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FINITE TIME BLOW UP FOR THE COMPRESSIBLE FLUIDS AND
FOR THE ENERGY SUPERCRITICAL DEFOCUSING NONLINEAR

SCHRÖDINGER EQUATION
[after Frank Merle, Pierre Raphaël, Igor Rodnianski and Jérémie Szeftel]

by Galina Perelman

INTRODUCTION

The problem of finite time breakdown of solutions starting from smooth initial data
is one of the central problems in the theory of nonlinear evolution PDEs. In this talk
we will address this problem in the context of the following two models: the isentropic
compressible Navier–Stokes equation and its inviscid Euler limit on the one hand and
the defocusing nonlinear Schrödinger equation on the other hand. The aim of the talk
is to report on breakthrough progress recently made in a series of works of F. Merle,
P. Raphaël, I. Rodnianski and J. Szeftel who showed that both models in a suitable range
of parameters, admit a finite time blow up regime governed by appropriate self-similar
solutions of the underlying Euler equation. We start by briefly overviewing the history
of the blow up problem for each of these models and explaining the connection between
them.

The motion of isentropic compressible viscous fluids in Rd is governed by the com-
pressible Navier–Stokes equations:

(1)


∂tρ+ div(ρv) = 0
ρ∂tv + ρv · ∇v +∇P (ρ) = µ∆v + µ′∇ div v
(ρ, v)|t=0 = (ρ0, v0),

where v : R+ × Rd → Rd is the velocity field, ρ : R+ × Rd → R+ is the density of the
fluid, µ, µ′ are viscosity coefficients satisfying µ ≥ 0, µ′ ≥

(
1− 2

d

)
µ and P = P (ρ) is

the pressure that we will assume to be given by:

(2) P (ρ) = γ − 1
γ

ργ, γ > 1.

In the inviscid limit µ = µ′ = 0 one obtains the compressible Euler equations:

(3)


∂tρ+ div(ρv) = 0
ρ∂tv + ρv · ∇v +∇P (ρ) = 0
(ρ, v)|t=0 = (ρ0, v0).
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We will be interested in solutions (ρ, v) that decay to zero at spatial infinity(1) keeping
the density strictly positive:
(4) lim

|x|→∞
(ρ(t, x), v(t, x)) = 0, ρ(t, x) > 0,

and will focus mainly on the 3d case.
Solutions to (1) satisfy formally the mass and momentum conservation law∫

Rd
ρ(t)dx =

∫
Rd
ρ0dx,

∫
Rd
ρ(t)v(t)dx =

∫
Rd
ρ0v0dx,

and the energy identity∫
Rd

(
1
2ρ(t)|v(t)|2 + 1

γ
ργ(t)

)
dx+

∫ t

0
(µ‖∇v(s)‖2

L2(Rd) + µ′‖ div v(s)‖2
L2(Rd))ds

=
∫
Rd

(
1
2ρ0|v0|2 + 1

γ
ργ0

)
dx.

Note also that the Navier–Stokes equation (1) is preserved by the scaling

(5) (ρ(t, x), v(t, x)) 7→ (λ
2(r−1)
γ−1 ρ(λrt, λx), λr−1v(λrt, λx)), λ > 0,

with r = 2γ
γ+1 . The Euler equation (3) is invariant with respect to transformations (5)

for any r.
Smooth, suitably decaying initial data (ρ0, u0) with strictly positive density are known

to give rise to unique local in time strong solutions to (1), (3) (see Section 1 for the
precise statements and references), that however do not always exist for all times, the
conservation laws being far too weak to prevent the formation of singularities. Finite
time breakdown of strong solutions to (1) starting from initial data with non-vanishing
density, non-vanishing momentum and with suitable decay at infinity was shown by
Rozanova (2008) in the case of d ≥ 3, γ ≥ 2d

d+2 , see also Xin (1998) where the
case of non-barotropic compressible Navier–Stokes equations with compactly supported
initial data was considered. For the 3d Euler equation (3) the corresponding results
go back to the work of Sideris (1985) who exhibited an open set of smooth initial
data corresponding to compactly supported perturbations of constant states, including
arbitrary small disturbances, that lead to classical solutions with a finite lifespan.
However the proofs of Rozanova (2008), Sideris (1985), and Xin (1998), being based
on convexity type arguments give no information on the nature of the singularity that
develops.

For the compressible Euler equations, the typical singularity (at least for “small”
initial data) is a shock(2). In dimension one, the fact that initially smooth solutions can
form shock singularities even when the initial data are small and compactly supported

(1)For the Euler equation the behavior at infinity is less important because of the domain of dependence
principle.
(2)Shock singularity means that the velocity and density remain bounded while some of their first order
derivatives blow up.
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perturbations of a constant state is known since the works of Riemann. We refer to the
monographs Dafermos (2010) and Majda (1984) for the details and references of the
1d theory which by now is quite complete at least as soon as the small data regime is
concerned. An important advance in understanding of multidimensional shock formation
was achieved by Alinhac (1999, 2001), who considered a general class of quasilinear
wave equations in dimensions two and three, including the irrotational compressible
Euler equations, and showed that the failure of the Klainerman null condition in the
equation leads for non-degenerate small compactly supported initial data to finite time
shock formation caused by the crossing of characteristics (see also the precursor work
of John, 1985). While giving a detailed description of the solutions up to the first
singular time, the results of Alinhac (1999, 2001) leave open a more general question
of the maximal smooth development of the initial data. For the 3d relativistic Euler
equations, the latter was studied in the seminal work of Christodoulou (2007), see
also Christodoulou and Miao (2014) for the non-relativistic case. The results of
Christodoulou (2007) and Christodoulou and Miao (2014) cover the case of
small compactly supported initial perturbations of constant state solutions, showing
shock formation in irrotational space-time regions and giving a precise description of the
corresponding portion of the boundary of the maximal classical development of the data.
We also refer to the works of Buckmaster, Drivas, Shkoller, and Vicol (2021),
Buckmaster, Shkoller, and Vicol (2019a,b, 2020), Christodoulou (2019), and
Luk and Speck (2018, 2021) for further developments in the study of shock formation
for the compressible Euler equations, including the results going beyond the irrotational
and isentropic regimes.

Shocks are not the only possible singularities for (3). Stronger singularities with both
the density and the velocity blowing up, may occur as well. It has been known since
the works of Guderley (1942) and Sedov (1959) that (3) has a family of spherically
symmetric self-similar solutions

(6) ρ(t, x) = 1

(T − t)
2(r−1)
r(γ−1)

R
(

x

(T − t) 1
r

)
, v(t, x) = 1

(T − t)1− 1
r
V
(

x

(T − t) 1
r

)
.

Although typically these solutions are either non global or non-smooth (that is the
profiles R and V are non-smooth), Merle, Raphaël, Rodnianski, and Szeftel
(2019b) proved that in a suitable range of parameter γ, and for a suitable sequence
of blow up rates r, (3) admits global, decaying at infinity, C∞ self-similar solutions.
Furthermore, Merle, Raphaël, Rodnianski, and Szeftel (2019c) showed that these
C∞ self-similar solutions can be used as a leading order approximation to generate
finite energy(3) blow up solutions for both the Euler equation (3) and the Navier–Stokes
equation (1). For the Navier–Stokes equation this gives the first result with a complete
description of singularity formation. The C∞ smoothness of the self-similar profiles

(3)Although decaying at infinity, these self-similar solutions have infinite energy, see Section 3.
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plays a crucial role in the analysis of Merle, Raphaël, Rodnianski, and Szeftel
(2019c).

