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RECENT PROGRESSES ON THE SUBCONVEXITY PROBLEM
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Contents

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. L-functions and the convexity bound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. 100 years of Subconvexity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4. Some applications of the subconvexity problem. . . . . . . . . . . . . . . . . . . . . 16
5. The method of moments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6. The bound of Conrey, Iwaniec, Petrow and Young. . . . . . . . . . . . . . . . . . 23
7. Subconvexity via the δ-symbol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8. Subconvexity via automorphic periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1. INTRODUCTION

The Riemann zeta function is -initialy defined as the converging series

ζ(s) =
∑
n≥1

1
ns

=
∏
p

(
1 − 1

ps

)−1

for Re s > 1. As is well known it has an analytic continuation to C (with a simple pole
at s = 1) and satisfies a functional equation relating its values at s and at 1 − s. In
particular the most mysterious region (from the analytic viewpoint at least) to study
ζ(s) is the critical strip 0 ≤ Re s ≤ 1.

One hundred years ago, Weyl (1921) introduced an important technique (now called
the Weyl differencing method) to investigate the growth of the Riemann zeta function
along the edge of the critical strip, that is ζ(1 + it) for t → ∞.

During the same year, Hardy and Littlewood realized the potential of Weyl’s method
and announced strong upper bounds for ζ(s) for s inside the critical strip and in particular
along its center, the critical line Re s = 1/2: using Weyl’s method, they obtained the
upper bound

ζ(1/2 + it) = O(1 + |t|1/6). (1.1)
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This bound improved significantly, Lindelöf’s 1908 bound

ζ(1/2 + it) = O(1 + |t|1/4) (1.2)

which was a consequence of the Phragmen–Lindelöf convexity principle (itself, a conse-
quence of the maximum principle). Hardy and Littlewood did not publish their proof in
details, but it should have been as follows: by their approximate functional equation
formula for ζ(s) (published in 1927), one has for |t| ≥ 1,

ζ(1/2 + it) =
∑

n≤(|t|/2π)1/2

1
n1/2+it + π1/2−sΓ((1 − s)/2)

Γ(s/2)
∑

n≤(|t|/2π)1/2

1
n1/2−it +O(|t|−1/4).

(1.3)
In particular, bounding all the terms in this sum trivially, one recover Lindelöf’s
bound (1.2) and going beyond amounts to detect further cancellations coming from the
oscillations of the argument of n−1/2±it, n ≤ (|t|/2π)1/2 when t is large. This is precisely
what Weyl’s method was able to capture and this eventually led to (1.1).

This so-called Weyl bound was the first example of a subconvex bound (because it
improve a bound derived from a convexity principle) for the very first L-function.

The Subconvexity Problem is the general problem of obtaining subconvex bounds for
the values of general L-functions along the critical line.

2. L-FUNCTIONS AND THE CONVEXITY BOUND

We will describe shortly the class of L-function we will be considering but for the
moment we will isolate the most basic properties they satisfy (or sometimes are expected
to satisfy). In any case an L-function will be a non-zero Dirichlet series

L(π, s) =
∑
n≥1

λπ(n)
ns

associated to an arithmetic function λπ : N>0 → C, absolutely converging for Re s > 1,
coming with some additional data and enjoying (amongst others) the following analytic
properties (see Iwaniec and Kowalski, 2004, §5.1)

1. Euler product. For Re s > 1, the serie L(π, s) factors into an Euler product of local
L-factors of degree ≤ d: for Re s > 1,

L(π, s) =
∏
p

Lp(π, s), Lp(π, s) :=
d∏
i=1

(
1 − απ,i(p)

ps

)−1
,

for p ranging over the set of prime number; the απ,i(p), i = 1, · · · , d are complex
numbers satisfying |απ,i(p)| < p. In particular the arithmetic function n 7→ λπ(n)
is multiplicative: λπ(1) = 1 and λπ(mn) = λπ(m)λπ(n) if (m,n) = 1.
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2. Non-archimedean local parameters. The multiset {απ,i(p), i = 1, · · · , d} is called
the set of local parameters of L(π, s) at p and Lp(π, s) is called the local factor
at p. Moreover, there exists an integer q(π) ≥ 1 (the arithmetic conductor of the
L-function) such that if p does not divide q(π)∣∣∣∣∣

d∏
i=1

απ,i(p)
∣∣∣∣∣ = 1,

so that the local factor has degree d exactly. The primes p not dividing q(π) are
then called unramified.

