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POINTWISE ERGODIC THEORY: EXAMPLES AND ENTROPY
[after Jean Bourgain]

by Ben Krause

OVERVIEW

Pointwise ergodic theory, the motivation for discrete harmonic analysis, has at its
roots the classical theorem of Birkhoff (1931), which can be described as follows:

For every ergodic —that is, “sufficiently randomizing”— measure-preserving
transformation, τ , of a probability space, (X,µ), and any integrable function
f ∈ L1(X,µ), µ-almost surely, one can recover the mean of f by considering
the Cesáro sums

1
N

∑
n≤N

f(τnx) →
∫

X
f dµ µ− a.e.

Informally, this theorem says that one can recover the spatial mean of f ,∫
X
f dµ,

by considering the temporal means{ 1
N

∑
n≤N

f(τnx)
}
,

formed by “sampling” the function f at the “times” {τnx} and taking the appropriate
average.(1)

A classical question in pointwise ergodic theory concerned the almost-everywhere
existence of limiting behavior of averages

1
N

N∑
n=1

τanf(1)

where {an} is “sparse”; as is custom, here and throughout we use τ kf to denote the
function

x 7→ f(τ kx).

(1)Even in the case when τ is not ergodic, the temporal means
{ 1

N

∑
n≤N τnf(x)

}
still converge

µ-almost everywhere.
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When the lower density of the sequence {an} is bounded away from zero

lim inf |{n : an ≤ N}|
N

> 0,

convergence is readily exhibited, and the classical question concerned the existence of
sequences {an} with zero density,

lim |{n : an ≤ N}|
N

= 0,

for which the averages (1) converged almost everywhere. In Bellow and Losert (1984),
such a sequence was constructed; it consisted of taking long blocks of natural numbers,
followed by much longer gaps, followed by slightly longer blocks, followed by even longer
gaps, etc. In particular, this sequence had an upper Banach density of 1

d∗({an}) := lim sup
|I|→∞ an interval

|{an} ∩ I|
|I|

= 1.

The question remained, however, whether or not there existed upper Banach density-
zero sequences, {an} with d∗({an}) = 0, for which the almost-everywhere convergence of
the averages (1) could be proved. In particular, the classical question, explicitly posed
first by Furstenberg, see also Bellow (1982), was whether or not the averages along the
squares

1
N

N∑
n=1

τn2
f

converged pointwise almost everywhere, initially for f ∈ L2(X). In breakthrough work,
Bourgain (1988b,c, 1989b) answered this question affirmatively, and proved the almost
everywhere convergence of (1) for any polynomial sequence,

{an = P (n)}, P ∈ Z[·],

and any f ∈ Lp(X), p > 1, for any σ-finite measure space X; this result was later
proven to be sharp (Buczolich and Mauldin, 2007; Lavictoire, 2011).

Theorem 0.1. — Suppose that (X,µ) is a σ-finite measure space, τ : X → X is a
measure-preserving transformation, and P ∈ Z[·] is a polynomial with integer coefficients.
Then for each 1 < p < ∞

1
N

N∑
n=1

τP (n)f

converges µ-a.e.

Although the issue of pointwise convergence is qualitative, Bourgain’s insight was to
quantify the rate at which convergence occurred – and then to use an abstract transfer-
ence argument first due to Calderón (1968) to deduce these quantitative estimates from
a single “universal” measure preserving system. By considering sequences of the form

Z ∋ n 7→ τnf(x), x ∈ X fixed
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and using the measure-preserving nature of τ , Bourgain was able to reduce matters
to proving estimates in the case of the integers with counting measure and the shift
(Z, | · |, τ : x 7→ x− 1).

In particular, Bourgain was after quantitative estimates on the oscillation of the
averaging operators

1
N

N∑
n=1

f(x− P (n)),(2)

applied first to ℓ2(Z)-functions. A natural perspective on (2) is as a convolution of f
and

KN(x) := 1
N

N∑
n=1

δP (n)(x)

where δm denotes the point-mass at m ∈ Z; as this problem is ℓ2(Z)-based, the Fourier
transform method is naturally employed, and the key to the analysis is an understanding
of the exponential sums

1
N

∑
n≤N

e−2πiβ·P (n),

which is accomplished via the circle method from analytic number theory; the interplay
between the “soft” analytic issue of pointwise convergence and “hard” analytic estimates
on the integers/Euclidean space via analytic-number-theoretic means is characteristic
of the fields of pointwise ergodic theory and discrete harmonic analysis.

I first came to understand Bourgain’s work by reading Thouvenot (1990), which
I think explains Theorem 0.1 beautifully; the goal of these notes is to complement
Thouvenot (1990) by trying to explain the motivation behind Bourgain’s argument.

Accordingly, for the sake of clarity, we will shift our focus slightly from proving The-
orem 0.1, and will instead focus on the related maximal estimate, in the representative
case of L2(X).

Theorem 0.2. — Suppose that (X,µ) is a σ-finite measure space, τ : X → X is a
measure-preserving transformation, and P ∈ Z[·] is a polynomial with integer coefficients.
Then there exists an absolute constant C, independent of (X,µ, τ), so that

∥ sup
N

∣∣∣∣ 1
N

N∑
n=1

τP (n)f
∣∣∣∣∥L2(X) ≤ C · ∥f∥L2(X).

By Calderón’s transference principle, Theorem 0.2 follows from the analoguous esti-
mate of the integers: if we define

M f(x) := sup
N

∣∣∣∣ 1
N

N∑
n=1

f(x− P (n))
∣∣∣∣,(3)

then our focus turns to establishing the following estimate
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Theorem 0.3. — For any P ∈ Z[·], the following norm inequality holds: there exists
an absolute constant C so that

∥M f∥ℓ2(Z) ≤ C · ∥f∥ℓ2(Z).

Below, following the lead of Thouvenot (1990), we will restrict to the case where

P (n) = nd,

as this eliminates some number-theoretic technicality while still capturing the essence
of the problem.

0.0.1. Notation. — Here and throughout we abbreviate the complex exponential
e(t) := e2πit, so that we may express the Fourier transform in Euclidean space, and on
the integers, respectively as

f̂(ξ) =
∫
R
f(x) · e(−ξx) dx, g∨(x) =

∫
R
g(ξ) · e(ξx) dξ

f̂(β) =
∑

n

f(n) · e(−βn), g∨(n) =
∫
T
g(β) · e(βn) dβ.

We will let

ϕk(t) := 2−k · ϕ(2−k · t)

denote the usual L1-normalized dyadic dilations, and for frequencies θ, we let

Modθg(x) := e(θx) · g(x)(4)

so that
M̂odθg(β) = ĝ(β − θ),

and recall the Hardy–Littlewood Maximal operator

MHLf(x) := sup
r>0

1
2r

∫ r

−r
|f(x− t)| dt or := sup

N≥0

1
2N + 1

N∑
n=−N

|f(x− n)|;

although we use the same notation to refer to both continuous and discrete maximal
operator, it will be clear from context which formulation we use.

We will let [N ] := {1, . . . , N}, and abbreviate ∑
n≤N := ∑N

n=1. We will use the
symbol c to denote suitably small constants, which remain bounded away from zero,
and C to denote suitably large constants, which remain bounded above. If we need
these constants to depend on parameters, we use subscripts, thus cd is a constant that
is small depending on d. We use X = O(Y ) to denote the statement that |X| ≤ C · Y ,
and analogously define X = Od(Y ).

Finally, we will use the heuristic notation

f “ = ” g

to denote moral equivalence: up to tolerable errors, f and g exhibit the same type of
behavior.
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1. DISCRETE COMPLICATIONS

Before beginning our discussion of Theorem 0.3, let us explain why we might expect
this to be a challenging problem.

For problems with a “linear” flavor, the discrete theory essentially mirrors the con-
tinuous theory

sup
r

1
r

∫ r

0
|f(x− t)| dt “ = ” sup

N

1
N

N∑
n=1

|f(x− n)|

as can be seen by experimenting with functions of the form F (⌊x⌋) and using dilation
invariance of the real-variable maximal function to reduce attention to real variable
functions that are constant on unit scales.