What is even more remarkable is that the above self-similar eulerian solutions can
be also used to produce finite time blow up solutions for the defocusing nonlinear
Schrödinger equation (NLS):

(7)

 iut = −∆u+ |u|2pu, x ∈ Rd, p > 0.
u|t=0 = u0 ∈ Hs(Rd).

The term “defocusing” refers to the sign “+” before the nonlinearity.
The NLS equation (7) is invariant with respect to the scaling:

(8) u(t, x) 7→ λ
1
pu(λ2t, λx), λ > 0.

which preserves the homogeneous Sobolev norm ‖u0‖Ḣsp (Rd) with sc = d
2 −

1
p
.

Local well-posedness of (7) is classical and goes back to the works of Ginibre and
Velo (1979). The Cauchy problem (7) is known to be locally well-posed in Hs for(4)

s ≥ max{0, sc} (see e.g. Cazenave (2003) and Cazenave and Weissler (1990) and
references therein). For s ≥ max{1, sc}, the solutions satisfy on their lifespan the mass
and energy conservation laws:

M(u(t)) ≡
∫
Rd
|u(t, x)|2dx = M(u0),

E(u(t)) ≡
∫
Rd

(
|∇u(t, x)|2 + 1

p+ 1 |u(t, x)|2p+2
)
dx = E(u0).

In the case s > sc the lifespan of the solutions admits a lower bound depending only
on the Hs norm of initial data(5), which in a standard way, implies that the solution
of (7) is either global or its Hs norm becomes unbounded in finite time. By the mass
and energy conservation, this ensures global well-posedness in Hs, s ≥ 1, in the energy
subcritical case sc < 1. Global well-posedness is known to persist in the energy critical
case sc = 1 (p = 2

d−2 , d ≥ 3). This was proved (after considerable efforts) by Bourgain
(1999), Grillakis (2000), Tao (2005) for spherically symmetric initial data, and by
Colliander, Keel, Staffilani, Takaoka, and Tao (2008), Ryckman and Visan
(2007), and Visan (2007) for general data. We also refer to the seminal paper of Kenig
and Merle (2006) where the powerful technology of concentration compactness/rigidity
method was introduced.

The question whether finite time blow up occurs in the energy supercritical case
sc > 1 ( p > 2

d−2 , d ≥ 3) remained completely open for long time. On the one hand,
numerical simulations as well as the global well-posedness results for the log-supercritical

(4)In the case when p is not an integer one has also to assume that s is compatible with the smoothness
of the nonlinear term.
(5)In fact, one has a slightly stronger result including the persistence of regularity: if u0 ∈ Hs′ with
s′ > s, then the solution stays in Hs′ as long as it exists in Hs.
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equations (see e.g. Tao, 2007), the nonexistence of soliton like solutions and the expected
nonexistence of the self-similar blow up supported the hypothesis of global well-posedness.
On the other hand, Tao (2018) exhibited examples of energy supercritical defocusing
NLS systems for which finite time blow up does happen.

A decisive breakthrough has been achieved by Merle, Raphaël, Rodnianski, and
Szeftel (2019a) who considered the energy supercritical NLS

(9) iut = −∆u+ |u|2pu, x ∈ Rd, p >
2

d− 2
in dimensions 5 ≤ d ≤ 9 and showed that there exist, for certain choices of p, C∞ well
localized initial data leading to solutions blowing up in finite type. The construction of
Merle, Raphaël, Rodnianski, and Szeftel (2019a) relies on the hydrodynamic
formulation of the NLS equation (9) arising via the Madelung transform u = ρeiϕ that
allows to view (9), at least in some regimes, as a perturbation of the compressible Euler
equation (3) and to use the C∞ self-similar solutions of the latter to produce finite time
blow up solutions to (9).

The remainder of the text is organized as follows. In Section 1 we recall the basic local
well-posedness results for the Navier–Stokes and Euler equations (1), (3). In Section 2 we
introduce the changes of variables that allow to treat both the Navier–Stokes equation (1)
and the NLS equation (9) as a perturbation of the Euler equation (3). In Section 3
we introduce the C∞ self-similar solutions to (3) discovered in Merle, Raphaël,
Rodnianski, and Szeftel (2019b) and describe their main properties. In Section 4 we
formulate the main blow up results of Merle, Raphaël, Rodnianski, and Szeftel
(2019a,c). The proofs of these results are outlined in Section 5.

Throughout this text we will use the letters c, C to denote universal positive constants
which may vary from line to line. If we need the implied constant to depend on
parameters, we shall indicate this by subscripts. We also use the notation A . B to
denote a bound of the form A ≤ CB.

Acknowledgment. — I would like to thank Raphaël Danchin for helpful discussions on
the subject of this talk and Jérémie Szeftel for the time he took to answer my numerous
questions.

1. LOCAL EXISTENCE RESULTS FOR THE COMPRESSIBLE
NAVIER–STOKES AND EULER EQUATIONS

Local existence and uniqueness of strong solutions to the Navier–Stokes equation (1)
for sufficiently regular initial data with densities bounded away from zero are known since
the works of Itaya (1976), Nash (1962), and Serrin (1959), see also Danchin (2001).
The case of general non negative densities in dimension 3 was treated by Cho, Choe,
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and Kim (2004) and Choe and Kim (2003) who in particular, proved the following
theorem.

Theorem 1.1 (Cho, Choe, and Kim, 2004; Choe and Kim, 2003)
Let d = 3, µ > 0, and assume that ρ0 ∈ H1 ∩W 1,6, v0 ∈ Ḣ1 ∩ Ḣ2 such that

ρ
−1/2
0 (∇P (ρ0)− µ∆v0 − µ′∇ div v0) ∈ L2.

Then there exists a unique maximal strong solution (ρ, v) ∈ C([0, T )), H1 ∩W 1,6) ×
C([0, T )), Ḣ1 ∩ Ḣ2) to (1) and either T = +∞ or

lim sup
t→T

(‖ρ(t)‖H1∩W 1,6 + ‖∇v(t)‖L2) =∞.

We also refer to Feireisl (2004) and Lions (1998) for the theory of weak global
solutions that exist under finite energy assumptions in the range γ > d/2.

For the Euler equation (3) one has the following classical result:

Theorem 1.2 (Chemin, 1990; Makino, Ukai, and Kawashima, 1987)
Assume that ρ

γ−1
2

0 , v0 ∈ Hs for some s > d
2 +1. Then there exists a unique maximal

strong solution (ρ γ−1
2 , v) ∈ C([0, T ), Hs ×Hs) to (3) and either T = +∞ or∫ T

0
(‖∇(ρ

γ−1
2 )(s)‖L∞(Rd) + ‖∇v(s)‖L∞(Rd))ds =∞.

2. REDUCTION TO THE SELF-SIMILAR EULER EQUATION

In this section we reformulate the equations (1), (9) in the eulerian self-similar
coordinates.

2.1. Self-similar change of coordinates in (1)
We are interested in spherically symmetric solutions with non vanishing density.

