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THE UNBOUNDED DENOMINATORS CONJECTURE
[after Calegari, Dimitrov, and Tang]

by Javier Fresán

INTRODUCTION

This written account of my talk at the Bourbaki seminar surveys some of the ideas
in the beautiful proof by Calegari, Dimitrov, and Tang (2021) of the unbounded de-
nominators conjecture, a long standing open problem in the theory of modular forms
that gives a simple criterion to decide whether a modular form with algebraic Fourier
coefficients at infinity is “invariant” under a congruence subgroup of SL2(Z) or not.

Throughout, we write Q for the algebraic closure of Q in C and Z ⊂ Q for the
subring of algebraic integers. We let H = {τ ∈ C | Im(τ) > 0} denote the upper
half-plane and(1) q = exp(πiτ). Recall that SL2(Z) acts on H∗ = H ∪ P1(Q) by Möbius
transformations and that congruence subgroups of SL2(Z) are those containing

Γ(M) = ker
(
SL2(Z)→ SL2(Z/MZ)

)
= {A ∈ SL2(Z) | A ≡ IdmodM}

for some integer M ≥ 1. The unbounded denominators conjecture, proposed by Atkin
and Swinnerton-Dyer (1971), is now the following theorem.

Theorem 0.1 (Calegari–Dimitrov–Tang, 2021). — Let N ≥ 1 be an integer and
let f(τ) ∈ ZJq1/NK be a holomorphic function on the upper-half plane H such that
(a) there exists an integer k and a subgroup Γ ⊂ SL2(Z) of finite index such that

(1) f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ)

holds for all matrices ( a bc d ) in Γ;
(b) f locally extends to a meromorphic function around each point of P1(Q).
Then the equality (1) holds for all matrices in a congruence subgroup of SL2(Z).

In what follows, we will refer to functions f satisfying the assumptions of the theorem
simply as modular forms of weight k, or modular functions if k = 0, for the group Γ.
More precisely, the width of each cusp ζ ∈ P1(Q) is defined as the smallest integer
mζ ≥ 1 such that the stabiliser of ζ under the action of Γ on P1(Q) contains, up to

(1)One reason for choosing this unusual convention for q will be explained in Remark 0.2 below.
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conjugation in SL2(Z), one of the matrices ±
(

1 mγ
0 1

)
. The assumption f ∈ ZJq1/NK

implies that the width of the cusp at infinity divides 2N . In the conclusion of theorem,
we can take a congruence subgroup containing Γ(L(Γ)), where L(Γ) stands for the
lowest commun multiple of the widths of all cusps, a generalisation of the notion of
level for non-congruence subgroups (see section 2.1).

Let us explain the name of the conjecture. If the coefficients of f ∈ QJq1/NK have
bounded denominators, which amounts to saying that f lies in the subspace

ZJq1/NK⊗Z Q ⊂ QJq1/NK,

then we can apply theorem 0.1 to an integral multiple of f . Its contrapositive then says

Let f(τ) ∈ QJq1/NK be a modular form for a subgroup of finite index
of SL2(Z). If f is not modular for any congruence subgroup, then the Fourier
coefficients of f at infinity have unbounded denominators.

By contrast, all modular forms f for congruence subgroups have bounded denomina-
tors by the theory of Hecke operators; see Shimura (1971, Theorem 3.52). In a nutshell,
after multiplying f by a large enough power of the modular discriminant to turn it into
a holomorphic cusp form, we can write it as a linear combination of Hecke eigenforms,
and the Fourier coefficients of those are algebraic integers since they are polynomial
expressions with integer coefficients in the Hecke eigenvalues(2). Thus, the condition of
having bounded denominators completely distinguishes congruence and non-congruence
modular forms among all modular forms with algebraic Fourier coefficients at infinity.

By a theorem of Mennicke (1965) and Bass, Lazard, and Serre (1964), the
group SLn(Z) has the congruence subgroup property for each n ≥ 3, meaning that all
its subgroups of finite index contain a congruence subgroup. However, most subgroups
of finite index of SL2(Z) are not congruence. For example, given an integer g ≥ 0, there
is only a finite number of congruence subgroups Γ such that the curve X(Γ) = H∗/Γ
has genus g (Dennin, 1975), whereas there is an infinite number of non-congruence sub-
groups having the same property (Jones, 1979). Explicit examples of non-congruence
subgroups will be given in section 0.2 below.

One reason to care about modular forms for non-congruence subgroups is Belyi’s the-
orem, according to which every smooth projective curve defined over Q can be realised
as a cover of the projective line P1 that is only ramified at 0, 1,∞ (such coverings are
often called Belyi maps). Taking the isomorphism H/Γ(2) ' P1 \ {0, 1,∞} given by
the modular lambda function into account, any such curve is hence isomorphic to X(Γ)
for a subgroup Γ ⊂ Γ(2) of finite index. As we will see below, theorem 0.1 provides us
with a criterion to decide whether Γ is a congruence subgroup or not in terms of the
integrality properties of the associated Belyi map.

(2)This argument fails for non-congruence modular forms. Although there is still a way to define
Hecke operators, their action is trivial on those forms that do not come from the smallest congruence
subgroup containing Γ by results of Serre, Thompson (1989), and Berger (1994).
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0.1. First reductions
It will be enough to prove the theorem under the assumption that f is a modular

function with integer coefficients. We first explain the reduction to the case k = 0. For
this, consider the q-series expansions

(2) .

λ(τ)
16 = q

∞∏
n=1

( 1 + q2n

1 + q2n+1

)8
= q − 8q2 + 44q3 − · · · ,

∆
(
τ
2

)
= q

∞∏
n=0

(1− qn)24 = q − 24q2 + 252q3 − · · · ,

which define a modular function for the group Γ(2) and a modular form of weight 12
for SL2(Z) respectively. The first one induces an isomorphism(3)

H/Γ(2) ∼−→ P1 \ {0, 1/16,∞}.

The second one does not vanish at the upper half-plane and has the property that its
inverse ∆(τ/2)−1 has integer Fourier coefficients at infinity. Therefore,

F (τ) =
(λ(τ)

16
)k f(τ)12

∆( τ2 )k ∈ ZJq1/NK

satisfies the assumptions of theorem 0.1 for k = 0 and the subgroup Γ∩Γ(2) of SL2(Z).
If F is a modular function for a congruence subgroup, then f is a modular form for
a congruence subgroup. Note that the first factor is there to kill the pole at q = 0
introduced by ∆k, thus keeping the condition that f(τ) is holomorphic at infinity. This
operation could, however, introduce new poles at other cusps; this explains the lack of
symmetry between infinity and the other cusps in the statement of the theorem.

Remark 0.2. — One explanation for the normalisations x = λ/16 and q = exp(πiτ) is
that they allow for the identity ZJqK = ZJxK coming from the expressions

x = q − 8q2 + 44q3 + · · · , q = x+ 8x2 + 91x3 + · · · .

of x and q as power series with integer coefficients in q and x respectively.