The problems become dramatically more complicated once linearity is destroyed. In
this case, we consider the simple example of the Hardy–Littlewood maximal function
along the curve t 7→ td. The continuous maximal function

Mf := Mdf := sup
r

∣∣∣1
r

∫ r

0
f(x− td) dt

∣∣∣ = sup
r

∣∣∣1
r

∫ rd

0
f(x− t) 1

dt1−1/d
dt

∣∣∣,(5)

is just a weighted version of MHL via the pointwise majorization

(6) 1
r

∫ rd

0
|f(x− t)| 1

dt1−1/d
dt ≤

∞∑
j=1

2−j/d ·
(2j/d

r

∫ 21−j ·rd

2−j ·rd
|f(x− t)| 1

dt1−1/d
dt

)

≤ C/d ·
∞∑

j=1
2−j/d ·

(2j

rd

∫ 21−j ·rd

2−j ·rd
|f(x− t)| dt

)
≤ C/d ·

∞∑
j=1

2−j/d ·MHLf(x)

≤ C ·MHLf(x).

On the other hand, no such trick is available in the study of

M f(x) := Mdf(x) := sup
N

∣∣∣∣ 1
N

∑
n≤N

f(x− nd)
∣∣∣∣,

due to the presence of a smallest scale – there is no real analogue for an infinitesimal
change of variables in the discrete setting.

Passing to the Fourier side actually highlights this difference. We can express both M
and M as a maximal operator taken over a lacunary sequence of Fourier multipliers,
after exploiting non-negativity. Let us begin with M :

Mf(x) := sup
k

∣∣∣∣(Vk(ξ)f̂(ξ)
)∨

(x)
∣∣∣∣ ,

where

Vk(ξ) :=
∫ 1

0
e(−ξ2dktd) dt,(7)
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so that

Vk(ξ) =
∫ 1

0
e(−ξ2dkt) 1

dt1−1/d
dt =: µ̂(2dkξ) =

1 +O
(
2dk|ξ|

)
O

(
(2dk|ξ|)−1/d

)
,

(8)

as can be seen by Taylor expanding the exponential around the origin and using the
principle of stationary phase (cleverly integrating by parts) for the second estimate.
Above, we set

µ(t) := µd(t) := 1
dt1−1/d

· 1(0,1].(9)

What this analysis says is that the multipliers Vk try very hard to look like φ̂dk for,
say, a Schwartz function φ ≥ 0 with φ̂(0) = 1, as in this case, one has similar estimates:

φ̂dk(ξ) =

1 +O
(
2dk|ξ|

)
O

(
(2dk|ξ|)−100

)(10)

(say); compare to (7). Now, by replacing the weaker ℓ∞
k -norm of {(µdk −φdk) ∗ f)} with

the stronger ℓ2
k-norm, we arrive at

Mf ≤ sup
k

|φdk ∗ f | + sup
k

|(µdk − φdk) ∗ f |

≤ C ·MHLf +
( ∑

k

|(µdk − φdk) ∗ f |2
)1/2

=: C ·MHLf + Sf,(11)

where Sf is a so-called square function, which is highly-tailored to study L2-based
problems. Indeed, we use Plancherel to bound

∥Sf∥2
L2(R) = ∥

( ∑
k

|(µdk − φdk) ∗ f |2
)1/2

∥2
L2(R) =

∑
k

∥(µdk − φdk) ∗ f∥2
L2(R)

=
∑

k

∥(Vk − φ̂dk) · f̂∥2
L2(R) =

∫ ∑
k

|Vk(ξ) − φ̂dk(ξ)|2 · |f̂(ξ)|2 dξ

≤ sup
ξ

∑
k

|Vk(ξ) − φ̂dk(ξ)|2 · ∥f̂∥2
L2(R)(12)

≤ C · sup
ξ

∑
k

min{2kd|ξ|, (2kd|ξ|)−1/d}2 · ∥f∥2
L2(R)

≤ Cd · ∥f∥2
L2(R),

using the fact that φ̂dk(ξ) satisfies the same estimates as Vk, namely (7), so that for
|ξ| ≤ C · 2−dk

Vk(ξ) − φ̂dk(ξ) =
(
1 +O(2dk|ξ|)

)
−

(
1 +O(2dk|ξ|)

)
= O(2dk|ξ|)

and when |ξ| > C · 2−dk

Vk(ξ), φ̂dk(ξ) = O((2dk|ξ|)−1/d).
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If we try the same trick with the discrete operator M ,

M f(x) = sup
k

|Kk ∗ f(x)|

where

Kk(x) := 1
2k

∑
n≤2k

δnd(x),(13)

we can similarly express M as a maximal multiplier operator

M f(x) = sup
k≥0

|
(
K̂k(β)f̂(β)

)∨
(x)|,

where the multipliers K̂k are of a different form than the {Vk}:{
K̂k(β) := 1

2k

∑
m≤2k

e(−βmd)
}

k≥0
.

Each multiplier is a Weyl sum, and requires the so-called circle method of Hardy and
Littlewood to analyze. As we will see below, each multiplier

K̂k(β)

is large and interesting whenever β is “k-close” to a rational number with a “k-small”
denominator, i.e. β lives in a so-called “k-major arc”, and is “k-negligible” otherwise,
when β lives in the complementary “k-minor arc.” In particular, we see subtle arithmetic
issues that arise as we seek to analyze the relevant multipliers; contrast this to the
Euclidean situation, where we were able to understand the multipliers purely according
to the magnitude of the frequency variable. In other words, whereas the analysis in the
Euclidean setting is entirely dictated by the distance from the frequency variable to the
distinguished zero-frequency – multi-frequency issues arise as we seek to understand the
multipliers K̂k(β). Essentially, the main work in bounding

∥M f∥ℓ2(Z) ≤ C · ∥f∥ℓ2(Z),

boils down to overcoming these multi-frequency complications.

2. EXAMPLES

In what follows, we can and will assume that k is sufficiently large depending on d.
To come to grips with

M f := sup
k

|Kk ∗ f |,

we first build some intuition by studying some examples:
Whereas the dilation invariance of the real line allows one to study (5) or MHL using

examples that live at unit scales, there is no such dilation invariance on Z. Rather, a
rough analogue of “zooming in” is passing to an arithmetic progression. Of course, this
analogy is not precise, as arithmetic progressions are characterized by both gap size
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and diameter. Accordingly, we begin by analyzing the behavior of (13) when applied
to functions

φQ,N := 1QZ · φ(·/N)(14)

where φ is a smooth bump function, and we think of Q ≤ N1/2; note the approximation

∥φQ,N∥ℓ2(Z) ≈ (N/Q)1/2.(15)

A common simplifying assumption when passing to arithmetic progressions is that
the gap size be prime, as this eliminates various arithmetic technicalities, so we will do
so below.

With these reductions in mind, we begin to compute.

2.1. Example

For technical reasons, we will replace the full convolution operator Kk, with its smooth
“top half,” in that for a smooth 1[1,2] ≤ ϕ ≤ 1[1/2,4], we consider

K ′
k :=

∑
n

ϕk(n) · δnd .(16)

Using convexity, arguing as in (6), we can bound

sup
k

|Kk ∗ f | ≤ C · sup
k

|K ′
k ∗ f |,

so there is no harm in this replacement.
So, we will be interested in understanding

K ′
k ∗ φQ,N .(17)

There are some scaling considerations that we quickly note: Since

|nd − (n− 1)d| ≥ 2k(d−1)

for 2k−1 < n ≤ 2k+2, (17) becomes trivial if N ≤ 2k(d−1), as in this case each element of
the sum set

{nd : 2k−1 < n ≤ 2k+2} + {Qj : j ≤ N/Q}

has O(1) representations of the form nd +Qj. On the other hand since K ′
k is supported

on [2dk+2], we can assume that N ≤ 2dk+2, as convolution with K ′
k acts independently

on intervals separated by > 2dk+2. In particular, by translation invariance we can and
will restrict to |x| ≤ C · 2dk, and assume that

N ≈ 2k(d−1+δ)(18)

for some 0 < δ ≤ 1.
If we use Fourier inversion, we may express

(17) =
∫
K̂ ′

k(β) · φ̂Q,N(β) · e(βx) dβ.(19)
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To determine the Fourier transform of φQ,N , we express the indicator function of QZ
as an exponential sum,