Setting

(10) ρ(t, x) = 2−
1
p%2( t2 , x), v(t, x) = ∇ϕ( t2 , x), ∂tϕ(t, 0) = −%p(t, 0), p = γ − 1,

we obtain

(11)

 ∂t%+ 2∇ϕ · ∇%+ %∆ϕ = 0
∂tϕ+ |∇ϕ|2 + %2p = F(%, ϕ),

where
F(%, ϕ) = 21+ 1

p (µ+ µ′)
∫ r

0

∂r′∆ϕ(r′)
%2(r′) dr′.

We next transform (11) to similarity coordinates setting

(12) %(t, x) = λ
r−1
p (τ)R(τ, y), ϕ(t, x) = λr−2(τ)Φ(τ, y),
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with

(13) y = λ(τ)x, λ(τ) = eτ ,
d τ

d t
= erτ .

This leads to the following system

(14)

 ∂τR + ( r−1
p

+ Λ)R + 2∇Φ · ∇R +R∆Φ = 0
∂τΦ + (r− 2 + Λ)Φ + |∇Φ|2 +R2p = b2

ns(τ)F(R,Φ),

where
Λ = y · ∇, bns(τ) = e−εnsτ , εns = 1

2 ((l + 1)r− 2− l) , l = 2
p
.

The parameter εns mesures compatibility between the Navier–Stokes and Euler dynamics:
for εns > 0 the viscosity term in (14) decays as τ → +∞, which means that the Euler
dynamics dominates as one approaches the singularity.

2.2. Hydrodynamic formulation of the NLS equation

We now show that the NLS equation (9) can be also transformed to the form (14).
For non vanishing solutions, setting

(15) u(t, x) = eiϕ(t,x)%(t, x), % > 0,

one can rewrites (9) as the system

(16)

 ∂t%+ 2∇ϕ · ∇%+ %∆ϕ = 0
∂tϕ+ |∇ϕ|2 + %2p = ∆%

%
,

that can be viewed as the Euler equation

(17)

 ∂t%+ 2∇ϕ · ∇%+ ∆% = 0
∂tϕ+ |∇ϕ|2 + %2p = 0

perturbed by the term ∆%
%

corresponding to the so-called quantum pressure. This
hydrodynamic formulation was known since the work of Madelung (1927) and was
extensively exploited for studying both the NLS equations and the compressible fluids, see
e.g. Alazard and Carles (2009), Audiard and Haspot (2018), Carles, Danchin,
and Saut (2012), Chiron and Rousset (2009), and Grenier (1998).

Passing in (16) to the self-similar coordinates (12), (13) one obtains

(18)

 ∂τR + ( r−1
p

+ Λ)R + 2∇Φ · ∇R +R∆Φ = 0
∂τΦ + (r− 2 + Λ)Φ + |∇Φ|2 +R2p = b2

s(τ)∆R
R
,

where

(19) bs(τ) = e−εsτ , εs = r− 2.
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Thus in the regime r > 2, τ → +∞, (18) can be viewed as a perturbation of the Euler
equation

(20)

 ∂τR + ( r−1
p

+ Λ)R + 2∇Φ · ∇R +R∆Φ = 0
∂τΦ + (r− 2 + Λ)Φ + |∇Φ|2 +R2p = 0.

3. SELF-SIMILAR EULER PROFILES

Self-similar solutions to the Euler equation (3) written in the self-similar variables (10),
(12), (13) are stationary solutions of the system (20):

(21)

 ( r−1
p

+ Λ)R + 2∇Φ · ∇R +R∆Φ = 0
(r− 2 + Λ)Φ + |∇Φ|2 +R2p = 0.

Without loss of generality one can assume that

(22) R(0) = 1.

In the radial setting (21) can be mapped into an autonomous system of ODE via
the Emden transform (see Guderley, 1942; Merle, Raphaël, Rodnianski, and
Szeftel, 2019b; Sedov, 1959):

(23) σ(s) =
√

2p
r
Rp(r), w(s) = −2

r
Φ′(r), s = ln r, r = |y|.

In terms of σ,w (21) takes the form

(24)

 (w − 1)w′ + lσσ′ + w2 − rw + lσ2 = 0
σ
l
w′ + (w − 1)σ′ + σ

l

[
(d+ l)w − rl

]
= 0,

which gives
w′ = −∆1

∆0
, σ′ = −∆2

∆0
,

with
∆0 = (w − 1)2 − σ2,

∆1 = w(w − 1)(w − r)− d(w − we)σ2, we = l(r− 1)
d

,

∆2 = σ

l

[
(l + d− 1)w2 − (l + d+ lr− r)w + lr− lσ2

]
.

(25)

The phase portrait of (24) on the plane (σ,w) depends strongly on the parameters r, l, d.
An important role is played by the points where

(26) ∆0 = ∆1 = ∆2 = 0.

Relevant to us will be the range

(27) d ≥ 2, l > 0, 1 < r < r∗(d, l) = 1 + d− 1
(
√
l + 1)2

.
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In this case the system (26), in addition to the point P1 = (0, 1), has two distinct
solutions P2 = (σ2, w2) and P3 = (σ3, w3) with w2 < w3, belonging to the line σ+w = 1.

Another two important points are P0 = (0, 0) and P4 = (σ4, w4) with σ4 = r
√
d

d+l ,
w4 = lr

d+l , both being solutions of

∆1 = ∆2 = 0.

The positions of P4 with respect to the sonic line σ + w = 1 is given by

σ4 + w4 < 1 iff r < r∗(d, l) = d+ l√
d+ l

.

Observe that
r∗(d, l) ≤ r∗(d, l),

with the equality if and only if l = d, the latter case corresponds to a degenerate triple
point configuration P2 = P3 = P4 and will be excluded from the analysis below.

We set

r∗∗(d, l) =

 r∗(d, l) if l < d

r∗(d, l) if l > d,

and limit ourselves to the case

(28) 1 < r < r∗(d, l) for 0 < l < d,

r∗(d, l) < r < r∗(d, l) for l > d.

Note that

(a) (compatibility between the eulerian regime and the Navier–Stokes equation):

(29) r∗∗(3, l) > l + 2
l + 1 (i.e. εns

∣∣∣
d=3,r=r∗∗

> 0) ⇔ l >
√

3.

(b) (compatibility between the eulerian regime and the NLS equation):

(30) r∗∗(d, l) > 2 (i.e. εs
∣∣∣
r=r∗∗

> 0) ⇔ l < d− 2
√
d.

Thus εs > 0 requires d ≥ 5, and p > 2
d−2
√
d
> 2

d−2 .

One can check easily the following properties.

(i) Near the origin the system (21), (22) has a unique spherically symmetric C∞
solution that in terms of σ,w corresponds to the unique (up to the translations)
solution of (24) verifying

σ(s)→ +∞, w(s)→ we = l(r− 1)
d

, as s→ −∞.

This solution reaches the point P2 in finite time s2 = ln r2.
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(ii) There exists a one parameter family of solutions that are attracted to P0 as s→ +∞
and arrive at P2 at time s2. These solutions correspond to spherically symmetric
solutions to (21) that are C∞ on the interval (r2,+∞) and have the following
asymptotic behavior as r → +∞ :

R(r) ∼ 1
r

r−1
p

, Φ(r) ∼ 1
rr−2 .