Let us now explain how to reduce to the case f ∈ ZJq1/NK following a suggestion of
John Voight; see (Calegari, Dimitrov, and Tang, 2021, Remark 6.3.2). Let Γ be a finite
index subgroup of SL2(Z). By Belyi’s theorem, the curve X(Γ), its cusp at infinity, the
uniformiser q1/N , and the covering X(Γ) → P1 are defined over some number field K.
Moreover, the algebro-geometric interpretation of modular functions as sections of a line
bundle shows that the space of such forms has a natural structure of K-vector space,
corresponding to those functions whose q-expansion at infinity has coefficients in K.
After enlarging K to its Galois closure if necessary, an element σ of the Galois group
Gal(K/Q) transforms the covering X(Γ)→ P1 into a covering X(Γσ)→ P1 for possibly
another subgroup Γσ of finite index, that we may conjugate so that the cusp at infinity
maps again to∞. Since the Galois action on q-expansions is given by applying σ to the

(3)One says that λ is a Hauptmodul for Γ(2).
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coefficients, the conjugate of a modular function will still be modular for a subgroup
of finite index. Now, the modularity assumption on f ∈ ZJq1/NK implies that there
exists a number field L, with ring of integers OL, such that f lies in OL. If α1, . . . , αd
is a Z-basis of OL, then fi(τ) = TrL/Q(αif(τ)) lies in ZJq1/NK and is still modular for a
finite index subgroup of SL2(Z) by the above. By theorem 0.1, each of these functions
is modular for a congruence subgroup Γi, so f is modular for Γ1 ∩ · · · ∩ Γd.

To summarise, we are reduced to proving the following statement:

Theorem 0.3. — Let N ≥ 1 be an integer and let f(τ) ∈ ZJq1/NK be a holomorphic
function on H that locally extends to a meromorphic function around each point of P1(Q)
and is invariant under the action of a subgroup Γ ⊂ Γ(2) of finite index. Then f is a
modular function for a congruence subgroup.

0.2. An interpretation in terms of Belyi maps

In the notation of theorem 0.3, let Y (Γ) = H/Γ and consider the diagram

Y (Γ)
π
��

f // C

Y (2) ' P1 \ {0, 1/16,∞}

66

where π is an étale cover and Y (2) and P1 \ {0, 1/16,∞} are identified through the
isomorphism λ/16. We can then think of f as a multivalued algebraic function of λ/16
ramified at the points 0, 1/16,∞, as indicated by the dashed arrow. By expanding it
as a Puiseux series at a branch above 0, the theorem can be rephrased as saying that

f lies in ZJλ(τ/m)
16 K⊗C for some integer m ≥ 1 if and only if Γ is congruence.

Example 0.4 (Fermat curves). — Let n ≥ 1 be an integer and consider the Fermat
curve Xn with affine equation xn + yn = 1. Since the modular lambda function λ does
not take the values 0 and 1, there exist holomorphic functions x, y : H→ C satisfying

x(τ)n = λ(τ) and y(τ)n = 1− λ(τ).

The diagonal arrow in the diagram

H

λ
��

τ 7→(x(τ),y(τ))

))P1 \ {0, 1,∞} Xn(x,y)7→x
oo

factors through an isomorphism H/Φ(n) ' Xn, where the Fermat group Φ(n) is de-
fined as the kernel of the composition Γ(2) → Γ(2)ab → Γ(2)ab/n. Explicitly, Φ(n) is
generated by the n-th powers of the matrices A = ( 1 2

0 1 ) and B = ( 1 0
2 1 ) and by the

commutator [∆,∆] of the subgroup ∆ = 〈A,B〉 of Γ(2) that they generate. It is a
classical result of Klein and Fricke (2017, page 534) that Φ(n) is a congruence subgroup
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if and only if n ∈ {1, 2, 4, 8}. This property is reflected by the fact that the modu-
lar functions x(τ) and y(τ) have unbounded denominators unless n takes one of those
values, or yet by the fact that the coefficients of the power series

n
√

1− x =
∞∑
m=0

16m
(
−1
n

)
m

m!
( x

16
)m
∈ Q

q x
16

y

have bounded denominators if and only if n ∈ {1, 2, 4, 8}, in which case they are all
integers. Indeed, writing the m-th coefficient as

am = (−16)m (n− 1)(2n− 1) · · · [(m− 1)n+ 1]
nmm! ,

we see that, for each odd prime number p dividing n, the p-adic valuation vp(am) is
smaller than −vp(m!), which tends to −∞ as m→ +∞. If 2 divides n, then v2(am) is
equal to 4m−mv2(n)− v2(m!), so that again it tends to −∞ as soon as v2(n) ≥ 4 but
is non-negative for n ∈ {2, 4, 8} since v2(m!) = ∑∞

k=1bm/2kc ≤ m. Finally, vp(am) ≥ 0
for all primes p not dividing n, as can be seen by choosing r ≥ vp(m!) and replacing
the 1s in the numerator of am with 1 = un+ vpr for some integers u, v.

1. ALGEBRAICITY THEOREMS

A key ingredient in the proof by Calegari, Dimitrov, and Tang of the unbounded
denominators conjecture is a generalisation of an algebraicity theorem for power series
with integer coefficients due to André (2004) which the authors call the arithmetic
holonomicity theorem (theorem 1.6). Before stating it and giving a sketch of one of its
many proofs, we briefly overview the history of this kind of results and glimpse at their
applications by Harbater (1988), Ihara (1994), Bost (1999), and others to the study of
fundamental groups of arithmetic surfaces.

1.1. A few rationality theorems

A toy example of the statements that will be considered is the remark that, if the
radius of convergence R of a power series f ∈ ZJxK is strictly larger than 1, then f is
a polynomial. Indeed, write f(x) = ∑∞

n=0 anx
n and choose 1 < η < R and C ≥ 0 such

that |f(x)| ≤ C on the disc of radius η. Using the Cauchy residue formula

an = 1
2πi

∫
|x|=η

f(x)
xn+1dx,

we find the estimate |an| ≤ C/ηn for all n ≥ 0. Since η > 1, the right-hand side
has limit 0 as n tends to infinity, and this implies an = 0 for large enough n because
a non-zero integer has absolute value at least 1. All subsequent proofs of rationality
or algebraicity theorems will follow, in a more or less sophisticated manner, this path
of creating a tension between two estimates coming from an integral representation
(Cauchy-like bound) and from the arithmetic nature of the coefficients (Liouville-like
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bound). A first generalisation of this toy example is a celebrated theorem by Émile
Borel (1894), in which f is only assumed to be meromorphic on the disc D(0, R).

Theorem 1.1 (Borel, 1894). — If a power series f ∈ ZJxK can be written as a quotient
of convergent power series with complex coefficients on a disc of radius R > 1, then f
represents a rational function.