1QZ(n) = 1
Q

Q∑
A=1

e(A/Q · n),

and compute
∑

n

1
Q

Q∑
A=1

e(A/Q · n) · φ(n/N) · e(−nβ) = 1
Q

Q∑
A=1

Nφ̂(N(β − A/Q))(20)

by applying Poisson summation to the Schwartz function

t 7→ 1
Q

Q∑
A=1

e(A/Q · t) · φ(t/N) · e(−tβ)

In particular, up to Schwartz-tail considerations, we are only interested in
β ∈ Z/QZ +O(Ncd,δ−1),

as in the opposite case∣∣∣ ∑
n

1
Q

Q∑
A=1

e(A/Q · n) · φ(n/N) · e(−nβ)
∣∣∣ ≤ Cd,δ ·N−100

using the Schwartz decay of φ̂, see (20). So, for such β, decomposing
β = A/Q+ η, |η| ≤ C ·Ncd,δ−1,

and n = pQ+ r, we find that
βnd = (A/Q+ η) · (pQ+ r)d

≡ A/Q · rd + η · (pQ)d +O(|η| · 2(d−1)k ·Q) mod 1,
so that for such β

K̂ ′
k(β) =

∑
n

ϕk(n) · e(−βnd)

=
∑

pQ+r

ϕk(pQ+ r) · e(−A/Q · rd) · e(−η · (pQ)d) +O
(2k(d−1) ·Q
N1−cd,δ

)

= 1
Q

Q∑
r=1

e(−A/Q · rd) ·
∑
pQ

Q · ϕk(pQ) · e(−η · (pQ)d) +O
(2k(d−1) ·Q
N1−cd,δ

)
,(21)

using the smoothness of ϕ. To drop this error terms, we stipulate that Q ≤ 2kδ/2, see
(18), so that for |β − A/Q| ≤ C ·Ncd,δ−1 we may express

K ′
k(β) = S(A/Q) ·

∑
pQ

Q · ϕk(pQ) · e(−(β − A/Q) · (pQ)d) + Êk(β),

where S(A/Q) are complete Weyl sums, and Ek is an error term with small Fourier
coefficients. Explicitly:

S(A/Q) := 1
Q

∑
n≤Q

e(−A/Q · nd) = 1
Q

∑
m≤Q

e(−A/Q ·m) · |{n ≤ Q : nd ≡ m mod Q}|
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precisely captures the equidistribution properties of nd mod Q, quantified via the upper
bound,

|S(A/Q)| ≤ Cϵ ·Qϵ− 1
d , (A,Q) = 1, ϵ > 0;(22)

see Hua (1982). And, Ek is a negligible error term, in that

∥Êk∥L∞(T) ≤ C · 2−kδ/4

(provided cd,δ has been chosen appropriately), so that

∥Ek ∗ φQ,N∥ℓ2 = ∥Êk · φ̂Q,N∥L2(T) ≤ C · 2−kδ/4 · ∥φ̂Q,N∥L2(T) = C · 2−kδ/4 · ∥φQ,N∥ℓ2(Z);

in what follows, we will discard Ek from consideration.
By a Riemann summation argument, comparing

Q · ϕk(Qp) · e(−(pQ)d(β − A/Q)) =
∫ p+1

p
Q · ϕ(Qt) · e(−(β − A/Q) · (tQ)d) dt

+O
(
2−cd,δk · 2−k ·Q · (1 + 2−k · |Qp|)−100

)
we approximate, up to pointwise errors of the order 2−cd,δk

K̂ ′
k(β) = S(A/Q) ·

∫
ϕ(t) · e(−2dk(β − A/Q) · td) dt+O(2−cd,δk)

= S(A/Q) ·
∫
ϕ′(s) · e(−2dk(β − A/Q) · s) ds+O(2−cd,δk), ϕ′(s) := ϕ(s1/d)

ds1−1/d

= S(A/Q) · ϕ̂′(2dk(β − A/Q)) +O(2−cd,δk)

where ϕ′ is Schwartz as well, see (16). Consequently

(19) “ = ” 1
Q

∑
A≤Q

S(A/Q)
∫
Nφ̂(N(β − A/Q)) · ϕ̂′(2dk(β − A/Q)) · e(βx) dβ,

= 1
Q

∑
A≤Q

e(A/Qx) · S(A/Q) · Φ(x),

where we consolidate

Φ(x) :=
∫
φ((x− 2dks)/N) · ϕ′(s) ds

so that
Φ̂(β) = Nφ̂(Nβ) · ϕ̂′(2dkβ),

and thus ∥Φ∥ℓ2(Z) ≈ N
2dk/2 . Summing, we find that

∥K ′
k ∗ φQ,N∥2

ℓ2(Z)“ = ”
∑

x

∣∣∣ 1
Q

∑
A≤Q

e(A/Qx) · S(A/Q)
∣∣∣2 · |Φ(x)|2

= 1
Q2

∑
A,B≤Q

S(A/Q) · S(B/Q) ·
∑

x

e((A/Q−B/Q)x) · |Φ(x)|2

= 1
Q2

∑
A,B≤Q

S(A/Q) · S(B/Q) · |̂Φ|2(A/Q−B/Q).(23)
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Since
|̂Φ|2 = Φ̂ ∗ Φ̂∗, where g∗(x) := g(−x)

is essentially supported inside {|ξ| ≤ C ·N−1}, we have

|̂Φ|2(A/Q−B/Q) = δA=B · ∥Φ∥2
ℓ2(Z) +O((N/Q)−100)(24)

as whenever A ̸= B, |A/Q−B/Q| ≥ Q−1 ≫ N−1. Substituting (24) into (23), we find
that

∥K ′
k ∗ φQ,N∥2

ℓ2(Z)“ = ” 1
Q2

∑
A,B≤Q

S(A/Q) · S(B/Q) · δA=B · ∥Φ∥2
ℓ2(Z)

= 1
Q2

∑
A≤Q

|S(A/Q)|2 · ∥Φ∥2
ℓ2(Z).

By Hua’s estimate (22), using the fact that Q is prime, we bound

1
Q

∑
A≤Q

|S(A/Q)|2 = 1
Q

+ 1
Q

∑
A≤Q−1

|S(A/Q)|2 ≤ Cϵ · (1/Q+Qϵ−2/d)

so that we find

∥K ′
k ∗ φQ,N∥ℓ2(Z) ≤ Cϵ ·Qϵ−1/d ·Q−1/2 · N

2dk/2

= Cϵ ·Qϵ−1/d · (N/2dk)1/2 · (N/Q)1/2

≤ Cϵ ·Qϵ−1/d · (N/2dk)1/2 · ∥φQ,N∥ℓ2(Z)

The prefactor (N/2dk)1/2 comes from scaling considerations; if we are interested in an
estimate that is independent of scale, we arrive at the bound

∥K ′
k ∗ φQ,N∥ℓ2(Z) ≤ Cϵ ·Qϵ−1/d · ∥φQ,N∥ℓ2(Z).

In particular, quantitatively, the lower bound

∥K ′
k ∗ φQ,N∥ℓ2(Z) ≥ δ · ∥φQ,N∥ℓ2(Z)

automatically forces a bound on the “arithmetic complexity” of φQ,N via the estimate

Q ≤ Cϵ · δ−d−ϵ.

In particular, we arrive at the following heuristic:

Heuristic 2.1. — The only obstruction to

∥K ′
k ∗ f∥ℓ2(Z) ≪ ∥f∥ℓ2(Z)

are “low arithmetic complexity” considerations.
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2.2. The Take-Away

By an application of Weyl’s Lemma, a special case of which is stated below, Bourgain
was able to make the previous Heuristic 2.1 rigorous, concluding that the above range
of examples were typical: if we set

Πk(β) :=
∑

(A,Q)=1,Q≤2ck

χ̂(2(d−c)k(β − A/Q))

for a Schwartz function χ with

1[−1/4,1/4] ≤ χ̂ ≤ 1[−1/2,1/2]

then

K̂k(β) = K̂k(β) · Πk(β) +O(2−c′k),(25)

and similarly for K ′
k. In particular, whenever Πk(β) ̸= 1, then necessarily the conclusion

of Weyl’s Lemma holds.

Lemma 2.2 (Weyl’s Lemma, Special Case). — Suppose |β − a/q| ≤ 1
q·Nd−c with

Nc ≤ q ≤ Nd−c.

Then there exists some cd > 0 so that

| 1
N

∑
n≤N

e(−βnd)| ≤ Cd ·N−cd .