(iii) Gluing the solution of (i) to any solution of (ii) gives a global spherically symmetric
solution to (21), (22) which is C∞ away from r = r2 and at r = r2 generically,
has a finite regularity CK determined by the eigenvalues λ∓ of the corresponding
Jacobian matrix at P2, that under the assumption (28) satisfy λ− < λ+ < 0 (see
Merle, Raphaël, Rodnianski, and Szeftel (2019b) for the details).

It turns out that this limited regularity is not enough for the analysis developed in Merle,
Raphaël, Rodnianski, and Szeftel (2019a,c). Merle, Raphaël, Rodnianski,
and Szeftel (2019b) performed a careful study of the flow near the point P2 in the
regime

0 < r∗∗(d, l)− r� 1,
that corresponds to 0 < −λ+ � 1, −λ− ∼ 1 and managed to exhibit a large set of
parameters (d, l) for which there exists a sequence rn → r∗∗(d, l) such that the C∞
spherically symmetric solution to (21), (22) coming from the origin extends in a C∞
way to the interval [r2,∞). Below we summarize the results of Merle, Raphaël,
Rodnianski, and Szeftel (2019b) that will be needed to treat the Navier–Stokes and
nonlinear Schrödinger equations.

Theorem 3.1 (Existence and properties of C∞ solutions to (21), Merle, Raphaël,
Rodnianski, and Szeftel, 2019b)

There exists a set P ⊂ [2,+∞[×(R∗+ \ {d}) such that the following holds. For any
(d, l) ∈ P there exists a sequence 1 < rn < r∗∗(d, l) with lim

n→∞
rn = r∗∗(d, l) such that (21),

(22) with r = rn admit a global C∞ spherically symmetric solution (RP (y),ΦP (y)),
RP > 0, with the following asymptotics as |y| → ∞,

(31) RP (y) = cR

|y|
r−1
p

(1 +O( 1
|y|r

)), ΦP (y) = cΦ

|y|r−2 (1 +O( 1
|y|r

)), cR > 0,

that can be differentiated any number of times.
Furthermore, there exists c = c(d, l, r) > 0 such that
1. (global repulsivity)

(32) 1− w − w′ ≥ c

(1− w − w′)2 − (σ + σ′)2 ≥ c
∀ s ∈ R.

2. (improved repulsivity inside the light cone)

(33) − w′ − (1− w)σ′
σ

≥ c, ∀s ≥ s2 (i.e. |y| ≤ r2).

The set P contains in particular,
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– the pairs (3, l) for all l >
√

3, l 6= 3, except a (possibly empty) sequence (lk)k∈N
whose accumulation points can be only at {3,+∞};

– the pairs(6) (5, 1
2), (6, 1), (8, 2), (9, 2).

Remarks. —
1. Returning to the Euler equation (3) one obtains the existence of a family of spherically
symmetric self-similar solutions of the form (6) that are C∞ smooth away from the
concentration point (T, 0) and have the following asymptotics as |x|

(T−t)
1
r
→∞,

(34) ρ(t, x) ∼ c2
R

2
1
p |x|

2(r−1)
γ−1

, v(t, x) ∼ (2− r)cΦ
x

|x|r
.

Because of this slow decay at infinity these solutions do not have finite energy.

2. As we will see in Subsection 5.2, the properties (32), (33) ensure the coercivity of the
corresponding linearized operator which is fondamental for the analysis below.

4. MAIN RESULTS

We are now in position to state the blow up results for the Navier–Stokes equation (1)
and the NLS equation (9) proved in Merle, Raphaël, Rodnianski, and Szeftel
(2019a,c).

Theorem 4.1 (Implosion for the 3d compressible Navier–Stokes equation, Merle,
Raphaël, Rodnianski, and Szeftel, 2019c)

Let d = 3, µ+ µ′ ≥ 0, and l = 2
γ−1 . Assume that l >

√
3, l 6= 3 and l avoids the

exceptional sequence (lk)k∈N of Theorem 3.1. Then for any n sufficiently large there
exists a finite co-dimensional manifold of smooth spherically symmetric initial data
(ρ0, v0) ∈ H∞(R3,R∗+ × R3) such that the corresponding solution (ρ, v) to (1) blows up
in finite time 0 < T < +∞ at x = 0, and as t→ T , one has

ρ(t, ·) = µl(rn−1)
n (t)

(
R2
P (µn(t)·) + oL∞(1)

)
, v(t, ·) = µrn−1

n (t)
(
∇ΦP (µn(t)·) + oL∞(1)

)
,

where

µn(t) =
(

2
rn(T − t)

) 1
rn

,

(6)The proof of the existence part of Theorem 3.1 requires the non degeneracy of some explicite series
S∞(d, l), that for the pairs (5, 1

2 ), (6, 1), (8, 2), (9, 2) was checked numerically, see Merle, Raphaël,
Rodnianski, and Szeftel (2019b). There is nothing specific in this choice of parameters. They are
merely convenient examples with p(l) ∈ N for which the conditions S∞(d, l) 6= 0 and (32), (33) meet the
requirement l < d− 2

√
d (i. e. εs

∣∣
r=r∗(d,l)

> 0, see (30)) that will be used in the case of the nonlinear
Schrödinger equation.
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and rn, RP ,ΦP are given by Theorem 3.1. In particular,

‖v(t)‖L∞ = cv(1 + o(1))
(T − t)

rn−1
rn

, ‖ρ(t)‖L∞ = cρ(1 + o(1))
(T − t)

l(rn−1)
rn

, as t→ T,

for some positive constants cv, cρ.

In the case of the nonlinear Schrödinger equation one has:

Theorem 4.2 (Finite time blow up for the energy supercritical defocusing NLS, Merle,
Raphaël, Rodnianski, and Szeftel, 2019a)

Let l = 2
p
and assume that

(d, l) ∈ {(5, 1
2), (6, 1), (8, 2), (9, 2)}.

Then for any n sufficiently large there exists a finite co-dimensional manifold of smooth
spherically symmetric initial data u0 ∈ H∞(Rd) such that the corresponding solution u
to (9) blows up in finite time 0 < T < +∞ at x = 0 with

‖u(t)‖L∞ = cu(1 + o(1))
(T − t)

rn−1
prn

,

where rn are as in Theorem 3.1. Furthermore, the following properties hold:
(i) u does not vanish and setting u(t, x) = eiϕ(t,x)%(t, x), % > 0, one has

%(t) = λ
rn−1
p

n (t)
(
RP (λn(t)·) + oL∞(1)

)
, ϕ(t) = λrn−2

n (t)
(
ΦP (λn(t)·) + oL∞(1)

)
,

as t→ T , with λn(t) = 1
(rn(T−t))

1
r n
;

(ii) there exists 1 < sn < sc such that

lim
t→T
‖u(t)‖Hsn = +∞.