The proof relies on a characterisation of rational functions in terms of the vanishing
of a Hankel determinant det(an+i+j)0≤i,j≤N for all large enough n.

So far, we have only taken archimedean information into account. Working at all
places allows one to relax the integrality assumption on the coefficients while still getting
rationality. For this, we consider the p-adic absolute value | · |p, normalised as |p|p = 1/p
so that the product formula holds.

Theorem 1.2 (Dwork, 1960). — A power series f = ∑∞
n=0 anx

n ∈ QJxK represents a
rational function if and only if
(a) there exists a finite set S of prime numbers such that an lies in Z[1/S] for all n;
(b) there exist real numbers R∞ and (Rp)p prime satisfying R∞

∏
pRp > 1 such that f is

a quotient of convergent power series with complex coefficients on the closed disc
of radius R∞ and a quotient of convergent power series with Cp-coefficients on the
p-adic closed disc of radius Rp.

This theorem generalises Borel’s, since all p-adic radii Rp can be taken equal to 1
when the coefficients an are integers. Also known as the Borel–Dwork criterion, it was
first proved in (Dwork, 1960, Theorem 3), where it was famously exploited to establish
the rationality of the zeta function of an algebraic variety over a finite field. A further
generalisation by Pólya and Bertrandias allows one to consider domains of meromorphy
more general than the disc, with the radius replaced by the transfinite diameter.

Note that both condition (a) and the strict inequality in condition (b) are necessary,
as witnessed by the following examples borrowed from Harbater (1988, page 856):

– the series ∑∞n=0
2n
qn
xn, where qn is the smallest prime number bigger than 2n, is not

a rational function, despite the equality R∞
∏
pRp = 2;

– the series with integer coefficients ∑∞n=0 x
n! is not a rational function (here R∞

and all Rp are equal to 1).
Harbater observed that for algebraic power series f ∈ QJxK, condition (b) readily implies
rationality thanks to Einsenstein’s theorem on the growth of denominators. Under this
assumption, he could then weaken the inequality.

Theorem 1.3 (Harbater, 1988). — Let f ∈ QJxK be an algebraic power series. If
conditions (a) and (b) with R∞

∏
pRp ≥ 1 in Dwork’s theorem hold, then f is rational.

This statement is proved in (Harbater, 1988, Proposition 2.1). In the next section
we will present an application to the study of fundamental groups which was one of the
catalysers of the proof of the unbounded denominators conjecture.
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1.2. An application to fundamental groups

Let us show how Harbater’s rationality theorem 1.3 can be used to prove that
the arithmetic surface P1

Z \ {0, 1,∞} is simply connected, that is, that there are no
non-trivial finite covers of the projective line over Z only ramified at 0, 1,∞. In other
words, there are no Belyi maps with integer coefficients. This result was first obtained
by T. Saito as an application of Abhyankar’s lemma; see Ihara (1994, Appendix). In his
original paper, Harbater (1988, Example 3.1) only dealt with covers étale over 0, but
then Ihara noticed that one can reduce to this case by taking a pullback by z 7→ zN .
This trick will reappear in the proof of the unbounded denominators conjecture.

Theorem 1.4. — The étale fundamental group of P1
Z \ {0, 1,∞} is trivial.

Proof. — Let X → P1
Z \ {0, 1,∞} be a finite étale cover and let N be the ramification

index over 0. The pullback by the map z 7→ zN from P1
Z \ {0, µN ,∞} to P1

Z \ {0, 1,∞}
then extends to a finite étale cover Y → S = P1

Z \{µN ,∞}. Let f be a regular function
on Y . Since Spec(Z) is simply connected, the section 0 of S lifts to a section 0 of Y
around which f can be developed into a power series with integer coefficients and radius
of convergence 1 since there are no branch points over the open unit disc. Since such a
power series is rational by theorem 1.3, all functions on Y come from the base S.

This theme was further developed by Bost (1999) to obtain arithmetic analogues of
the Lefschetz theorem on the fundamental group of a hyperplane section on a smooth
projective variety. Under a positivity assumption, he proves that the étale fundamental
group of an arithmetic surface over the ring of integers OK of a number field K is
isomorphic to that of OK . In the same vein, Bost and Charles (2022, Corollary 9.3.8)
have recently proved that the arithmetic modular curves Y(N) over Z have finite étale
fundamental group. We do not seem to know a single example where it is non-trivial.

1.3. The arithmetic holonomicity theorem

We now turn to algebraicity, as opposed to rationality, theorems. The following is
a particular case of André (2004, Théorème 5.4.3), which more generally allows one to
consider power series with rational coefficients by imposing conditions at all places.

Theorem 1.5 (André, 2004). — Let f ∈ ZJxK. Assume that there exists a holo-
morphic function ϕ : D(0, 1) → C satisfying ϕ(0) = 0 and |ϕ′(0)| > 1 and such that
f(ϕ(z)) ∈ CJzK is holomorphic on |z| < 1. Then f is an algebraic function.

For the map ϕ(z) = Rz, the condition is that f is holomorphic on a disc of radius
strictly larger than 1, and in that case f is even a polynomial by Borel’s theorem. André
and Bost (2001) apply this theorem to establish new cases of Grothendieck’s p-adic
curvature conjecture; see also the account by Chambert-Loir (2002) in this seminar.
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It is worth noting that in the limit case |ϕ′(0)| = 1, the function f might be tran-
scendental. An example is provided by Gauss’s hypergeometric function

f(x) = 2F1

(
1
2

1
2

1
| 16x

)
=
∞∑
n=0

(
2n
n

)2

xn ∈ ZJxK,

which is transcendenta despite the fact that the uniformisation ϕ(z) = λ(z)/16
brings it by a classical Jacobi formula into the holomorphic function on the unit disc
f(q) = (∑n∈Z q

n2)2, which is a modular form of weight 1 for Γ(2). Another limit case,
in which algebraicity is known from the beginning(4) , is the map

(3) ϕ(z) = N

√
λ(zN)/16,

which turns the modular function f(τ) ∈ ZJq1/NK into a holomorphic function on the
unit disc. In that case, we are interested in bounding the algebraicity degree of f in
terms of each function ϕ satisfying the assumptions of theorem 1.5, in order to get a
bound as sharp as possible by making a better choice than (3).

Theorem 1.6 (Calegari–Dimitrov–Tang, 2021). — Consider the following data:
– a non-constant rational function p(x) ∈ Q(x) without pole at x = 0;
– a formal power series x(t) ∈ t+ t2QJtK such that p(x(t)) has integer coefficients;
– a holomorphic function ϕ : D(0, 1) → C satisfying ϕ(0) = 0 and |ϕ′(0)| > 1 and
such that p(ϕ(z)) is holomorphic on D(0, 1).

