergence or strong
asymptotic freeness and their consequences in other domains.

5.1. Reminder on the link between strong asymptotic freeness and outliers
of random matrices

In Section 3.4, we have defined strong asymptotic freeness and clarified in Proposi-
tion 3.15 its relation to outliers of random matrices. To illustrate this link, we will cite
some results of Collins and Male (2014) in which they use strong asymptotic freeness
to show the absence of outliers for some ensembles of random matrices.



1202–19

Proposition 5.1. — Let Un be a p-uple of n× n independent Haar unitary matrices
and Yn a q-uple of n × n matrices that are deterministic or random but independent
of Un. Let u be a p-uple of Haar unitaries and y a q-uple of random variables, freely
independent from u in a C∗-algebra (A, τ). If (Yn)n≥1 converges strongly to y, then
(Un,Yn)n≥1 converges strongly to (u,y).

As a immediate corollary, they got the following result:

Corollary 5.2. — Let An, Bn be two n× n independent Hermitian random matrices.
Assume that:

– the law of one of the matrices is invariant under unitary conjugacy,
– almost surely, the empirical spectral measure of An (respectively Bn) converges to

a compactly supported probability measure µ (respectively ν),
– almost surely, for any neighborhood of the support of µ (respectively ν), for n large

enough, the eigenvalues of An (respectively Bn) belong to the respective neighbor-
hood.

Then one has that almost surely, for n large enough, the eigenvalues of An + Bn belong
to a small neighborhood of the support of µ ⊞ ν, where ⊞ denotes the free additive
convolution(9).

If the third condition in the corollary is not fulfilled, then outliers may appear. This
phenomenon has been extensively studied in the RMT framework and most results
can be understood through free probability theory, but with different tools. In this
direction, we strongly recommend the review paper on deformed models by Capitaine
and Donati-Martin (2017).

5.2. Ext(C∗
red(Fr)) is not a group

As mentioned at the beginning of the paper, there has been a constant interplay
between RMT and operator algebra. It is in particular striking to see that the first
result explicitely involving strong convergence and strong asymptotic freeness was a
paper by Haagerup and Thorbjørnsen (2005) entitled A new application of random
matrices: Ext(C∗

red(F2)) is not a group. This paper is a very important step in the
theory for several reasons. One of them is that it introduced the linearization trick
that we have presented above and that has been used since then in all the strong
convergence results we are aware of. Although it is a bit far from the motivation of
Bordenave and Collins (2019), we will describe in detail this result, mainly for historical
reasons. We start by giving a definition of Ext(C∗

red(Fr)). We start from the Hilbert
space H = ℓ2(N). Its Calkin algebra is C(H) := B(H)/K(H), which is quotient of the
space B(H) of bounded operators on H by the set K(H) of compact operators, the

(9)We don’t want to get into the detail of the definition of this operation on measures. Here, we just
need to know that µ ⊞ ν is the distribution of a + b, where a has distribution µ, b has distribution ν

and a and b are freely independent.
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quotient map being denoted by q : B(H) → C(H). We also denote by U(H) the unitary
group of B(H). For A a C∗-algebra, if π1 and π2 are two one-to-one ∗-homomorphisms
from A to C(H), we define the equivalence relation

π1 ∼ π2 ⇐⇒ ∃u ∈ U(H),∀a ∈ A, π2(a) = q(u)π1(a)q(u)∗.

Then Ext(A) is the set of equivalence classes for this equivalence relation. As H⊕H ≃ H,
(π1, π2) 7→ π1 ⊕ π2 defines a natural semigroup structure on Ext(A). The question to
know under which condition on A it would be a group was controversial in operator
algebra in the nineties. Voiculescu obtained that Ext(A) was a unital semigroup for all
separable unital C∗-algebras A. Anderson (1978) provided the first example for which
Ext(A) is not a group and, if Fr denotes the free group with r generators, the question
for A = C∗

red(Fr) remained open for a long time. Voiculescu (1993) gave the following
very useful criterion:

Theorem 5.3. — If there exists a sequence of unitary representations πn : Fr → Mn(C)
such that ∀h1, . . . , hm ∈ Fr and c1, . . . , cm ∈ C,

(9) lim
n→∞

∥∥∥∥ m∑
j=1

cjπn(hj)
∥∥∥∥ =

∥∥∥∥ m∑
j=1

cjλ(hj)
∥∥∥∥,

then Ext(C∗
red(Fr)) is not a group.