Remarks. —
1. The results of Theorem 4.1 hold also for the Euler equation (3) in the range
d = 3, 0 < l <

√
3 and d = 2, l > 0, see Merle, Raphaël, Rodnianski, and

Szeftel (2019c).
2. The proof of Theorems 4.1, 4.2 gives a much more precise description of the constructed
solutions. In particular, it shows that as t → T , ρ(t, x), v(t, x), u(t, x) converge in a
suitable sense to some limiting profiles ρ̄, v̄, ū that belong to H∞(|x| ≥ R), ∀R > 0, and
have the following behavior as |x| → 0:

ρ̄(x) = ρ∗

|x|
2(rn−1)

p

(1 + o(1)), v̄(x) = v∗
x

|x|rn
(1 + o(1)), ū(x) = u∗

e
i ϕ∗

|x|rn−2

|x|
rn−1
p

(1 + o(1)),

for some constants v∗, ϕ∗ ∈ R, ρ∗ > 0, u∗ 6= 0.
3. The growth of the subcritical Sobolev norms in Theorem 4.2 (ii) seems to be a general
feature of the energy supercritical defocusing blow up, see the recent work of Bulut
(2020), in a contrast to the focusing energy supercritical blow up regime exhibited in
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Merle, Raphaël, and Rodnianski (2015) where all subcritical Sobolev norms remain
bounded.

5. OUTLINE OF THE PROOF OF THEOREMS 4.1 AND 4.2

In this section we present the main lines of the proofs of Theorems 4.1 and 4.2. We
first explain the general strategy which is the same in both cases and then give some
related details.

5.1. General strategy
One starts by rewriting the Navier–Stokes and nonlinear Schrödinger equations in

the self-similar variables ((10), (12), (13) for the Navier–Stokes equation and (15), (12),
(13) for the NLS) which leads to the system

(35)

 ∂τR + ( r−1
p

+ Λ)R + 2∇Φ · ∇R +R∆Φ = 0
∂τΦ + (r− 2 + Λ)Φ + |∇Φ|2 +R2p = b2(τ)F (R,Φ),

where
(36)

b(τ) = e−ετ with ε =


1
2((l + 1)r− l − 2) > 0 for the Navier–Stokes equation
r− 2 > 0 for the NLS equation

and

(37) F (R,Φ) =

F(R,Φ) for the Navier–Stokes equation
∆R
R

for the NLS equation.

In terms of the renormalized flow (35), Theorems 4.1, 4.2 amount to exhibiting a
finite co-dimensional manifold of smooth spherically symmetric well localized initial data
such that the corresponding solution to (35) is global in self-similar time τ ∈ [τ0,+∞),
close in a suitable topology to the stationary eulerian solution (RP ,ΦP ) and has a
non-vanishing density.

The first step of the proof consists in establishing a finite co-dimensional local eulerian
linear stability of profiles (RP ,ΦP ). This will be done by means of general semi-group
methods. The arguments rely heavily on the C∞ smoothness of the profiles (RP ,ΦP )
and on the repulsivity property (33), and produce a local exponential decay of the
eulerian linearized flow modulo a finite number of unstable directions, see Subsection 5.2.
These unstable directions are responsible for the fact that the results of Theorems 4.1,
4.2 hold for a finite co-dimensional manifold of initial data. The second (and final)
step of the analysis consists in proving global nonlinear stability. The proof is based
on a bootstrap argument involving carefully chosen weighted Sobolev norms that are
controlled by combining the local eulerian linear decay established on the previous step
with global energy type estimates for the full flow (35). In this part of the analysis
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there are some differences in the treatment of the Navier–Stokes equation and the NLS
equation, in particular in the choice of the norms. In Subsection 5.3 we will briefly
describe the main bootstrap assumptions used in the proof of Theorem 4.2 and will
indicate the arguments allowing one to improve them. We refer to Merle, Raphaël,
Rodnianski, and Szeftel (2019c) for the corresponding analysis for the Navier–Stokes
equation.

5.2. Linear analysis

In this subsection we consider the linearization of the Euler equation (20) around
(RP ,ΦP ) and introduce the functional framework allowing to deduce the local exponential
decay(7) of the linearized flow from the classical semi-group theory.

5.2.1. Linearized equations. — Linearizing the Euler equation (20) around the station-
ary profile (RP ,ΦP ) one gets the following system for q = R−RP , ψ = Φ− ΦP :

(38)

∂τq = −(`+ r−1
p

+ ∆ΦP )q − 2∇RP · ∇ψ −RP∆ψ
∂τψ = −(`+ r− 2)ψ − 2pR2p−1

P q

where

(39) ` = Λ + 2∇ΦP · ∇ = HΛ, H = 1 + 2
r

Φ′P = 1− w.

Some preliminary indications of the decay properties of the linearized flow (38) can
be already obtained from classical energy identities. Namely, denoting

(40) Ek(q, ψ) =
∫
Rd

(
2pR2p

P q
2
k +R2

P |∇ψk|2
)
dy, qk = ∆kq, ψk = ∆kψ,

and computing d
dτ
Ek, one gets

(41) d

dτ
Ek = −4kQk(q, ψ) + lot,

where the quadratic form Qk(q, ψ) can be written as the sum:

Qk(q, ψ) = Q(0)
k (q, ψ) +Q(1)

k (q, ψ)

with

Q(0)
k (q, ψ) =

∫
Rd
dy
[
(H + r∂rH)(2pR2p

P q
2
k +R2

P (∂rψk)2) + 4p2R2p
P ∂rRP qk∂rψk

]
,

and
|Q(1)

k (q, ψ)| . 1
k
Ek(q, ψ).

The repulsivity conditions (32) ensure that H + r∂rH = 1− w − w′ > c > 0 and

(H + r∂rH)2 − 2p3R2p−2
P (∂rRP )2 = (1− w − w′)2 − (σ + σ′)2 ≥ c,

(7)modulo a finite number of directions
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which implies
Q(0)
k (q, ψ) ≥ cEk.

Therefore one obtains

(42) d

dτ
Ek ≤ −2ckEk + lot, ∀ k ≥ k∗,

provided k∗ is large enough. However the need to take care of the lower order terms
complicates significantly the analysis.

5.2.2. Local decay slightly beyond the light cone. — The proof of local exponential
decay of the linear flow (38) modulo a finite number of unstable directions, will be
achieved by localizing (38) on a zone going slightly beyond the light cone |y| = r2, and
by showing that in some properly chosen weighted Sobolev spaces the corresponding
linear operator is a finite rank perturbation of a maximally dissipative operator. One can
then propagate this decay to any compact set by using the finite speed of propagation.
The latter will be done directly on the nonlinear level.

We start by rewriting (38) as a wave equation for φ = RPψ:

(43) (D2
τ − 2pQ∆)φ+ A0Dτφ+ A1φ = 0,

with

(44)
Dτ = ∂τ + `, Q = R2p

P ,

A0 = r− 2 + 2(p+ 1)H1, H1 = − lRP
RP
,

A1 = `H1 + (2p+ 1)H1(r − 2 +H1) + 2pR2p−1∆Rp.

Introducing the new variable
η = ∂τφ+ a`φ,

with a small parameter a:
0 < a� 1,

one can next transform (44) to the following system for (φ, η):

(45) ∂τX =MX, X =
(
φ

η

)
,

where
M =

(
−a` 1

Da∆− (1− a)A2`− A1 −(2− a)`− A0

)
,

Da = 2pQ− (1− a)2r2H2 = r2(σ2 − (1− a)2(w − 1)2),
A2 = A0 − (1− a)(d− 2)H + (1− a)ΛH.