Let H(x(t),Z) be the Q(p(x))-vector space consisting of formal power series f ∈ QJxK
such that f(x(t)) has integer coefficients and f(ϕ(z)) is holomorphic on D(0, 1). Then

(4) dimQ(p(x))H(x(t),Z) ≤ e

∫
|z|=1 log+ |p ◦ ϕ|µHaar

log |ϕ′(0)| .

Some remarks are in order before we move into the proof.
– If f belongs toH(x(t),Z), then so do all its powers fn. The finite-dimensionality of
the spaceH(x(t),Z) then implies that f is algebraic. Taking p(x) = x and x(t) = t,
one hence recovers André’s theorem 1.5, with an extra bound on the degree of f .

– The reason for the name “arithmetic holonomicity theorem” is that Calegari,
Dimitrov, and Tang (2021, Corollary 2.0.5) apply it to functions which are so-
lutions of a non-zero linear operator in Q(x)[d/dx] with trivial local monodromy
around each point in the image of ϕ; by Cauchy’s analyticity theorem on the solu-
tions of ordinary differential equations with analytic coefficients, this is a way to
guarantee that the function f(ϕ(z)) is holomorphic.

– A bound involving sup|z|=1 log |p ◦ ϕ| instead of the integrated term is easier to
obtain, but will not be enough to make the leveraging argument in the proof of
the unbounded denominators conjecture work (see section 3).

(4)As explained in Calegari, Dimitrov, and Tang (2021, Theorem 7.2.1), the difference between these
two examples is that the hypergeometric function is a solution of a differential equation with infinite
local monodromy around x = 0.
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1.4. Proof of theorem 1.6

There are at least five different proofs of this theorem. Calegari, Dimitrov, and
Tang present three in their paper, all of them relying on diophantine approximation
techniques in a high number of variables that goes to infinity at the end of the argument.
A more conceptual one-variable proof is given by Bost and Charles (2022, section 8.3.2)
as an application of their theory of formal-analytic arithmetic surfaces; it can be thought
as an arithmetic counterpart of a result by Nori bounding the degree of a dominant
morphism between surfaces by a quotient of self-intersections of divisors. Inspired by
this approach, Calegari, Dimitrov, and Tang later found a fifth proof using Bost’s slope
method. The proof I sketch below relies on André’s remark that considering the lowest
monomial for the lexicographic order instead of the highest one simplifies the first proof
given by the authors by avoiding the use of Bilu’s equidistribution theorem.

Sketch of proof. — Let x = (x1, . . . , xd). We use the standard multi-index notation

xj = xj11 · · ·x
jd
d and p(x) = (p(x1), . . . , p(xd)).

Let f1, . . . , fm be Q(p(x))-linearly independent elements of H(x(t),Z). Our goal is to
show that the number m is bounded by the right-hand side of (4).

Step 1 (Construction of an auxiliary function). Let d, α ≥ 1 be integers and κ ∈ (0, 1).
A standard application of Siegel’s lemma(5) yields a non-zero auxiliary power series

F (x) =
∑

i∈{1,...,m}d
k∈{0,...,D−1}d

ai,k p(x)k
d∏
s=1

fis(xs) ∈ QJxK

such that F vanishes to order ≥ α at x = 0, all ai,k are integers bounded in absolute
value by exp(κCα + o(α)) for some C ∈ R that only depends on p(x) and ϕ, and

(5) D ≤ 1
(d!)1/d

1
m

(
1 + 1

κ

) 1
dα + o(α).

In both estimates, the meaning of the asymptotic notation is that o(α)/α has limit 0
as α→∞ while d and κ are fixed. The idea is to express the vanishing condition as a
system of

(
α+d
d

)
∼ αd/d! linear equations in the (mD)d variables ai,k. These equations

have a priori rational coefficients, but the integrality conditions on p(x(t)) and fi(x(t))
imply that there exists an integer M such that fi(x) lies in ZJx/MK. Moreover, there
exists some radius ρ > 0 such that ϕ induces an analytic isomorphic from the connected
component of ϕ−1(D(0, ρ) containing 0 to D(0, ρ), and then all fi(x) converge on that
disc. The constant C is defined by eC = M/ρ. The choice (5) guarantees that there
are more equations that variables, so that Siegel’s lemma yields a non-zero solution. If
the function F were identically zero, then the fi would be Q(p(x))-linearly dependent.

(5)Recall that Siegel’s lemma is the following statement. Let L > M and let A = (aij) be a non-zero
M × L matrix with integer coefficients such that |aij | ≤ B. Then the equation Ax has a non-zero
integral solution with max |xi| ≤ b(NB)M/(N−M)c, see (Bombieri and Gubler, 2006, Lemma 2.9.1).
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Step 2 (Cauchy-like bound). Let G(z) ∈ CJzK be a non-zero holomorphic function on
the polydisc |z| ≤ 1, and let czn be the smallest monomial for the lexicographic order.
Then the following inequality holds:

log |c| ≤
∫
T d

log |G|µHaar,

where T d = {z ∈ Cd | |zi| = 1}. For d = 1, this follows from Jensen’s formula

log |c| =
∫
T

log |G|µHaar +
∑

wi∈D(0,1)\{0}
G(wi)=0

log |wi|,

since the second term in the right-hand side is negative. One then performs a recurrence
on d, by writing z = (z1, z′), n = (n1,n′) and G(z) = zn1

1 H(z). The assumption
that czn is the smallest monomial for the lexicographic order implies that H ∈ CJzK is
holomorphic and the smallest monomial for the lexicographic order of H(0, z′) is cz′n

′
;

see (Calegari, Dimitrov, and Tang, 2021, Lemma 2.4.1) for details.
Let us apply the lemma to G(z) = F (ϕ(z1), . . . , ϕ(zd)), which is a holomorphic

function on D(0, 1) because p(ϕ(z)) and fi(ϕ(z)) are by assumption. We get

log |c| ≤
∫
T d

log |F (ϕ(z1), . . . , ϕ(zd))|µHaar

≤ dD
∫
T

log+ |p ◦ ϕ|µHaar + κCα + o(α).

The second inequality follows from integrating over T d the pointwise bound

|F (ϕ(z1), . . . , ϕ(zn))| ≤ D
d∑
i=1

log+ |p(ϕ(zi))|+ κCα + o(α),

which follows from the properties of the auxiliary function constructed in Step 1, on
noting that the sum consists of (mD)d = exp(o(α)) terms.

Step 3 (Liouville-like bound). From the integrality properties of p(x(t)) and fi(x(t)),
it follows that F (x(t1), . . . , x(td)) is a non-zero power series in t = (t1, . . . , td) with
integer coefficients. Let β be the exact order of vanishing of F (x) at x = 0. From the
assumptions x(t) ∈ t+ t2QJtK and ϕ(z) = ϕ′(0)z+ z2CJzK, we see that the coefficient c
of the lowest monomial for the lexicographic order of G(z) is the product of ϕ′(0)β and
the corresponding coefficient of F (x(t)). Being a non-zero element of ϕ′(0)βZ, it satifies

log |c| ≥ β log |ϕ′(0)| ≥ α log |ϕ′(0)|.