3. Archimedean local parameters. This collection of non-archimedean local parameters
is completed by a multiset of complex numbers, {µπ,i, i = 1, · · · , d} satisfying
Reµπ,i < 1 and called the local parameters at ∞; associated to it is a corresponding
archimedean local factor which this time, is a product of Gamma functions

L∞(π, s) =
d∏
i=1

ΓR(s− µπ,i).

4. Analytic continuation and functional equation: so far L(π, s) was essentially speci-
fied by a collection of local factors Lp(π, s) which could be largely random. What
qualifies it as an L-function is the following properties of global nature: the function
s 7→ L(π, s) admits meromorphic continuation to C with at most finitely many
poles. Moreover L(π, s) satisfies a functional equation of the shape

Λ(π, s) = ε(π)Λ(π, 1 − s)

where ε(π) (the root number) is a complex number of modulus 1, and Λ(π, s) (the
completed L-function) is given by

Λ(π, s) := q(π)s/2L∞(π, s).L(π, s)

for q(π) ≥ 1 the arithmetic conductor mentioned above. The pole of the completed
L-function are located on the vertical lines Re s = 0, 1 and the sum of their orders
is bounded by ≤ 2d and outside of these poles, Λ(π, s) has rapid decay in any
bounded vertical strip {s, A ≤ Re s ≤ B}.

Remark 1. — In particular the dual Dirichlet series given by

L(π∨, s) := L(π, s) =
∑
n≥1

λπ(n)
ns

, Re s > 1

qualify as an L-function with q(π∨) = q(π).

2.1. The Convexity Bound

Given L(π, s) an L-function as above; we would like to evaluate the growth of
L(π, 1/2 + it) as t → ∞. Since for Re s > 1, L(π, s) is given by a converging Euler
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product, we expect and often understand “well” the analytic behaviour of L(π, s) in this
region (for instance L(π, s) has no zeros there); in particular for any ε > 0, we have

L(π, 1 + ε+ it) ≪d,ε 1.

By the functional equation (and the known properties of the Gamma function) we then
expect and often understand “well” the behaviour of L(π, s) when Re s < 0; by Stirling’s
formula, the previous bound implies that for t large enough

L(π,−ε+ it) ≪ε |t|(1+ε)d/2.

For σ in the interval [−ε, 1 + ε], the convexity principle (see Iwaniec and Kowalski,
2004, Chap. 5, A.2) then implies that L(π, s) is bounded by the convex multiplicative
combination of the bounds at the extremities:

L(π, σ + it) ≪ |t|
d
2 (1−σ+O(ε))

and for σ = 1/2 one obtains (in the s variable)

L(π, 1/2 + it) ≪ε |t|
d
4 +ε.

In this bound we have ignored the other quantities on which L(π, s) might depend:
the conductor and the spectral parameter. The above argument can be refined to take
these into account by introducing the analytic conductor of L(π, s): it is defined (in a
ad-hoc way) for s = 1/2 + it by

Q(π, s) = q(π)
d∏
i=1

(1 + |µπ,i − it|) = q(π)q∞(π, s);

also to simplify notations we will write

Q(π) = Q(π, 1/2), q∞(π) = q∞(π, 1/2) =
d∏
i=1

(1 + |µπ,i|).