At this point, by recycling the reasoning from the previous example, one arrives at
the physcial-space approximation

K ′
k “ = ” L′

k :=
∑

(A,Q)=1, Q≤2ck

S(A/Q) · ModA/Q(χ(d−c)k ∗ ϕ′
dk)

in that

∥K̂ ′
k − L′

k∥L∞(T) ≤ Cd · 2−cdk(26)

and so the maximal function is bounded on ℓ2(Z)

∥ sup
k

|(K ′
k − L′

k) ∗ f |∥2
ℓ2(Z) ≤ sup

β

∑
k

|K̂ ′
k(β) − L̂′

k(β)|2 · ∥f∥2
ℓ2(Z) ≤ Cd · ∥f∥2

ℓ2(Z),(27)

by arguing as in (12), inserting the quantitative bound (26) for the final inequality.
Following Heuristic 2.1, it makes sense to decompose L′

k according to the approximate
level-sets of the Gauss sums, and seek sufficient decay in s on the ℓ2(Z)-norms of maximal
functions

sup
k≥Cs

|L′
k,s ∗ f |,

where
L′

k,s :=
∑

A/Q∈Rs

S(A/Q) · ModA/Q(χ(d−c)k ∗ ϕ′
dk)
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for

Rs := {(A,Q) = 1, 2s−1 ≤ Q < 2s} :(28)

one bounds

sup
k

|L′
k ∗ f | = sup

k
|

∑
s≤ck

L′
k,s ∗ f | ≤

∞∑
s=1

sup
k≥Cs

|L′
k,s ∗ f |.

After a little slight of hand, using Plancherel’s theorem to morally extract a geometrically
decacying prefactor,

L′
k,s(x) “ = ” 2−cds ·

∑
A/Q∈Rs

ModA/Q(χ(d−c)k ∗ ϕ′
dk)(x)

it suffices to prove the following maximal inequality (possibly for a slightly different
choice of χ):

∥ sup
k≥Cs

|
( ∑

A/Q∈Rs

ModA/Qχk

)
∗ f |∥ℓ2(Z) ≤ Cϵ · 2ϵs · ∥f∥ℓ2(Z), ϵ > 0;

by averaging over translations, exploiting the smoothness of {χk : k ≥ Cs} at physical
scales 2Cs, it suffices to prove the analogous real-variable inequality:

∥ sup
k≥Cs

|
( ∑

A/Q∈Rs

ModA/Qχk

)
∗ f |∥L2(R) ≤ Cϵ · 2ϵs · ∥f∥L2(R), ϵ > 0;

finally, by exploiting the dilation invariance of R, matters at last reduce to establishing
the following multi-frequency maximal estimate, see Bourgain (1989b):

Proposition 2.3. — Suppose that Θ := {θ1, . . . , θN} are 1-separated,

i.e. |θi − θj| > 1, i ̸= j.

Then

∥MΘf∥L2(R) := ∥ sup
k≥C

|
∑

n≤N

(Modθnχk) ∗ f |∥L2(R) ≤ Cϵ ·N ϵ · ∥f∥L2(R), ϵ > 0.(29)

The proof of Proposition 2.3, which we will presently establish with a bound on the
right side (29) of the form log2 N , combines ideas from harmonic analysis, probability
theory, and Banach space geometry, and was a creative novelty, having further applica-
tions to problems in pointwise ergodic theory (Bourgain, 1990; Demeter, 2007; Demeter,
Lacey, Tao, and Thiele, 2008) and to problems in time frequency analysis, for instance
Demeter, Tao, and Thiele (2008) and Lacey (2000). On the other hand, in some ways,
the proof technique was highly constrained: there are only so many ways to control a
maximal function on L2, as we will explore below.
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3. THE MULTI-FREQUENCY PROBLEM

3.1. Preliminary Observations

For what is to follow, we introduce that notation

Ξkf :=
∑

n≤N

(Modθnχk) ∗ f,(30)

so that we can express
MΘf = sup

k
|Ξkf |;

here, as above, χ is a Schwartz function with

1[−1/4,1/4] ≤ χ̂ ≤ 1[−1/2,1/2]

While the Ξk have oscillatory kernels, they admit a natural projection structure, in
that

ΞkΞl = Ξl, k ≥ l + 2,
as can be seen by passing to Fourier space, see (31) below; to avoid needless technicality,
we will henceforth sparsify our set of scales into parity classes, and restrict our attention
to a single class, so that whenever k > k′, we necessarily have k ≥ k′ + 2.

As establishing Proposition 2.3 is an L2-based problem, to better understand these
convolution operators, we pass to Fourier space, and compute

Ξ̂kf(ξ) =
∑

n≤N

χ̂k(ξ − θn) · f̂(ξ)(31)

so that
Ξ̂k(ξ) =

∑
n≤N

χ̂k(ξ − θn),

after conflating the operator with its kernel, so that we can alternatively represent

Ξkf(x) =
∑

n≤N

e(θnx)
∫
χ̂k(ξ)f̂(ξ + θn)e(ξx) dξ

=
∑

n≤N

e(θnx) ·
(
χk ∗ (Mod−θnf)

)
(x)

=
∑

n≤N

e(θnx) ·
(
χk ∗ (χ ∗ Mod−θnf)

)
(x)

=:
∑

n≤N

e(θnx) · (χk ∗ fθn)(x),(32)

using the fact that k ≥ C and a brief argument with the Fourier transform to arrive at
the reproducing identity

χk ∗ χ = χ.

The advantage to passing to the formulation involving {fθn} is that the smoothing
effect of convolution with χk has been “factored” out from the oscillatory exponentials
{e(θnx) : n}. In particular, heuristically, on intervals of bounded size C, as k gets large
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only the exponentials should vary: if |I| = C is an interval of appropriate length, then
whenever x ∈ I and 2k ≫ C

I ∋ x 7→
∑

n≤N

e(θnx) · ϕk ∗ fθn(x) “ = ”
∑

n≤N

e(θnx) · ϕk ∗ fθn(xI)(33)

for any xI . In particular, if we subdivide R into (dyadic) intervals {I : |I| = C} then
on each interval we can estimate

(34)
∫

I
|Ξkf(x)|2 dx “ = ” min

xI∈I

∫
I

|
∑

n

e(θnx) · χk ∗ fθn(xI)|2 dx

≤ C · min
xI∈I

∑
n≤N

|χk ∗ fθn(xI)|2 · |I|

as can be seen by bounding

∥
∑

n≤N

e(θnx) · an∥2
L2(I) ≤ ∥

∑
n≤N

e(θnx) · an · ψI(x)∥2
L2(R) = ∥

∑
n≤N

an · ψ̂I(ξ − θn)∥2
L2(R)

=
∑

n≤N

anam · ⟨ψ̂I(· − θn), ψ̂I(· − θm)⟩ =
∑

n≤N

|an|2 · ∥ψ̂I∥2
L2(R)

≤ C ·
∑

n≤N

|an|2 · |I|,

for 1I ≤ |ψI | ≤ C · (1 + dist(·, I)/|I|)−100 with a Fourier transform compactly supported
inside [−1/2, 1/2]; this support constrain ensures that

ψI(ξ − θn) · ψI(ξ − θm) ≡ 0, n ̸= m,

and since |I| ≥ C, the uncertainty principle is satisfied and such a ψI can be chosen.
Seeking uniformity, if we set

FΘ(x)2 := FΘ,C(x)2 :=
∑

n≤N

sup
k≥C

|χk ∗ fθn(x)|2,(35)

then we have a uniform norm bound

sup
k≥C

∥Ξkf∥L2(I) ≤ C · min
xI∈I

FΘ(xI) · |I|1/2 ≤ ∥FΘ∥L2(I),(36)

and our task is to control

∥MΘf∥L2(R) =
( ∑

|I|=C
∥ sup

k≥C
|Ξkf |∥2

L2(I)

)1/2
,(37)

where the previous calculation motivates us to split up the real line into intervals of
“small” length and treat the contribution of MΘf on each interval individually. The
problem, therefore, boils down to controlling a supremum on L2: we can localize and
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handle the contribution of each individual Ξk via the bound

∥FΘ∥2
L2(R) =

∑
n≤N

∫
sup
k≥C

|χk ∗ fθn(x)|2 ≤ C ·
∑

n≤N

∫
|fθn(x)|2 dx = C ·

∑
n≤N

∫
|f̂θn(ξ)|2 dξ

= C ·
∑

n≤N

∫
|χ̂(ξ)|2 · |f̂(ξ + θn)|2 dξ = C ·

∫ ∑
n≤N

|χ̂(ξ − θn)|2 · |f̂(ξ)|2 dξ

≤ C · sup
ξ

∑
n≤N

|χ̂(ξ − θn)|2 · ∥f̂∥2
L2(R) ≤ C · ∥f∥2

L2(R),(38)

using the separation of the frequencies |θn −θm| > 1, n ̸= m, and the Hardy–Littlewood
Maximal function in the first inequality. Our task is to pass from uniform control of
the {Ξk : k} to simultaneous control, via MΘ. This is a task that arises frequently –
but is often constrained, as we pause to explore.