Step 4 (End of proof). Putting the bounds from Step 2 and Step 3 together we get

log |ϕ′(0)| ≤ dD

α

∫
T

log+ |p ◦ ϕ|µHaar + κC + o(α)
α

.

As α→∞, the term o(α)/α has limit 0 and the term dD/α is bounded above by
d

(d!)1/d
1
m

(
1 + 1

κ

) 1
d ,
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which has limit e/m by Stirling’s formula as d → ∞ and κ → 0. Finally, since the
number C is independent of d and κ, the extra term κC also disappears in the limit.

2. STRATEGY OF PROOF

In this section, we explain how the arithmetic holonomicity theorem 1.6 can be used
to give a bound on the dimension of the space of modular functions with bounded
denominators and cusp widths dividing 2N over the space of modular forms for the
congruence subgroup Γ(2N). The rough idea is to use Ihara’s trick to get rid of the
branch point of f at 0, and then apply the theorem to a big disc in the universal cover
of C \ 161/NµN . After the computations of sections 4 and 5, the resulting upper bound
will be sharp enough to make the leveraging argument of section 3 work.

2.1. Level of non-congruence subgroups

Let Γ ⊂ SL2(Z) be a subgroup of finite index. Since SL2(Z) acts transitively
on P1(Q), the stabiliser of ∞ consists of all matrices ± ( 1 m

0 1 ) with m ∈ Z, and Γ
has finite index, each point ζ ∈ P1(Q) is fixed by a non-trivial element of Γ, which is of
the form ±M ( 1 m

0 1 )M−1 for some m ∈ Z and some M ∈ SL2(Z) satisfying M∞ = ζ.
The smallest integer m ≥ 1 with this property is called the width of the cusp(6).

Definition 2.1 (Wohlfahrt). — The level of Γ is the lowest common multiple of the
widths at all cusps. We denote it by L(Γ).

We will only consider the level of subgroups containing E = {±1}, where I = ( 1 0
0 1 ).

According to Wohlfahrt (1964, Theorem 2), this definition generalises the usual notion
of level of a congruence subgroup, in the sense that Γ = 〈E,Γ(N)〉 satisfies L(Γ) = N

and is, moreover, the smallest congruence subgroup containing E with this property.

2.2. Modular forms with bounded denominators

For each even integer N ≥ 2, we consider the Q(λ)-vector spaces

M2 ⊂MN ⊂ RN ⊂ QJq1/NK[1/q]

defined as follows:
– MN is the field of rational functions on the modular curve Y (N) = h/Γ(N). In
particular, M2 = Q(λ).

– RN is generated by holomorphic modular functions for a finite subgroup index
of SL2(Z), with rational coefficients with bounded denominators at infinity and
widths dividing N at all cusps ζ ∈ P1(Q).

(6)The width of a cusp only depends on its Γ-orbit. Geometrically, each orbit defines a ramification
point above ∞ of the quotient map H/Γ→ H/SL2(Z) and its width is equal to the ramification index.
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The inclusion MN ⊂ RN comes from the argument using Hecke operators sketched
in the introduction; with this notation, the unbounded denominators conjecture is the
statement that this inclusion is an equality MN = RN . For N ≥ 4, we know the exact
value(7) of the dimension of MN over M2, namely:

(6) [MN : M2] = 1
2[Γ(2) : Γ(N)] = N3

12
∏
p|N

(
1− 1

p2

)
.

That RN is finite-dimensional over M2 follows from a crude application of theorem 1.6,
as we will explain in the next section. Since the level of the intersection of two finite
index subgroups containing E of level dividing N still divides N by Calegari, Dimitrov,
and Tang (2021, Lemma 4.1.3), the space RN is actually a ring, and hence a field
since QJq1/NK[1/q] is an integral domain. Its degrees over MN and M2 are easily com-
parable. For example, bounding the finite product in (6) by the infinite Euler product
of 1/ζ(2), we get the inequality

(7) [RN : MN ] ≤ 12ζ(2)
N3 [RN : M2].

2.3. Bounding the degree [RN : M2]

Considering the coordinate t = q1/N , we will apply the arithmetic holonomicity
theoorem 1.6 to the polynomial p(x) = xN and the power series

x(t) = (λ(τ)/16)1/N = t− 8
N
tN+1 + · · · ∈ t+ t2QJtK,

which satisfies p(x(t)) ∈ ZJtK by the first equality in (2). For the same reason, f(x(t))
is a power series with integral coefficients for every f ∈ ZJq1/NK.

Let FN : D(0, 1)→ C \ µN be a universal covering map satisfying FN(0) = 0, an set

ϕr : D(0, 1) −→ C \ 16−1/NµN , ϕr(z) = 16−1/NFN(rz)

for some r < 1. We claim that the space RN has a Q-basis consisting of modular
forms f ∈ ZJq1/NK such that f(ϕ(z)) is holomorphic on the closed unit disc D(0, 1).

Indeed, if f is invariant under a subgroup Γ ⊂ Γ(2) of finite index, then f descends
to a regular function on the curve Y = Y (Γ). Consider the diagram

Y

��

� � // Y ′

��

Xoo

��

Y (2) � � // C \ {1/16} U = C \ 16−1/NµN ,
z 7→zN
oo

where Y ′ denotes the curve Y with all the cusps above 0 ∈ Y (2) filled in, under the
usual identification of Y (2) with C \ {0, 1/16} via λ/16, and X is the fibre product.
As in Ihara’s trick, the condition that all cusps of Y have width dividing N implies

(7)The factor 1/2 comes from the fact that −I belongs to Γ(2) but not to Γ(N).
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that X → U is a covering map (i.e. not ramified over 0 ∈ U). Therefore, the universal
covering map ϕr : D(0, 1)→ U factors as

D(0, 1) −→ X −→ U,

hence a holomorphic map D(0, 1)→ Y ′. Up to multiplying f by a high enough power
of λ, we can assume that f is holomorphic at all cusps of Y ′ above 0. Then f is
holomorphic on Y ′ and f(ϕr(z)) is nothing but the composition with D(0, 1)→ Y ′.

The holomorphic function N

√
λ(zN)/16: D(0, 1)→ C\U factors through the universal

covering map D(0, 1)→ U and has derivative equal to 1 at z = 0; since the derivative
at 0 of a holomorphic function D(0, 1)→ D(0, 1) that maps 0 to 0 and is not a rotation
has modulus < 1 by the Schwarz lemma, this implies |ϕ′r(0)| > 1. The assumptions of
theorem 1.6 are thus in force, hence the bound

(8) [RN : M2] ≤ e

∫
|z|=1 log+ |ϕNr |µHaar

log |ϕ′r(0)| ,

which already shows that RN is finite-dimensional.