The function D0(r) = Da(r)
∣∣∣
a=0

= −r2∆0 vanishes on the the light cone r = r2 and is
strictly positive inside of it. It is also easily to check that ∆′0(s2) > 0. By the implicit
function theorem one deduces that for all a small enough there exists a locally unique
r(a), depending smoothly on a, such that r(0) = r2 and

Da(r(a)) = 0, Da(r) > 0 on 0 ≤ r < r(a).
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Furthermore, since r′(0) = 2σ2
2

∂r∆0|r=r2
> 0, one has

r(a) > r2, ∀ 0 < a� 1.

We next commute the flow (45) with the derivatives. Denoting

φk = ∆kφ, ηk = ∆kη, Xk =
(
φk
ηk

)
,

one has

(46) ∂τXk =MkXk +
(
M̃1

kX

M̃2
kX

)
,

where

(47) Mk =
(
−a`− 2ka(H + ΛH) 1

Lk −(2− a)`− 2k(2− a)(H + ΛH)− A0

)
,

Lk = Da∆ + (2k
r
∂rDa − (1− a)HA2)Λ,

and where the M̃j
kX’s satisfy the following pointwise bounds(8)

(48) |∇M̃1
kX| .k

∑
|α|≤2k

|∇αφ|, |M̃2
kX| .k

∑
|α|≤2k

|∇αφ|+
∑

|α|≤2k−1
|∇αη|.

The operator Lk can be written as

Lk = 1
gkrd−1∂rDagkr

d−1∂r,

with gk given by

(49) gk(r) = e
∫ r

0 Gk(r′)dr′ , Gk = (2k − 1)∂rDa

Da

− (1− a)rHA2

Da

.

Clearly, gk ∈ C∞rad(|y| < ra) and gk > 0. Furthermore, for 0 ≤ a ≤ a∗ small enough,
there holds

Gk(r) = κ(k, a)
r − r(a)(1 +O(r − r(a))), textas r → r(a),

with
κ(k, a) = 2k − 1 + κ0 +O(a), κ0 = HA2|r=r2

∆′0(s2) , as a→ 0,

which shows that as r → r(a),

(50) gk(r) = ck,a(r(a)− r)κ(k,a)(1 +O(r − r(a))) with κ(k, a) > 0, ck,a > 0,

for all k ≥ k1 sufficiently large(9) and 0 ≤ a ≤ a∗ sufficiently small.

We are now in position to introduce the functional framework that turns the opera-
torM into a finite rank perturbation of a maximally dissipative operator. Let k ≥ k1

(8)We use ∇α with α = (α1, . . . , αd) ∈ Nd to denote the derivative ∂α1
y1
· · · ∂αd

yd
.

(9)As r→ r∗∗(d, l), κ0 = O( 1
|λ+| ) which means that one needs k1 & 1

|λ+| .
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large enough so that (50) holds. Fix a positive cut-off function χ ∈ C∞rad(Rd) equal to 1
in a neighborhood of y = 0 and supported strictly inside the light cone |y| < r2. Let

D0 = C∞rad(Ba,C2),

where Ba = {|y| ≤ r(a)}. We denote by H2k the completion of D0 for the scalar
product(10) 〈

X, X̃
〉

=
∫
dygk(y)

[
Da∇φk · ∇φ̃k + χφφ̃+ ηkη̃k + χηη̃

]
.

Consider the operatorM on H2k with domain

D(M) = {X ∈ H2k, MX ∈ H2k}.

The repulsivity condition (33) ensure the following dissipativity property which is at
the heart of the proof of Theorems 4.1 and 4.2.

Proposition 5.1 (Maximal dissipativity, Merle, Raphaël, Rodnianski, and Szef-
tel, 2019a)

There exists c∗ > 0, k∗ � 1, 0 < a∗ � 1 such that for all k ≥ k∗ and all 0 < a ≤ a∗

there exist N = N(a, k) directions (X)1≤i≤N ⊂ H2k such that the operator M admits
the representation

M = M̃+K,
where

K =
N∑
i=1
〈·, Xi〉Xi

and M̃ is dissipative with the bound:

Re
〈
M̃X,X

〉
≤ −c∗ka 〈X,X〉 , ∀ X ∈ D(M).

and maximal:
∀λ > 0, Im(M̃ − λ) = H2k.

We will briefly outline the arguments giving the dissipativity, referring to Merle,
Raphaël, Rodnianski, and Szeftel (2019a) for details and for the proof of the
maximality. Computing Re 〈MX,X〉 with X =

(
φ
η

)
, and taking into account (46), (47),

one gets

(51) Re 〈MX,X〉 ≤ (I) + (II) + (III),

where

(I) = −(2− a)
∫
dyA3gk|ηk|2,(52)

(II) = −a
∫
dyA4gkDa|∇φk|2,(53)

A3 = 2k(H + ΛH)− Λ(Hgk)
2gk

− d
2H + A0

2−a ,(54)

A4 = 2k(H + ΛH)− Λ(HDagk)
2Dagk

+ ΛH − (d2 − 1)H,(55)

(10)The function gk is extended by zero outside the ball Ba.
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and where the remainder (III) admits the bound:

(56) |(III)| ≤ ε 〈X,X〉+ Cε,k

 ∑
0≤|α|≤2k−1

∫
dygk|∇αη|2 +

∑
0≤|α|≤2k

∫
dygk|∇αφ|2

 ,
for any ε > 0.

It follows from the definition of the measure gk (see (49)) that

A3 = 2k
Da

{
(H + ΛH)D0 −

1
2HΛD0 +O(1

k
) +O(a)

}
,

A4 = 2k
Da

{
(H + ΛH)D0 −

1
2HΛD0 +O(1

k
) +O(a)

}
.

Computing the expression (H + ΛH)D0 − 1
2HΛD0 one finds

(H + ΛH)D0 −
1
2HΛD0 = −r2σ2

[
w′ + (1− w)σ

′

σ

]
,

which in virtue of (33) leads to the bound:

A3, A4 ≥
4kc

r(a)− r , ∀0 ≤ r < r(a),

for all a sufficiently small and all k sufficiently large. Returning to (51), one gets

Re
〈
M̃X,X

〉
≤ −2cak

[∫
dygkDa

|∇φk|2

r(a)− |y| +
∫
dygk

|ηk|2

r(a)− |y|

]

+Ck

 ∑
0≤|α|≤2k−1

∫
dygk|∇αη|2 +

∑
0≤|α|≤2k

∫
dygk|∇αφ|2

 .(57)

Standard compactness arguments combined with the Hardy inequalities ensure then the
existence of a finite number of directions (Yi)1≤i≤N(k,a), Yi ∈ H2k, such that

Re 〈MX,X〉 ≤ −cak 〈X,X〉+ Ck,a
N∑
i=1
|〈X, Yi〉|2

(see Merle, Raphaël, Rodnianski, and Szeftel, 2019a). Therefore, setting

K =
N∑
i=1
〈·, Xi〉Xi,

with Xi =
√
Ck,aYi, yields

Re 〈(M−K)X,X〉 ≤ −cak 〈X,X〉 .

As a classical consequence of Proposition 5.1 one obtains the following result, see
Engel and Nagel (2000) and Merle, Raphaël, Rodnianski, and Szeftel (2019a)
for a proof.