3.2. Bounding a Supremum on L2

Suppose that {Fk} ∈ L2(X) is a collection of functions on a measure space, and we
are interested in controling

∥F∗∥L2(X) := ∥ sup
k

|Fk|∥L2(X).(39)

To the best of my knowledge, there are essentially four ways to control F∗ on L2:
– Martingale/stopping time methods, like those used to prove Doob’s Maximal

Inequality from martingale theory, or the closely linked Hardy–Littlewood Maximal
Inequality;

– Semigroup methods, like those used in the Hopf–Dunford–Schwartz Maximal Theo-
rem, a special case of which implies dimension independent bounds on the maximal
function supt |et△f |;

– TT ∗ orthogonality methods, in which the supremum F∗ is realized as a particular
linear operator,

T{Fk} :=
∑

t

1Ek
Fk

for {Ek} a disjoint partition of X, and then T is composed with its adjoint, to
efficiently compute

∥T∥L2(X)→L2(X) = ∥TT ∗∥1/2
L2(X)→L2(X);

this technique is common in oscillatory integral situations; and
– Entropy arguments, which leverage vestigial smoothness in the map k 7→ Fk(x) to

control F∗.
Of the four methods, the oscillatory nature of the averages {Ξk : k} precludes a direct

argument involving the first method, which gives a privileged role to the zero frequency
(expectation); the serious failure of the identity

ΞkΞl ̸= Ξk+l

precludes the second method.
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As for the TT ∗ approach, if we linearize our supremum and consider the operator

Tf(x) =
∑

k

1Ek
(x) ·

∫ ∑
n≤N

e(θnx)
∫
χk(x− y)e(−θny)f(y) dy,

then the dual operator, T ∗, is given by

T ∗g(x) =
∑

r

∑
n≤N

e(θny) ·
∫
e(−θnx) · (g · 1Er)(x)χk(x− y) dx,

and nothing is really gained by composition.
Accordingly, we turn our attention to the entropic approach to bounding a supremum

on L2.

4. FROM BOURGAIN’S TOOLKIT: THE ENTROPIC METHOD

This section reviews material over which Bourgain had total command at the time of
Bourgain (1989b); see Bourgain (1988b, 1986, 1988a, 1989a) or even Bourgain (1989b,
§3) for representative examples, and Tao (2021, §6) for an excellent summary. In partic-
ular, I imagine that the information Bourgain gleaned from the above Subsection §3.1
was enough to guide him directly to the below Section §5. While the implementation
of this approach in studying MΘ seems magical upon first reading Bourgain (1989b),
or in my case the exposition of Thouvenot (1990), my hope is that after fully digesting
the following material, the reader is able to understand the intution behind the way
Bourgain came to his argument.

The basic mechanism behind the entropic approach is to leverage “size” and “smooth-
ness,” or rather “stickiness,” in the parameter space to control a supremum. In terms
of our problem at hand, we have uniform control over each average Ξk via (36), and we
search for some notion of smoothness/stickiness to complement this uniformity.

To show off this interplay, we review the following example.

Lemma 4.1 (Sobolev Embedding Lemma). — Suppose that I is an interval, and that
F (x, ·) is absolutely continuous for almost every x with an L2 density. Then the following
pointwise estimate holds:

FI(x) := sup
t∈I

|F (x, t)| ≤ C · |F (x, tI)| + C ·
(∫

I
|F (x, t)|2 dt

)1/4
·

(∫
I

|∂tF (x, t)|2 dt
)1/4

for any tI ∈ I. In particular, if

sup
t∈I

∥F (x, t)∥L2
x

≤ A and sup
t∈I

∥∂tF (x, t)∥L2
x

≤ a(40)

then

∥ sup
t∈I

|F (x, t)|∥L2
x

≤ C ·
(
A+ (Aa|I|)1/2

)
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Proof. — For any t ∈ I, we may bound

F (x, t)2 = F (x, tI)2 +
∫

[tI ,t]
∂s

(
F (x, s)2

)
ds,

so

|F (x, t)|2 ≤ |F (x, tI)|2 + 2
∫

I
|F (x, t)| · |∂tF (x, t)| dt

≤ |F (x, tI)|2 + 2
(∫

I
|F (x, t)|2 dt

)1/2
·

(∫
I

|∂tF (x, t)|2 dt
)1/2

(41)

The right-hand side of (41) is independent of t, so we can take the supremum in t over
the left-hand side of (41) and then integrate in x, applying Cauchy–Schwarz to handle
the L2-based t-averages.

While Lemma 4.1 is very cheap, it is surprisingly robust, and is very useful in studying
maximal multiplier operators of the form

sup
t

|(f̂ · m(t·))∨|

for bounded m ∈ C1(R∖ {0}), see Bourgain (1986, Lemma 3).
It is helpful to discretize this argument: for each v ≥ 1, define

Λv :=
(
2−v · Z

)
∩ I

and define the parent of t ∈ Λv, ρ(t) ∈ Λv−1 to be the minimal element so that

B(t, 2−v) ∩B(ρ(t), 21−v) ̸= ∅, B(x, s) := {y : |x− y| < s}.

Given x-a.e. continuity in t 7→ F (x, t), to study FI , it suffices to bound

sup
t ∈

⋃
v≥1 Λv

|F (x, t)|;

by monotone convergence, it suffices to estimate, uniformly in finite subsets T ⊂ ⋃
v≥1 Λv,

FT (x) := sup
t∈T

|F (x, t)|.

To do so, for each t ∈ T , we may telescope

t = (t− ρ(t)) + (ρ(t) − ρ2(t)) + · · · + ρ0(t)

where ρj is the jth composition of ρ, and ρ0(t) is the appropriate composition so that
ρ0(t) ∈ Λv0 for some v0 to be determined below.

Note that the number of increments required to arrive at a representative ρ0 ∈ Λv0 is
uniformly bounded, since T is finite. We bound

FT (x) ≤ sup
t∈Λv0

|F (x, t)| +
∑

v>v0

sup
t∈Λv

|F (x, t) − F (x, ρ(t))|

≤
( ∑

t∈Λv0

|F (x, t)|2
)1/2

+
∑

v>v0

( ∑
t∈Λv

|F (x, t) − F (x, ϱ(t))|2
)1/2

,
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noting that all sums are in fact finite, and take L2
x-norms, before optimizing over v0 ≥ 0

to derive the desired upper bound:

A · |Λv0|1/2 + a ·
∑

v>v0

|Λv|1/2 · 2−v ≤ C ·
(
A+ (Aa|I|)1/2

)
;

see (40).
In both of these arguments, we relied upon smoothness in the map t 7→ F (x, t).

Really, though, we were relying on decaying contributions from

Λv ∋ t 7→ |F (x, t) − F (x, ρ(t))|(42)

as v grows, and the controlled entropy estimate

|Λv| ≤ C · 2v · |I|;

from the metric perspective, this estimate is measuring the extent to which elements in
I adhere to each other —“stick together”— at scales 2−v. Estimates like

sup
t∈I

∥∂tF (x, t)∥L2
x

≤ a

allow us to capture the smallness in (42) in an L2-average sense. But, we may also
pointwise approximate {F (x, t) : t ∈ I} more directly using a similar telescoping
mechanism.

For T as above, consider the set

X(x) := XT (x) :=
{
F (x, t) : t ∈ T

}
,(43)

and for each v so that 2−v ≤ 2 · diam(X(x)), define Λv(x) ⊂ T to be a collection of
times t so that

X(x) ⊂
⋃

t∈Λv(x)
B

(
F (x, t), 2−v

)
(44)

subject to the constraint that |Λv(x)| is minimal; the cardinality is essentially the
2−v-entropy of the set.