Proposition 2.2. — Let FN : D(0, 1)→ C\µN be an analytic universal covering map
with FN(0) = 0. Assume that the following properties hold:
(a) There exists a real number A > 0 such that

|F ′N(0)| � 161/N
(
1 + A

N3

)
as N goes to infinity.

(b) For each B > 0, ∫
|z|=1− B

N3

log+ |FN |µHaar �B
log(N)
N

Then there exists a real number C such that [RN : M2] ≤ CN3 log(N).

This follows from (8) by choosing r = 1− AN−3/2 and B = A/2.

3. THE LEVERAGING STEP

Before proving that there actually exists a universal covering map satisfying the
assumptions of proposition 2.2, we explain how to derive the equality RN = MN from
the existence of a bound of the shape CN3 log(N).

Theorem 3.1 (Calegari–Dimitrov–Tang). — Assume that there exists an integer
N ≥ 1 for which the inequality [RN : MN ] > 1 holds. Then the inequality

[RNp : MNp] ≥ 2[RN : MN ]

holds for all prime numbers p which do not divide N .
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Corollary 3.2. — Assume that there exists a real number C such that the inequality

[RN : M2] ≤ CN3 log(N)

holds for all even integers N . Then RN = MN .

Proof. — By contradiction, let us assume that RN is strictly larger than MN . By
applying repeatedly theorem 3.1, we get the estimate

[RN
∏
p∈S p

: MN
∏
p∈S p

] ≥ 2|S|[RN : MN ],

where S denotes the set of prime numbers smaller than some fixedX and not dividingN .
On the other hand, the general bound (7) along with the assumption on [RN : MN ] give

[RN
∏
p∈S p

: MN
∏
p∈S p

] ≤ 12Cζ(2) log(N) + 12Cζ(2)
∑
p∈S

log(p).

By the prime number theorem, for large enough X, there exists ε > 0 such that S has
cardinal between (1 − ε)X/ log(X) and (1 + ε)X/ log(X). Since 2(1−ε)X/ log(X) grows
faster than 12Cζ(2)(1+ε)X, the lower and the upper bound contradict each other.

3.1. Sketch of proof of theorem 3.1
Let p be a prime number not dividing N and RNMNp the compositum of the fields

RN and MNp. Using the multiplicativity of degrees in the tower of field extensions

MN ⊂MNp ⊂ RNMNp ⊂ RNp

and the fact that the intersection of RN and MNp is equal to MN , one finds

[RNp : MNp] = [RNp : RNMNp][RN : MN ].

It is hence enough to prove that, if RN is strictly larger than MN , then RNp is not
generated by RN and MNp. By contradiction, assume that it is.

Choose a form f(τ) ∈ ZJq1/NK in the complement RN \MN . The finite-dimensionality
of RN overMN and the properties of the level imply that such a form is invariant under
a normal subgroup G ⊂ 〈E,Γ(N)〉 of level N . Indeed, every element in a Q(λ)-basis
of RN is invariant under a finite index subgroup containing E whose level divides N , and
one defines G as the largest normal subgroup of SL2(Z) contained in the intersection of
all those. We use the notation Γ0(p) and Γ0(p) for the subgroups of SL2(Z) consisting
of matrices ( a bc d ) such that c ≡ 0 and b ≡ 0 mod p, respectively. The matrix A =

(
p 0
0 1

)
conjugates them, in that the equality AΓ0(p)A−1 = Γ0(p) holds. Consider the form

f(τ/p) ∈ ZJq1/NpK,

which is invariant under the subgroup AGA−1 ∩ SL2(Z). Elementary manipulations,
as performed in (Calegari, Dimitrov, and Tang, 2021, Lemma 4.1.7) show that the
level L(AGA−1 ∩ SL2(Z)) divides Np, and hence that f(τ/p) belongs to RNp. By our
assumption that RNp is generated by RN and MNp, the form f(τ/p) is also invariant
under G ∩ Γ(Np). In view of the general result that AHA−1 ∩ SL2(Z) and H ∩ Γ(Np)
generate a group containing H ∩ Γ(N) ∩ Γ0(p) for any subgroup H of finite index and
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level N (see Lemma 4.3.2 of loc. cit.), it follows that f(τ/p) is invariant under G∩Γ0(p).
The original form f(τ) is hence invariant under A−1(G ∩ Γ0(p))A = Γ0(p), in addition
to being invariant under G ∩ Γ0(p) ⊂ G. In view of the following theorem, this then
contradicts the assumption that f does not lie in MN .

Theorem 3.3. — The subgroup generated by G ∩ Γ0(p) and A−1GA ∩ Γ0(p) contains
a congruence subgroup. More precisely,

(9) 〈G ∩ Γ0(p), A−1GA ∩ Γ0(p)〉 = 〈E,Γ(N)〉 ∩ Γ0(p).

Following Serre’s argument in the letter reproduced in Thompson (1989), and its
adaptation from SL2(Z) to Γ(N) by Berger (1994), the key idea is to introduce the
finite group S = 〈E,Γ(N)〉/G, along with the quotient map π : 〈E,Γ(N)〉 → S, and to
prove that the homomorphism

r = (π1, π2) : 〈E,Γ(N)〉 ∩ Γ0(p)→ S × S, π1(x) = π(x), π2(x) = π(AxA−1)

is surjective. Thanks to the equalities ker(π1) = G∩Γ0(p) and ker(π2) = A−1GA∩Γ0(p),
this suffices to conclude. Indeed, using the surjectivity of the map, the image of each
element x ∈ 〈E,Γ(N)〉 ∩ Γ0(p) can be written as

r(x) = (π1(x), 0) + (0, π2(x)) = r(y) + r(z)

for some y ∈ ker(π2) and z ∈ ker(π1), and hence lies in the group 〈ker(π2), ker(π2)〉.
The proof of the surjectivity relies on two properties of the group SL2(Z[1/p]): Ihara’s

theorem that realises it as an amalgam, as explained in Serre (1980, page 80), and the
theorem by Mennicke (1967) that all its subgroups of finite index are congruence. This
is how we use them. By Goursat’s lemma on the subgroups of a product, if r is not
surjective, then there exist a non-trivial group T and surjective morphisms hi : S → T

satisfying h1 ◦ π1 = h2 ◦ π2. By construction, the maps

g1 : 〈E,Γ(N)〉 −→ T, g2 : A−1〈E,Γ(N)〉A −→ T

given by g1(x) = h1(π(x)) and g2(A−1xA) = h2(π(x)) agree on the intersection

〈E,Γ(N)〉 ∩ A−1〈E,Γ(N)〉A = 〈E,Γ(N)〉 ∩ Γ0(p),

and hence induce a surjective map on the amalgam

〈E,Γ(N)〉 ∗〈E,Γ(N)〉∩Γ0(p) A
−1〈E,Γ(N)〉A −→ T.