Proposition 5.2 (Finite co-dimensional exponential decay)
Let k ≥ k∗, 0 < a ≤ a∗ with k∗, a∗ given by Proposition 5.1. Let σ(M) denote the

spectrum ofM. Then the following holds.



1191–19

(i) The set Λ(M) = σ(M)∩{λ ∈ C,Reλ ≥ 0} is finite and each eigenvalue λ ∈ Λ(M)
has a finite multiplicity. Denoting P the spectral projection ofM corresponding to
the set Λ(M), one has

H2k = V ⊕ U,

with V = ImP , U = KerP preserved by the semi-group eτM.
(ii) (Exponential decay on U). There exist C, δ0 = δ0(k, a) > 0 such that

(58) ∀ X ∈ U, ‖eτMX‖H2k ≤ Ce−δ0τ‖X‖H2k , ∀ τ ≥ 0.

5.3. Bootstrap: the NLS case

In this subsection we briefly sketch the bootstrap schema leading to the proof of
Theorem 4.2. Recall that to prove Theorem 4.2 one has to exhibit a finite co-dimensional
manifold of C∞ well localized initial data such that the corresponding solution to (35)
is global in self-similar time τ ∈ [τ0,+∞), close in a suitable topology to the stationary
eulerian solution (RP ,ΦP ) and has a non-vanishing density. This will be achieved by
choosing τ0 sufficiently large. Going back to (9) then yields solutions that blow up at
T = e−rτ0

r .

5.3.1. Damping of the blow up profile outside of the singularity. — Because of the slow
decay at infinity (see (31)) the profile (RP ,ΦP ) has infinite energy and thus to produce
finite energy solutions to (9) one has to localize it in the region |y| � 1. This can be
done by choosing a C∞ smooth radial strictly positive cut-off function ζD(x) that has a
sufficiently rapide decay at infinity and is equal to 1 in a neighborhood of 0, say

ζD(x) =

1 for |x| ≤ 5
< x >−np+ r−1

p for |x| ≥ 10,
ζD > 0,

with some large enough nP = nP (d)� 1, and setting

RD(τ, y) = ζD(x)RP (y), x = λ−1(τ)y,

the phase ΦP being kept unchanged. In the original variables, this leads to an approxi-
mate solution uD(t, x) to (9) that decays at infinity as < x >−nP and that stabilises in
the limit |y| → ∞, |x| → 0:

uD(t, x) = λ
r−1
p (τ)eiλr−2(τ)ΦP (y)RD(τ, y) = cR

|x|
r−1
p

e
i

cΦ
|x|r−2 (1+O(|y|−r)) (1 +O(|y|−r)

)
.

As a consequence, the additional source terms induced in (35) by this localization are
exponentially decaying as τ →∞ and therefore can be safely controlled.

We will look for solutions to (35) as perturbations of the profile (RD,ΦP ) writing

R = RD + q, Φ = ΦP + ψ, φ = RPψ.
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5.3.2. Initial data. — Here we describe the set of initial data for (q, ψ) that we are
going to consider. The statements of Theorem 4.2 will hold on a finite co-dimensional
subset of such data.

Let a∗, k∗ be as in Proposition 5.1 and k∗ given by (42). Let 0 < a < a∗ and k0 ≥ k∗,
kmax ≥ k∗ such that

d

2 � k0 � kmax, nP � kmax.

(2kmax + 1 will be the maximal Sobolev regularity required for the solutions). By
Proposition 5.2, there exist(11) δ0 > 0, C > 0 such that

(59) ∀ X ∈ U, ‖eτMX‖H2k0
≤ Ce−δ0τ‖X‖H2k0

, ∀ τ ≥ 0.

The set of admissible initial data (q(τ0), ψ(τ0)) will be defined by the following
conditions.
(ii) Bound on local low Sobolev norms:

(60)
∑

0≤|α|≤2k0+1

∫
|y|≤3λ0

dy < y >2(|α|−ν0−δ0)
(
R2p
P |∇αq(τ0)|2 + |∇αφ(τ0)|2

)
≤ e−2δ0τ0 ,

with λ0 = λ(τ0) and

ν0 = d

2 − (r− 1)(1 + 1
p

).

(i) Bound on the unstable modes:

(61) ‖PX(τ0)‖H2k0
≤ e−

5
3 δ0τ0 ,

where as before, X(τ) =
(
φ(τ)
η(τ)

)
, η(τ) = ∂τφ+ a`φ.

(iii) Interior pointwise assumptions: for all 0 ≤ k ≤ 2kmax + 1,

(62)
∑
|α|=k

∥∥∥∥∥< y >k ∇αq(τ0)
RD(τ0)

∥∥∥∥∥
L∞(|y|≤λ0)

+ ‖ < y >r−2+k ∇αψ(τ0)‖L∞(|y|≤λ0) ≤ λ−c00 ,

for some constant c0 > 0 small enough.
(iv) Exterior pointwise bounds: for all 0 ≤ k ≤ 2kmax + 1,

(63)
∥∥∥∥∥rk+1∂kr q(τ0)

RD(τ0)

∥∥∥∥∥
L∞(|y|≥λ0)

+ ‖rk+1∂krψ(τ0)‖L∞(|y|≥λ0) ≤ λ−C0
0 ,

for some large enough constant C0.

One also assumes that(12)

(64) u0 ∈ H∞(Rd).

(11)One can always assume δ0 to be sufficiently small and in particular to satisfy δ0 < 2(r− 2).
(12)Explicitly, u0(x) = λ

r−1
p

0 eiλ
r−2
0 Φ0(λ0x)R0(λ0x) with Φ0 = ΦP + ψ(τ0) and R0 = RD(τ0) + q(τ0).
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Remark. — Note that the bounds (62), (63) imply that for τ0 sufficiently large,

(65)
∥∥∥∥∥ q(τ0)
RD(τ0)

∥∥∥∥∥
L∞(Rd)

� 1,

so that in particular u0 does not vanish.

5.3.3. Bootstrap assumptions and their improvements. — For u0 ∈ H∞(Rd), the stan-
dard local well-posedness theory for (9) guarantees the existence of a unique maximal
solution(13) u ∈ C([0, T ′), H∞(Rd)) with the blow up criterion

T ′ < +∞ =⇒ lim
t→T ′
‖u(t)‖Hs =∞, s > sc.

The assumption (63) ensures that for any ε > 0,

< x >nP− d2 +1+|α|−ε ∇αu0 ∈ L2, 0 ≤ |α| ≤ 2kmax + 1.

Propagating this decay to the solution one can show that there exists 0 < T ′′ ≤ T ′ such
that |u(t, x)| > 0 on [0, T ′′) × Rd, which allows one to introduce the hydrodynamical
variables (q, ψ) on this interval.

Consider now the time interval [τ0, τ
∗) such that the following bounds hold on [τ0, τ

∗).
– Control of the unstable modes:

(66) ‖e−τNPX(τ)‖H2k0
≤ e−

19
15 δ0τ ,

where N denotes the nilpotent part of the restriction ofM on V :

M
∣∣∣
V

= N + diag.