Now, let V be so large that each element of T is separated by > 21−V , so that
T = ΛV (x). And define the parent of t ∈ Λv(x), ϱ(t) ∈ Λv−1(x) to be the minimal
element so that

B
(
F (x, t), 2−v

)
∩B

(
F (x, ϱ(t)), 21−v

)
̸= ∅.(45)

For any s ∈ T , we may similarly bound

FT (x) ≤ |F (x, s)| +
∑

v

sup
t∈Λv(x)

|F (x, t) − F (x, ϱ(t))|

≤ |F (x, s)| +
∑

v

( ∑
t∈Λv(x)

|F (x, t) − F (x, ϱ(t))|2
)1/2

(46)

≤ |F (x, s)| + C ·
∑

v

2−v · |Λv(x)|1/2,
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as we may bound
|F (x, t) − F (x, ρ′(t))| < 2−v + 21−v < 22−v

for each t ∈ Λv(x) by (45). It is convenient to change perspectives and bound

|Λv(x)| ≤ N2−v(x)(47)

where

Nλ(x) := sup
{
K : there exists a sequence of times

t0 < t1 < · · · < tK : |F (x, ti) − F (x, ti−1)| > λ
}

is a so-called (greedy) jump-counting function at altitude λ > 0, which measures the
extent to which {F (x, t) : t} “stick together” at the scale λ:

Nλ(x) < ∞ for all λ > 0 ⇐⇒ {F (x, t) : t} converges
⇐⇒ {F (x, t) : t} “stick together” at all scales.

To establish (47), one majorizes the left hand side and minorizes the right hand by the
21−v-entropy of the set: the size of the largest set of 21−v-separated points inside of
{F (x, t) : t ∈ I}.

The reverse bound
N2−v(x) ≤ |Λv+1(x)|

is simpler, so there is nothing lost quantitatively from this change, as indeed∑
v

2−v · |Λv(x)|1/2 ≤
∑

v

2−v ·N2−v(x)1/2 ≤ C ·
∑

v

2−v · |Λv(x)|1/2.

In many special examples, one is able to prove a uniform bound

sup
v

∥2−v ·N1/2
2−v∥L2 ≤ C · A,(48)

which says that in an L2-averaged sense

N2−v “ ≤ ” C · A2 · 22v

i.e. that it costs a quadratically growing price to cover the collection of data {F (x, t) : t}
by balls of a given radius. The following examples are representative.

Entropic Example One. — Consider the (discrete-time) averaging operators,

F (x, t) = Ekf(x) · 1[2k,2k+1)(t)(49)

where

Ekf(x) :=
∑

|I|=2k dyadic

( 1
|I|

∫
I
f(t) dt

)
· 1I(x)(50)

is the conditional expectation operator, projecting onto the σ-algebra generated by the
dyadic intervals {2k · [n, n+1) : n ∈ Z}. The “stopping-time” structure embedded in the
definition of N2−v allows one to neatly employ methods from dyadic harmonic analysis
– secretly, martingale techniques – to establish (48).
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Entropic Example Two. — To the extent that

Ekf “ = ” χk ∗ f,

in that both operators “blur” at spatial scales 2k, discarding “fine scale” information
below this threshold, and preserving “coarse scale” properties that can be detected
above this spatial threshold, one can combine a square function argument with further
orthogonality arguments, in particular the quantitative bound

∥Ekψl − χk ∗ ψl∥L2(R) ≤ C · 2−|k−l|/2 · ∥ψl∥L2(R), ψl := χl − χl−1,(51)

to extend (48) to the case where

F (x, t) = f ∗ χk(x) · 1[2k,2k+1)(t),(52)

and similarly with χ replaced with any other Schwartz function with χ̂(0) = 1. These
ideas first appeared in Jones, Kaufman, Rosenblatt, and Wierdl (1998).

4.1. The Jump-Counting Approach to Entropy

While the uniform estimate (48) is a priori insufficient to control the full supremum
over t ∈ T , this entropic argument yields a remarkable strengthening over the trivial
estimate

∥FT ∥L2
x

≤ ∥ST ∥L2
x

≤ |T |1/2 · A,
where we set

ST (x)2 :=
∑
t∈T

|F (x, t)|2.

In particular, for any t ∈ T ,

FT (x) ≤ |F (x, t)| + C ·
∑

v

2−v ·N2−v(x)1/2

≤ |F (x, t)| + ST (x)
|T |1/2 +

∑
v: S(x)

|T |1/2 ≤2−v≤2·S(x)

2−v ·N2−v(x)1/2(53)

so that, essentialy, the uniform bound (48) implies(2)

∥FT ∥L2
x

“ ≤ ” C · log |T | · A.(55)

In point of fact, as we will see below, (55) often holds with a log2 |T | prefactor.

(2)There is a natural comparison between this estimate and the abstract Hilbert space Rademacher–
Menshov inequality, which also states that

∥ sup
n≤N

|F (x, n)|∥L2 ≤ C · log N · A(54)

under orthogonality constrains on the functions {F (·, n) : n}. The analogy is at the level of proof
and is that of Lebesgue integration to Riemann integration: the entropy bound organizes the data
{F (x, n) : n} according to its image, while the Rademacher–Menshov inequality is proven by analogously
organizing the data according to the domain of the time parameter n ∈ [N ].
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4.2. Introduction to Variation
As the difficulty with the heuristic justification for (54) shows, see (53), a major

problem is that, in general, we cannot expect a uniform bound on

x 7→ sup
v

2−v ·N2−v(x)1/2,

see Jones and Wang (2004) or Qian (1998).
To get around this issue, one instead sacrifices the power 1/2 → 1/r, r > 2 and

introduces the so-called r-variation of {F (x, t) : t ∈ I}

Vr(x) := Vr
F (x) := sup

( ∑
i

|F (x, ti) − F (x, ti−1)|r
)1/r

,(56)

where the supremum runs over all finite increasing subsequences inside of I. Unlike the
jump counting function, the r-variation operators crucially satisfies a triangle inequality,

Vr
F +G ≤ Vr

F + Vr
G,

and one may bound
sup

v
2−v ·N2−v(x)1/r ≤ Vr(x),

which is important, as the Vr operators often admit a strong L2-theory. In particular,
if |T | = N , so that Nλ ≤ N for all λ, we may bound

(57) 2−v ·N1/2
2−v ≤ 2−v ·N1/r

2−v ·N1/2−1/r
2−v ≤ N1/2−1/r · Vr

and if we set r = 2 + c
log N

, then we eliminate the pre-factor of N1/2−1/r and end up with
the bound

2−v ·N1/2
2−v ≤ C · Vr, r = 2 + c

logN .

Substituting into (53), we bound, for any t ∈ T

FT (x) ≤ |F (x, t)| + ST (x)
N1/2 +

∑
v: ST (x)

N1/2 ≤2−v≤ST (x)

Vr(x) ≤ |F (x, t)| + ST (x)
N1/2 + logN · Vr(x),

which says that

∥FT ∥L2 ≤ C ·
(
A+ logN · ∥Vr∥L2

)
, r = 2 + c

logN ,

so control over the r-variation operators leads, essentially, to (55).
The relevant estimates for Vr derive, in many cases, from the following inequality,

classically used as a convergence result in martingale theory Lépingle (1976); see Jones,
Seeger, and Wright (2008) for a discussion, and Guo, Roos, and Yung (2020) or Oberlin,
Seeger, Tao, Thiele, and Wright (2012) for more exotic examples.