Inside SL2(Z[1/p]) = SL2(Z) ∗Γ0(p) SL2(Z), the source of this map is isomorphic to the
congruence subgroup consisting of matrices congruent to I or −I modulo N . Since T
is finite, the kernel of this map is a subgroup of finite index of SL2(Z[1/p]), and hence
contains a congruence subgroup. The same holds for its restricting to 〈E,Γ(N)〉, and
this implies that the kernel of the non-zero map g1 is a congruence subgroup of SL2(Z)
containing G but strictly smaller than 〈E,Γ(N)〉. This contradicts the fact that G has
level N , since 〈E,Γ(N)〉 is the smallest congruence subgroup with this property.
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4. THE UNIFORMIZATION RADIUS OF C \ µN

Let us assume N ≥ 2. Then C \ µN is a projective line punctured at least 3 times,
and it is hence uniformised by the upper half-plane h. All analytic universal covering
maps realising C \ µN as the quotient of h by a Fuchsian subgroup of PSL2(R) are
conjugate to each other, so that there is a unique uniformisation map

F̃N : H −→ C \ µN

once one enforces the normalisations F̃N(i) = 0 and F̃N(i∞) = 1.

Definition 4.1. — We let FN : D(0, 1)→ C \ µN denote the composition of F̃N with
the standard conformal isomorphism D(0, 1)→ H that maps 0 to i. That is,

FN(x) = F̃N
(
i
1 + x

1− x
)
.

This maps hence satisfies FN(0) = 0 and FN(1) = 1.

Our goal is to compute |F ′N(0)|, which is called the uniformisation radius of C \ µN .
The result was first obtained by Kraus and Roth (2016, Remark 5.1). We will rather
follow the self-contained approach by Calegari, Dimitrov, and Tang (2021).

Theorem 4.2 (Kraus–Roth, 2016). — The uniformization radius of C\µN is equal to

(10) |F ′N(0)| = 161/N Γ
(
1 + 1

2N

)2
Γ
(
1− 1

N

)
Γ
(
1− 1

2N

)2
Γ
(
1 + 1

N

) ,
and hence admits an asymptotic expansion as N →∞ of the form

|F ′N(0)| = 161/N
(
1 + ζ(3)

2N3 +O(N−5)
)
.

Therefore, the map FN satisfies condition (a) from section 2.3. From the equality (10),
the asymptotic expansion follows readily by using the classical identity

Γ(1 + s) = exp
(
− γs+

∞∑
k=2

(−1)k ζ(k)
k

sk
)

|s| < 1.

4.1. Sketch of proof of theorem 4.2

The strategy to find the uniformisation radius follows Poincaré’s original approach
to the uniformisation theorem, as beautifully described in the collective book by
Saint-Gervais, 2010. Namely, we will express the local analytic inverse map ψN of FN
with ψN(0) = 0 as the quotient of two linearly independent solutions of an explicit
second order linear differential equation. For a general punctured projective line, these
solutions are not expected to be expressible in terms of classical special functions, but
the symmetries of roots of unity will bring hypergeometric functions into the picture.
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Recall that the schwarzian derivative of a holomorphic function f of the variable z
is defined at a point z = z0 with f ′(z0) 6= 0 by the formula

{f, z0} =
(f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2
 (z0).

As a function of z, it satisfies the chain rule

{g ◦ f, z} = {g, f(z)}f ′(z)2 + {f, z}.

From this and a straightforward computation showing that {T, z} vanishes for all
Möbius transformations T , it follows that f and T ◦f have the same schwarzian deriva-
tive. Up to Möbius transformations, the second order differential equation

d2y

dz
+ 1

2{f, z}y = 0

admits η1 = f(f ′)−1/2 and η2 = (f ′)−1/2 as two linearly independent solutions, so that
one recovers the original function f as their quotient.

Since FN and F̃N are related by a Möbius transformation, we can work with the
latter. Let Z = F̃N(τ) and Z0 ∈ C \ µN . For each preimage τ0 of Z0 in H, we may
view τ as an analytic function of Z in a small neighbourhood of Z0 satisfying τ(Z0) = τ

and τ ′(Z0) 6= 0. Since the functions resulting from different choices of a preimage differ
by a Möbius transformation, the value of the schwarzian {τ, Z0} is well-defined. It turns
out to be easier to work with the reciprocal function 1/F̃N : H→ P1(C)\{0, µN}, whose
schwarzian is related to the previous one by the identity {τ, Z} = Z4{τ, 1/Z}.

Set p0 = 0 and pk = ξkN for k = 1, . . . , N , where ξN = exp(2πi/N) is the standard
primitive Nth root of unity. By Hempel (1988, Theorem 3.1), the schwarzian of an
analytic local inverse of a universal covering of C \ {p0, . . . , pN} takes the form

{τ, 1/F̃N} = 1
2

N∑
k=0

1
(z − pk)2 +

N∑
k=0

mk

z − pk
for certain complex numbers mk, the so-called accessory parameters mk, satisfying

(11)
N∑
k=0

pk = 0,
N∑
k=0

(2mkpk + 1) = 0,
N∑
k=0

(mkp
2
k + pk) = 0.

(These constraints express the vanishing to order 4 of the schwarzian at infinity.) More-
over, writing the non-zero accessory parameters in the form mk = 1/(qk−pk), a Möbius
transformation T with Tpk = Pk and Tqk = Qk turns them into Mk = 1/(Qk − Pk) in
the corresponding expression for the schwarzian {τ, Tz} by Lemma 3.2 of loc. cit.

In the case at hand, the fact that C\{0, µN} is stable under the Möbius transforma-
tion Tz = ξz implies the equalities m0 = 0 and m = kζ−kN for some constant c, which is
then seen to be equal to c = −1/2− 1/N using the second constraint in (11). Putting
everything together, one then finds the equality

{τ, F̃N} = (N2 − 1)zN−2 + z2N−2

2(zN − 1)2 ,
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and hence that the analytic local inverse map of FN is a quotient ψN = η1/η2 of two
linearly independent solutions η1 and η2 of the differential equation

(12) 4(zN − 1)2d
2y

dz2 + [(N2 − 1)zN−2 + z2N−2]y = 0.