– Local decay of low Sobolev norms: for some universal constant C = C(k0),

(67) ‖q‖H2k0 (|y|≤r̂) + ‖ψ‖H2k0+1(|y|≤r̂) ≤ r̂Ce−
3
4 δ0τ , ∀ 1 ≤ r̂ ≤ λ(τ).

– Pointwise bounds:

(68)
∑

0≤|α|≤ 4
3kmax

‖R−1
D < y >n(|α|) ∇αq‖L∞ ≤ β,

and
(69) ∑

1≤|α|≤ 4
3kmax

[
‖ < y >r−2+n(|α|) ∇αψ‖L∞(|y|≤λ) + b−1‖ < y >n(|α|) ∇αψ‖L∞(|y|≥λ)

]
≤ β

for some sufficiently small constant 0 < β � 1, where

n(k) =

k if k ≤ 8
9kmax

1
2kmax if k > 8

9kmax.

In particular, ∥∥∥∥∥ q(τ)
RD(τ)

∥∥∥∥∥
L∞(Rd)

≤ β.

(13)Recall that in our case p ∈ N.
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– Assumptions on global weighted Sobolev norms. One introduces the following
homogeneous weighted Sobolev norms for 0 ≤ m ≤ 2kmax:

‖q, ψ‖2
m =

∑
|α|=m

∫
Rd

dyχm[b2|∇∇αq|2 +R2p
D |∇αq|2 +R2

D|∇∇αψ|2], b(τ) = e−(r−2)τ ,

where the weights χm are defined as follows:

χm(τ, y) = < x >2σ̃(m)

< y >2σ(m) , x = λ−1(τ)y,

σ(m) =

ν0 + ν −m if m ≤ 8
9kmax + 1

α(m− 2kmax) if 8
9kmax + 1 ≤ m ≤ 2kmax,

σ̃(m) =

nP + ν0 − d
2 + 1 + 2ν if m ≤ 4

3kmax + 1
α̃(2kmax −m) if 4

3kmax + 1 ≤ m ≤ 2kmax,
with a small constant 0 < ν � 1 to be adjusted along the proof and with the
constants α, α̃ fixed by requiring σ et σ̃ to be continuous functions of m. Note
that σ(2kmax) = σ̃(2kmax) = 0 so that the highest Sobolev norm ‖q, ψ‖2kmax is
unweighted:

‖q, ψ‖2
2kmax =

∑
|α|=m

∫
Rd
dy[b2|∇∇αq|2 +R2p

D |∇αq|2 +R2
D|∇∇αψ|2].

The norms ‖q, ψ‖2
m are required to satisfy on [τ0, τ

∗) the following bound:

(70) ‖q, ψ‖2
m ≤ β, ∀ 0 ≤ m ≤ 2kmax.

The assumptions on initial data ensure that for τ0 sufficiently large (τ0 � − ln β) the
bounds (66), (67), (70), (68), (69) hold at least in a neighborhood of τ0. The following
proposition states that all the bootstrap bounds, except for the bound (66) controlling
the unstable modes, can be improved on the interval [τ0, τ

∗), which by standard Brouwer
type arguments immediately implies Theorem 4.2 (see Merle, Raphaël, Rodnianski,
and Szeftel, 2019a).

Proposition 5.3 (Bootstrap). — Assume that the bounds (66), (67), (70), (68),
(69) hold on the interval [τ0, τ

∗) with β small enough and τ0 large enough. Then
the bounds (67), (70), (68), (69) can be strictly improved on [τ0, τ

∗). Consequently,
τ ∗ < +∞ implies

‖e−τ∗NPX(τ ∗)‖H2k0
= e−

19
15 δ0τ

∗
.

We refer to Merle, Raphaël, Rodnianski, and Szeftel (2019a) for the detailed
proof of Proposition 5.3 and limit ourselves here to indicating very briefly the general line
of the arguments. The proof is based on systematic use of the energy identities for the
full nonlinear Schrödinger energies that one combines with the linear local decay (59).



1191–23

The global Sobolev norms ‖q, ψ‖m, 0 ≤ m ≤ 2kmax, are controlled by the energies(14)

(71) Im =
∫
Rd
dyχm[b2|∇∂mq|2+2pR2p−1

D R|∂mq|2+R2|∇∂mψ|2], ∂m = (∂my1 , . . . , ∂
m
yd

),

for which one proves (under the bootstrap assumptions) the following differential
inequalities

(72) d

dτ
Im ≤ −2κ(m)Im + e−$τ , ∀ 0 ≤ m ≤ 2kmax − 1,

with some constant $ > 0 independent of ν and κ(m) given by

κ(m) = m+ σ(m)− ν0 ≥ ν > 0,

and for the highest energy:

(73) d

dτ
Ĩ2kmax ≤ −ckmaxI2kmax + e−cτ0 ,

with Ĩ2kmax = I2kmax(1 + o(1)) as β → 0. The proof of (72), (73) uses in a substantial
way the following interpolation bound for 0 ≤ m ≤ 2kmax − 1,∑

|α|=m

∫
Rd
dy

χm
< y >σ

[b2|∇∇αq|2 +R2p
D |∇αq|2 +R2

D|∇∇αψ|2] . e−cστ , ∀σ > 0,

that one deduces from (67), (70). The contribution of the quantum pressure in (35),
which leads to a loss of derivatives if one works with the eulerian energies (40), is taken
care of by b2-terms in (71). The highest energy being unweighted, the loss of derivatives
coming from the weights χm occurs only on the levels m ≤ 2kmax−1 and can be handled
by (70) due to the fact that the weights σ(m), σ̃(m) are adjusted in such a way that
α + α̃ ≤ 1 (for kmax large enough).

An improvement of the L∞ bounds (68), (69) is obtained by combining (72) with the
following inequalities that are direct consequences of Sobolev embeddings and of the
radiality of q and ψ:

∑
0≤|α|≤ 4

3kmax

‖R−1
D < y >n(|α|) ∇αq‖L∞ . λν

2kmax−1∑
m=0

‖q, ψ‖m,

and ∑
1≤|α|≤ 4

3kmax

[
‖ < y >r−2+n(|α|) ∇αψ‖L∞(|y|≤λ) +b−1‖ < y >n(|α|) ∇αψ‖L∞(|y|≥λ)

]

. λν
2kmax−1∑
m=0

‖q, ψ‖m.

To improve the bound (67) for low Sobolev norms one first uses the linear exponential
decay (59) to deduce

(74) ‖q‖H2k0 (|y|≤r̃(a)) + ‖ψ‖H2k0+1(|y|≤r̃(a)) . e−δ0τ ,

(14)For even m one can replace ∂m by ∆ m
2 .
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with, say, r̃(a) = r2+r(a)
2 , and then transforms (74) into the following weighted decay

estimates
(75)

∑
0≤|α|≤2k0

∫
|y|≤2λ

dy < y >2(|α|−ν0−δ0)
[
R2p
P |∇αq]2 + |∇∇αφ|2

]
. e−

8
5 δ0τ .

The proof of (75) is based on an eulerian energy estimate with a properly chosen time
dependent localisation of (q,Φ) and uses in an essential way the fact that (74) holds in a
region strictly including the light cone r = r2. At this stage the quantum pressure term
is treated as a perturbation. Estimate (75) closes the remaining bootstrap bound (67)
and thus concludes the proof of Proposition 5.3.
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