Proposition 4.2 (Lépingle’s Inequality, Special Case). — The following estimate holds
in the conditional expectation case (49):

∥Vr∥L2(R) ≤ C · r

r − 2 · A.
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Proposition 4.2 extends similarly to the case of convolution operators (52): by com-
bining a square function argument

Vr(χk ∗ f : k) ≤ Vr(Ekf : k) + Vr(χk ∗ f − Ekf : k)

≤ Vr(Ekf : k) + 2 ·
( ∑

k

|χk ∗ f − Ekf |2
)1/2

(58)

with the estimates (51) introduced above, one can use orthogonality techniques and
Proposition 4.2 to bound both terms in (58). Above, we define the discrete-time variation

Vr(fk : k)(x) := sup
( ∑

i

|fki
(x) − fki−1(x)|r

)1/r

where the supremum runs over all finite subsequences {ki}.
While the Vr operators are more delicate than the pertaining maximal functions,

FT (x) ≤ |F (x, t)| + Vr(x)

for any t ∈ T , they are essentially of even strength, in that we have the following
heuristic:

Heuristic 4.3. — In either case (49) or (52), it is very hard for Vr to be large when
both FI and the square function

SI(x) :=
( ∑

k:2k∈I

|F (x, 2k) − F (x, 2k+1)|2
)1/2

are small: Vr “ ≈ ” r
r−2 · (FI + SI) “ ≈ ” r

r−2 · FI ,
r

r−2 · SI .(3)

Finally, and significantly, given our vector-valued perspective on studying

{fθ1 , . . . , fθN
},

see (34), we observe that just as do the maximal function and square function, the Vr

operators interact well in the vector-valued setting: for sequence-space valued functions
F⃗ = (F1, F2, . . . )

Vr
F⃗

(x) := sup
( ∑

i

∥Fn(x, ti) − Fn(x, ti−1)∥r
ℓ2

n

)1/r
≤ ∥Vr

Fn
(x)∥ℓ2

n
,(59)

by Minkowski’s inequality for sequence spaces (as r > 2), where the supremum runs
over finite increasing subsequences of {ti}.

With this section in mind, we begin to see how Bourgain developed his argument.

(3)The close link between maximal function and square function in either context (49) or (52) is classical;
see e.g. Stein (1993, §1). The relationship between Vr, FI , SI in the case (49) is via the following good-λ
inequality:

|{Vr > Cλ, FI , SI ≤ γλ}| ≤ C ·
( r

r − 2
)2 · γ2 · |{Vr > λ}|, r > 2;

see Krause (2023, §3).
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5. THE ARGUMENT TAKES SHAPE

Bourgain’s task was to establish (37), where we are only thinking about the case
where 2k is very large relative to |I| = C. By monotone convergence, we can restrict to
finitely many scales k ∈ T ⊂ N ∩ [C,∞). We focus on the case of a single interval.

Guided by our heuristic analysis, we let xI ∈ I be a point to be determined later,
and seek to bound

∥ sup
k

|
∑

n≤N

e(θnx) · χk ∗ fθn(xI)|∥L2
x(I).

As discussed above – we are essentially forced to use the entropic approach. Specifically,
we set

X(xI) := {χk ∗ f⃗Θ(xI) :=
(
χk ∗ fθ1(xI), . . . , χk ∗ fθN

(xI)
)

: k}(60)

and let N⃗λ denote the appropriate jump-counting function at altitude λ with respect to
the sequence space norm, ℓ2([N ]),

N⃗λ(x) := sup
{
K : there exists a sequence of times C ≤ k0 < k1 < · · · < kK :

∥χki
∗ fθn(x) − χki−1 ∗ fθn(x)∥ℓ2

n∈[N ]
> λ

}
.

By arguing as above we can bound

(61) ∥ sup
k

|
∑

n≤N

e(θnx) · χk ∗ fθn(xI)|∥L2
x(I)

≤ |Ξk0 ∗ f(xI)| · |I|1/2 +
∑

v

∥ max
k∈Λv(xI)

|
∑

n≤N

e(θnx) ·
(
χk − χϱ(k)

)
∗ fθn(xI)|∥L2

x(I)

for any k0 ≥ C, see (30). The first term is of a simpler nature, so we will temporarily
suppress it; and for each individual v we may bound

∥ max
k∈Λv(xI)

|
∑

n≤N

e(θnx) ·
(
χk − χϱ(k)

)
∗ fθn(xI)|∥L2

x(I)

≤ ∥
( ∑

k∈Λv(xI)
|

∑
n≤N

e(θnx) ·
(
χk − χϱ(k)

)
∗ fθn(xI)|2

)1/2
∥L2

x(I)

≤
( ∑

k∈Λv(xI)
∥

∑
n≤N

e(θnx) ·
(
χk − χϱ(k)

)
∗ fθn(xI)∥2

L2
x(I)

)1/2

≤ C · 2−v · N⃗2−v(x)1/2 · |I|1/2(62)
by arguing as in (46), applying (34) to bound

∥
∑

n≤N

e(θnx) ·
(
χk − χϱ(k)

)
∗ fθn(xI)∥L2

x(I) ≤ C · 2−v · |I|1/2

uniformly for k ∈ Λv(xI). Above, {Λv(xI) : v} are sets of times that are minimal with
respect to the property that

X(xI) ⊂
⋃

k∈Λv(xI)
Bℓ2([N ])

(
χk ∗ f⃗Θ(xI), 2−v

)
,
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where Bℓ2([N ])(v⃗, r) is the ball of radius r centered at v⃗ ∈ ℓ2([N ]) with respect to the
sequence-space norm ℓ2([N ]), and the parent function, ϱ, is as above.

The issue is the potential explosion

N⃗2−v(xI) → ∞ as v → ∞,

and there is no a priori way to rule out this enemy; if there were, there would be no
logarithmic loss in (55). The clever insight that Bourgain had that allowed him to push
past this abstract issue was just Cauchy–Schwarz: we bound

|
∑

n≤N

e(θnx)·
(
χk−χϱ(k)

)
∗fθn(xI)| ≤ N1/2·

( ∑
n≤N

|
(
χk−χϱ(k)

)
∗fθn(xI)|2

)1/2
≤ C·N1/2·2−v

uniformly for k ∈ Λv(xI), which yields the cheap bound

∥ max
k∈Λv(xI)

|
∑

n≤N

e(θnx) ·
(
χk − χϱ(k)

)
∗ fθn(xI)|∥L2

x(I) ≤ C · 2−v ·N1/2 · |I|1/2.

Altogether, Bourgain had obtained the bounds

∥ max
k∈Λv(xI)

|
∑

n≤N

e(θnx) ·
(
χk − χϱ(k)

)
∗ fθn(xI)|∥L2

x(I)

≤ C · 2−v · min{N⃗2−v(xI)1/2, N1/2} · |I|1/2,

see (62), which he cleverly interpolated, as per (57),

2−v · min{N⃗2−v(xI)1/2, N1/2} ≤ 2−v · N⃗2−v(xI)1/r ·N1/2−1/r

≤ N1/2−1/r · Vr
f⃗Θ

(xI) ≤ C · Vr
f⃗Θ

(xI) r = 2 + c
logN

see (59) and (60), obtaining a v-independent term on the right. Inserting this bound
and arguing as in the heuristic analysis (53),

(61) ≤ C ·
∑

v:2−v≤FΘ(xI)
2−v · min{N⃗2−v(xI)1/2, N1/2} · |I|1/2

≤ C
∑

v:2−v≤FΘ(xI)/N1/2

2−v ·N1/2 · |I|1/2 + C
∑

v:FΘ(xI)/N1/2≤2−v≤2·FΘ(xI)
Vr

f⃗Θ
(xI) · |I|1/2

≤ C · FΘ(xI) · |I|1/2 + C · logN · Vr
f⃗Θ

(xI) · |I|1/2, r = 2 + c
logN .

(63)

And, at last, after choosing xI carefully, we bound

∥MΘf∥L2(I) ≤ C · ∥FΘ∥L2(I) + C · logN · ∥Vr
f⃗Θ

∥L2(I),

which says that in a scale-C, L2-averaged sense, at all locations one has the following
inequality

MΘf “ ≤ ” FΘ + logN · Vr
f⃗Θ
, r = 2 + c

logN .

In other words, up to logarithmic error, the vector valued maximal function and the
vector-valued variation control MΘ. And, square-summing over {|I| = C}, taking into
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account the related, convolution-based version of Lépingle’s Inequality, Proposition 4.2,
leads to the bound

∥MΘf∥L2(R) ≤ C · (1 + logN · r

r − 2) · ∥f∥L2(R) ≤ C · (1 + log2 N) · ∥f∥L2(R),

which satisfies (32).
Guided by this intuition, we turn to the rigorous proof.

6. THE PROOF OF PROPOSITION 2.3, THE MULTI-FREQUENY
MAXIMAL INEQUALITY

Motivated by our previous outline, we will seek to prove the following estimate:

∥MΘf∥L2(R) ≤ C · log2 N · ∥f∥L2(R).