In fact, the unique solutions η1 and η2 satisfying the initial conditions

η1(0) = 0, η′1(0) = 1, η2(0) = 1, η′2(0) = 0

are linearly independent and, since η1(z)/η2(z) = z+O(z2), yield |F ′N(0)| = 1/|ψ′N(0)|.
To compute this quantity, it will be more convenient to work with the closely related

function GN : D(0, 1)→ C \ {1} given by

GN(x) = FN(x1/N)N ,

which is well defined since FN satisfies FN(ξx) = ξFN(x) for each Nth root of unity ξ by
Calegari, Dimitrov, and Tang (2021, Lemma 5.1.2), and satisfies |G′N(0)| = |F ′N(0)|N .
The functions φi(z) = ηi(z1/N) are then solutions to the differential equation

z(z − 1)2d
2y

dz2 +
(
1− 1

N

)
(z − 1)2dy

dz
+
(1

4 + z − 1
4N2

)
y = 0,

which is essentially of hypergeometric type. They are explicit given by

φ1 =
√

1− z · z1/N · 2F1

(
N+1
2N

N+1
2N

1+ 1
N

| z
)
, φ2 =

√
1− z · 2F1

(
N−1
2N

N−1
2N

1− 1
N

| z
)
,

which results into the expression

(13) ψN(z) = |F ′N(0)|−1z
2F1

(
N+1
2N

N+1
2N

1+ 1
N

| zN
)

2F1

(
N−1
2N

N−1
2N

1− 1
N

| zN
) .

Besides, FN being a covering map of C \ µN , its local inverse is naturally defined on
the whole unit disc D(0, 1) and has limz→1− ψN(z) = 1 as z ∈ D(0, 1) approaches 1 by
our particular normalisation FN(1) = 1. Using the asymptotic formula

(14) lim
z→1−

2F1
(
a a
2a | z

)
log(1− z) = Γ(2a)

Γ(a)2

then gives the final expression for the uniformisation radius of C \ µN .

5. MEAN GROWTH ESTIMATE OF FN
N

Let us assume N ≥ 2. Recall the universal covering map FN : D(0, 1)→ C\µN from
Definition 4.1. In order to complete the strategy to prove the unbounded denominators
conjecture laid out in section 2, it remains to find a good uniform bound for the mean
growth of the function FN

N . This is accomplished by the following theorem:
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Theorem 5.1 (Calegari–Dimitrov–Tang). — The estimate for the mean growth∫
|z|=r

log+ |FN
N |µHaar � log

( N

1− r
)

holds uniformly in N ≥ 2 and r ∈ (0, 1).

This is an improvement, possible thanks to the exceptional symmetry of roots of
unity, of a theorem by Tsuji (1952), which for fixed N gives a general asymptotic∫

|z|=r
log+ |F |µHaar = 1

N − 1 log
( 1

1− r
)

+Op1,...,pN (1)

as r → 1− for any universal covering map F : D(0, 1)→ C\{p1, . . . , pN} with F (0) = 0.

5.1. Tools from Nevanlinna theory

Very roughly speaking, Nevanlinna theory aims at measuring “how many” values
close to a given point a ∈ P1(C) a meromorphic function f : D(0, R)→ P1(C) takes. It
gives, for example, a quantitative refinement of the little Picard theorem. For a = ∞,
this is done through the following three quantities, defined for each 0 ≤ r ≤ R:

– the mean proximity function

m(r, f) =
∫
|z|=r

log+ |f |µHaar ∈ [0,∞);

– the counting function

N(r, f) =
∑

0<|ρ|<r
ord−ρ (f) log r

|ρ|
+ ord−0 (f) log r,

where ord−z (f), a non-negative integer, stands for the order of the pole z of f ;
– the characteristic function

T (r, f) = m(r, f) +N(r, f),

which is the best behaved among these three quantities.
Let c(f, a) denote the first non-zero coefficient in the Laurent series power expansion

of f around a. From the Poisson–Jensen formula we get

(15) T (r, f)− T (r, 1/f) = log |c(f, 0)|

and from the triangle inequality

(16) |T (r, f)− T (r, f − a)| ≤ log+ |a|+ log 2

for all a ∈ C, which can then be combined into the inequality∣∣∣T (r, f)− T (r, 1/(f − a))
∣∣∣ ≤ log+ |a|+ log 2 + log |c(f, a)|,

in which the right-hand side is independent of the radius r. Therefore, the “number
of times” that f takes the value ∞ or any other value a ∈ C are equivalent for big
enough r. This is usually referred to as the first main theorem in Nevanlinna theory.
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The second main theorem is the statement that, for distinct points a1, . . . , an ∈ C,
the sum of the mean proximity functions at ai is bounded by

n∑
i=1

m
(
r,

1
f − ai

)
≤ 2T (r, f) + small error term.

We will only need the first step in the proof of this theorem, which is the following
so-called lemma on the logarithmic derivative:

Proposition 5.2. — Let f : D(0, R)→ C be a nowhere vanishing holomorphic func-
tion satisfying f(0) = 1. For all 0 < r < R, the following holds

m
(
r,
f ′

f

)
< log+

(
m(R, f)

r

R

R− r

)
+ log(2) + 1

e
.

5.2. Sketch of proof of theorem 5.1
Since the characteristic function of a holomorphic function f : D(0, 1)→ C coincides

with its mean proximity, we can reformulate the theorem as the estimate

T (r, FN
N )� log

( N

1− r
)
.

On noting that the function FN
N − 1 does not vanish on D(0, 1), one easily derives

(17) T (r, FN
N )− log 4 ≤ T

(
r,

FN
N

FN
N − 1

)
≤ T (r, FN

N ) + log 4

from the relations (15) and (16). Therefore, it is equivalent to prove the estimate

T
(
r,

FN
N

FN
N − 1

)
� log

( N

1− r
)
.

One advantage of working with this function is that, up to a factor, it is the quotient
of the logarithmic derivatives of FN and f = 1− FN

N , namely

(18) FN
N

FN
N − 1 = 1

N

FN
F ′N

f ′

f
,

so that we will be able to exploit the bounds from proposition 5.2 (note that F ′N is
nowhere vanishing since FN is an étale analytic map). By elementary manipulations,
performed in Corollaries 6.2.6 and 6.2.8 of loc. cit., we get

m
(
r,
f ′

f

)
� sup
|z|=(1+r)/2

log+ log |FN |+ log+
( N

1− r
)
,

m
(
r,
FN
F ′N

)
� T (r, FN) +O

(
sup

|z|=(1+r)/2
log+ log |FN |+ log+

( N

1− r
))
.

From the identity (18), along with (17) and T (r, FN
N ) = NT (r, F )), we then get

T (r, FN
N )� log+

( N

1− r
)

+ sup
|z|=(1+r)/2

log+ log |FN |.

It remains to bound log |FN | over circles, and to conclude the proof the following suffices:
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Lemma 5.3. — For r ∈ (0, 1) and large enough N , the estimate

sup
|z|=r

log |FN | �
N

1− r
holds, with absolute implicit constants.

A better bound is due to Kraus and Roth (2016, Theorems 1.2 and 1.10). Calegari,
Dimitrov, and Tang (2021) prove the lemma by exploiting the action of the Fuchsian
group of C \ µN to reinterpret the statement in terms of the asymptotic behaviour
of F̃N near the cusp at infinity, which can then be studied by means of the explicit
formula (13) for the local inverse and a refinement of the formula (14).
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