Now, let us explain how strong asymptotic freeness for independent Gue matrices (
shown in (Haagerup and Thorbjørnsen, 2005)) implies that (9) holds true. The idea is
to construct explicitely the sequence (πn)n≥1 as follows: we let

φ(t) =


−π, if t ≤ −2
π, if t ≥ 2∫ t

0
√

4 − s2 ds if − 2 ≤ t ≤ 2

and ψ(t) := exp(iφ(t)). If (si)i∈[r] is a family of semicircular elements that are freely
independent and ui = ψ(si), then there is an isomorphism Φ: C∗

red(Fr) → C∗((ui)i∈[r])
such that Φ(λ(gi)) = ui. If (X1,n, . . . , Xr,n) are independent Gue(n) matrices, and
∀i ∈ [r], Ui,n(ω) = ψ(Xi,n(ω)), we obtain a sequence of unitary matrices and, for
any ω ∈ Ω, there exists πn,ω : Fr → U(Mn(C)) such that πn,ω(gi) = Ui,n(ω). Then
using strong asymptotic freeness, one can check that ∀ω ∈ Ω, ∀h1, . . . , hm ∈ Fr and
c1, . . . , cm ∈ C,

lim
n→∞

∥∥∥∥ m∑
j=1

cjπn,ω(hj)
∥∥∥∥ =

∥∥∥∥ m∑
j=1

cjλ(hj)
∥∥∥∥,

and it is enough to choose πn = πn,ω, with ω in the set of probability 1 onto which this
last equality holds. Some generalizations of the results of Haagerup and Thorbjornssen
have been conjectured, in relation to the Peterson–Thom conjecture (see e.g. the recent
work of Hayes (2020)).
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5.3. Estimation of the norm of random matrices

In this last part, we explain how strong convergence results can be used to give
interesting bounds on the norm of random matrices. We will present asymptotic bounds
that are in majority consequences of Proposition 5.1, but also remarkable non-asymptotic
bounds that have been recently obtained by Bandeira, Boedihardjo, and van Handel
(2021). Indeed, strong convergence implies convergence of the norm of polynomials in
random matrices to their free counterpart and there are several examples for which the
norm of the free counterpart has been computed. In particular, Akemann and Ostrand
(1976) showed that, if u1, . . . , up are Haar unitaries that are freely independent, then,
for any a1, . . . , ap ∈ R, we have

(10)
∥∥∥∥ p∑

i=1
aiui

∥∥∥∥ = min
t≥0

{
2t+

p∑
i=1

(
√
t2 + |ai|2 − t)

}
.

In particular, ∥∥∥∥ p∑
i=1

ui

∥∥∥∥ = 2
√
p− 1.

We can therefore deduce that, if U1,n, . . . , Up,n are independent Haar unitary random
matrices, then almost surely, ∥∥∥∥∥

p∑
i=1

Ui,n

∥∥∥∥∥ −−−→
n→∞

2
√
p− 1,

which is like a unitary analogue of the Alon–Boppana bound given in Theorem 2.1.
In the same vein, motivated by questions for random walks on the free group, Kesten
(1959) showed that ∥∥∥∥ p∑

i=1
(ui + u∗

i )
∥∥∥∥ = 2

√
2p− 1,

so that ∥∥∥∥ p∑
i=1

(Ui,n + U∗
i,n)
∥∥∥∥ −−−→

n→∞
2
√
p− 1.

Note that Lehner (1999) also gave a formula for the norm of the operator A∗, which
is a generalisation of (10) to the case when a0, . . . , ad are matrices.

As a conclusion, we now present remarkable non-asymptotic bounds, that is concen-
tration inequalities for random matrices, recently obtained Bandeira, Boedihardjo, and
van Handel (2021). Their initial motivation is to understand the spectral norm of an
arbitrary d× d self-adjoint random matrix with centered, jointly Gaussian entries. Such
a matrix X can be written

(11) X :=
p∑

i=1
giAi,
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where Ai are deterministic self-adjoint d× d matrices and (gi)i∈[p] are independent real
standard Gaussian variables. It is known that, if we define Σ(X) := ∥∑p

i=1 A
2
i ∥ , then

we have the bound
cΣ(X) ≤ E∥X∥ ≤ CΣ(X)

√
log d.

Their goal is to improve the upper bound. To get a free analogue of the matrix (11), a
natural idea is to replace the Gaussian variables by semi-circular elements to define

Xfree :=
p∑

i=1
Ai ⊗ si,

where (si)i∈[p] are freely independent semicircular elements. The authors establish a
general bound of the form:
(12) E∥X∥ ≤ ∥Xfree∥ + Cv(X)1/2Σ(X)1/2(log d)3/4,

with v(X)2 = ∥Cov(X)∥ being the spectral norm of the covariance matrix of X. As a
consequence, they got an inclusion of the spectrum which is reminiscent of (4): with
high probability,

σ(X) ⊂ σ(Xfree) + [−ε, ε],
where ε is of order v(X)1/2Σ(X)1/2(log d)3/4. The bound is particularly relevant when
ε is small in comparison to ∥Xfree∥. They treat a large variety of examples for which
the bound (12) improves on known results (random matrices with independent entries,
sparse Wigner matrices etc.) or gives new concentration inequalities (patterned random
matrices, independent block matrices etc.) From these non-asymptotic bounds, they
can also deduce strong asymptotic freeness for a lot of models, showing that the latter is
much more ubiquitous than expected. The interplay between strong asymptotic freeness
and random matrix theory is certainly to be continued.
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