Accordingly we will restrict our attention only to scales k ≥ C log2 N , and just handle
the complementary cases using a square function argument

∥ sup
C≤k≤C·log2 N

|Ξkf |∥L2(R) ≤ ∥
( ∑

C≤k≤C·log2 N

|Ξkf |2
)1/2

∥L2(R)

≤ C · logN · sup
k

∥Ξkf∥L2(R) = C · logN · sup
k

∥Ξ̂kf∥L2(R)

≤ C · logN · sup
k

∥Ξ̂k∥L∞(R) · ∥f̂∥L2(R) ≤ C · logN · ∥f∥L2(R),

as
sup

k
sup

ξ
|Ξ̂k(ξ)| ≤ 1,

see (31). We accordingly re-define FΘ = FΘ,log2 N , see (35), and observe the inherited
smoothness

(64) |FΘ(x) − FΘ(y)| ≤ C ·
∑

|I|=2k≥log2 N

∑
n≤N

|χk ∗ fθn(x) − χk ∗ fθn(y)|

≤ C ·N ·
∑

k≥log2 N

(|x− y| · 2−k) ·MHLf(x) ≤ C · |x− y| ·N−100 ·MHLf(x),

(say), which says that FΘ is very smooth at scales |I| = C. Above, we used the bound

|∂χk(x)| ≤ C · 2−k · 2−k · (1 + 2−k · |x|)−100.

This excision of scales allows us to be a little less delicate than Bourgain in making
rigorous the heuristic (33): whereas Bourgain used a so-called best constant argument,
we will just use the following estimate, which is effective for small intervals relative to
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the scales k ≥ C · log2 N :

∑
n≤N

e(θnx) · χk ∗ fθn(x) =
∑

n≤N

e(θnx) · χk ∗ fθn(xI) +O
(N · |I|

2k
·MHLf(x)

)
=

∑
n≤N

e(θnx) · χk ∗ fθn(xI) +O
(
2−k/2 ·MHLf(x)

)

for any xI ∈ I, certainly provided that |I| ≤ NC.

In particular, for any x ∈ I, with |I| = C, we may bound

sup
k≥C·log2 N

|Ξkf(x)| ≤ sup
k≥C·log2 N

∣∣∣ ∑
n≤N

e(θnx) · χk ∗ fn(xI)
∣∣∣ +O

( ∑
k≥C·log2 N

2−k/2 ·MHLf(x)
)
,

so that for each I we may bound

∥ sup
k≥C·log2 N

|Ξkf(x)|∥L2(I) ≤ C · min
xI∈I

∥ sup
k≥C·log2 N

∣∣∣ ∑
n≤N

e(θnx) · χk ∗ fn(xI)
∣∣∣∥L2(I)

+ C ·N−100 · ∥MHLf∥L2(I)

(say). Temporarily dropping the term involving MHL as inessential, we consider the first
term

∥ sup
k≥C·log2 N

∣∣∣ ∑
n≤N

e(θnx) · χk ∗ fn(xI)
∣∣∣∥L2(I),

which we bound using the entropic approach, see (63),

∥ sup
k≥C·log2 N

∣∣∣ ∑
n≤N

e(θnx) · χk ∗ fn(xI)
∣∣∣∥L2(I)

≤ C ·
(
FΘ(xI) · |I|1/2 + logN · Vr

f⃗Θ
(xI) · |I|1/2

)
,

≤ C ·
(
∥FΘ∥L2(I) + logN · ∥Vr

f⃗Θ
∥L2(I) +N−100 · ∥MHLf∥L2(I)

)
,

after choosing xI to minimize Vr
f⃗Θ

on I, and using the smoothness

FΘ(xI) = FΘ(x) +O(N−100 ·MHLf(x))

to bound

FΘ(xI) · |I|1/2 = ∥FΘ∥L2(I) +O
(
N−100 · ∥MHLf∥L2(I)

)
.

In particular, we have bounded

∥ sup
k≥C·log2 N

|Ξkf |∥L2(I) ≤ C ·
(
∥FΘ∥L2(I) + logN · ∥Vr

f⃗Θ
∥L2(I) +N−100 · ∥MHLf∥L2(I)

)
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where r = 2 + c
log N

, so square-summing over |I| = C yields, at last, the bound

∥MΘf∥L2(R) ≤
( ∑

|I|=C
∥ sup

k≥C·log2 N

|Ξkf |∥2
L2(I)

)1/2
+ C · logN · ∥f∥L2(R)

≤ C ·
( ∑

|I|=C
∥FΘ∥2

L2(I)

)1/2
+ C · logN ·

( ∑
|I|=C

∥Vr
f⃗Θ

∥2
L2(I)

)1/2

+ C ·N−100 ·
( ∑

|I|=C
∥MHLf∥2

L2(I)

)1/2
+ C · logN · ∥f∥L2(R)

≤ C ·
(
∥FΘ∥L2(R) + logN · ∥Vr

f⃗Θ
∥L2(R) +N−100 · ∥MHLf∥L2(R) + logN · ∥f∥L2(R)

)
≤ C · log2 N · ∥f∥L2(R),

completing the proof.

7. CONTEMPORARY WORK

Since Bourgain’s work, the topic of pointwise convergence of ergodic averages along
polynomial orbits was taken up and greatly advanced by Mariusz Mirek, Eli Stein, and
their collaborators (Mirek, 2018; Mirek, Stein, and Trojan, 2019, 2017; Mirek, Stein,
and Zorin-Kranich, 2020; Mirek and Trojan, 2016), building on breakthrough work of
Ionescu and Wainger (2006). The current state of affairs was established in Mirek, Stein,
and Zorin-Kranich (2020):

Theorem 7.1. — Suppose that (X,µ) is a σ-finite measure space, τ : X → X is a
measure-preserving transformation, and P ∈ Z[·] is a polynomial with integer coefficients.
Then for each 1 < p < ∞, r > 2

∥Vr
( 1
N

N∑
n=1

τP (n)f : N
)
∥Lp(X) + sup

λ>0
∥λ ·Nλ

( 1
N

N∑
n=1

τP (n)f : N
)1/2

∥Lp(X)

≤ Cp · (1 + r

r − 2) · ∥f∥Lp(X).

In other words, from a quantitative perspective, the rate of convergence of the abstract
averages

1
N

N∑
n=1

τP (n)f

is precisely that of our entropic examples!
The key to this argument was a combinatorial partitioning of Q ∩ [0, 1] into the

so-called Ionescu–Wainger exhaustion of the rationals: one replaces

Rs −→ Us,
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see (28), where {Us : s} form a disjoint partition of Q ∩ [0, 1] which captures many of
the analytical properties of Rs, namely

sup
A/Q∈Us

|S(A/Q)| ≤ Cϵ · 2(ϵ−1/d)s,(65)

but admit much more favorable arithmetic statistics, which allows for the approximation
K ′

k “ = ”
∑

s≤c·k

∑
A/Q∈Us

S(A/Q) · ModA/Q(χ(d−c)k ∗ ϕ′
dk) =:

∑
s≤c·k

Lk,s

to hold in ℓp(Z) as well.
Although Bourgain’s entropic argument is less effective in general on ℓp, p ̸= 2, by

applying the Rademacher–Menshov inequality and arguing as in Bourgain (1988b), one
is able to establish e.g. the estimate

∥ sup
k

|Lk,s ∗ f |∥ℓp(Z) ≤ Cϵ · 2ϵs · 2−cp,ds · ∥f∥ℓp(Z), 1 < p < ∞, cp,d < 1/d,

and similarly for the jump-counting formulation. The loss in the number of frequencies
is sub-exponential in s, as in the case of Bourgain’s maximal function on ℓ2; the gain of

2−cp,ds

follows from appropriately interpolating (65).
This quantitative improvement over the sharpest estimates for supk |L′

k,s ∗ f |,

∥ sup
k

|L′
k,s ∗ f |∥ℓp(Z) ≤ Cϵ,p · 2(ϵ+1)s · 2−cp,ds · ∥f∥ℓp(Z), 1 < p < ∞, cp,d < 1/d,

speaks to the flexibility of these arguments, which indeed extend to handle the case of
the r-variation and jump-counting operators.
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