With suitable additional assumption on L(π, s), one can obtain the

Convexity Bound. — Let L(π, s) be an L-function of degree d ≥ 1, for any ε > 0
and s = 1

2 + it, i ∈ R, one has

L(π, s) ≪d,ε Q(π, s)1/4+ε. (2.1)

We will give here an alternative proof similar to that given in the introduction: for this
we need a modern form of the approximate functional equation (2.2). By an appropriate
Mellin transformation, a contour shift and the functional equation, one can show that
(Iwaniec and Kowalski, 2004, Thm 5.3 & Prop. 5.4):

Approximate Functional Equation. — Let L(π, s) be an L-function satisfying the
analytic properties above. There exist two smooth functions

Vs, V1−s : R>0 → C
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whose derivatives have rapid decay: for any y > 0, any integer a ≥ 0 and any A > 0
one has

yaV (a)
• (y) ≪d,A,a (1 + y)−A

(although these functions might depend on the archimedean parameters of π, the implicit
constants depend only on d, A and a) such that

L(π, s) =
∑
n≥1

λπ(n)
ns

Vs
( n

Q(π, s)1/2

)
+ ε(π, s)

∑
n≥1

λπ(n)
n1−s V1−s

( n

Q(π, s)1/2

)
+R(π, s) (2.2)

where ε(π, s) is a complex number of modulus 1 and R(π, s) is a contribution from the
poles of Λ(π, s) and is zero if Λ(π, s) is entire.

Proof of the convexity bound. — We sketch the proof (in a slightly stronger form) assum-
ing that L(π, s) is entire and that its local parameters satisfy the following Ramanujan–
Peterson type bound

∀p, i = 1, . . . , d, |απ,i(p)| ≤ 1.
In particular the coefficients λπ(n) are bounded by

|λπ(n)| ≤ τd(n) =
∑

n1.··· .nd=n
1

the d-th order divisor function. By the approximate functional equation we have taking
A ≥ 2

L(π, s) ≪d,A

∑
n≥1

τd(n)
n1/2

(
1 + n

Q(π, s)1/2

)−A
≪d Q(π, s)1/4 logd−1(Q(π, s)).

Remark 2. — While the convexity bound is trivial to prove in favourable cases such that
this one here, it is not obvious in general (see Molteni, 2002 and Brumley, 2004).

2.2. The Subconvexity Problem

The Subconvexity Problem can be loosely stated as

Subconvexity Problem (ScP). — Given L(π, s) an L-function, show that there
exists δ = δ(d) > 0 such that for s = 1

2 + it, t ∈ R

L(π, s) ≪d Q(π, s)1/4−δ (2.3)

where the implicit constant depends at most on d.

Remark 3. — Weyl’s bound (representing 33% of the GLH) is particularly strong (more
examples below). However we want to insist that one is usually satisfied with obtaining
some positive δ and sometimes one is happy with even less (see §4.3). On the other
hand, there are some situations where the size of the exponent is critical, for instance
Ghosh and Sarnak, 2012; Humphries and Radziwiłł, 2021
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Sometimes this is too much to ask and one look instead for simpler variants in which
some of the numerical parameters on which Q(π, s) depends (i.e. the complex variable
s, the arithmetic conductor q(π) or the archimedean conductor q∞(π)) vary and the
others remain fixed; for instance

Subconvexity Problem (s-aspect). — Prove that there exists δ = δ(d) > 0 such
that L(π, s) satisfies for s = 1

2 + it, i ∈ R on the critical line

L(π, s) ≪d,Q(π,1/2) |s|d(1/4−δ)

where the implicit constant depends at most on d, the arithmetic conductor and the
archimedean parameters.

Subconvexity Problem (q(π)-aspect). — Prove that there exists δ = δ(d) > 0
such that L(π, s) satisfies for s = 1

2 + it, i ∈ R on the critical line

L(π, s) ≪d,s,π∞ q(π)1/4−δ

where the implicit constant depends at most on d, s and the archimedean parameters.

Subconvexity Problem (q(π∞)-aspect). — Prove that there exists δ = δ(d) > 0
such that L(π, s) satisfies for s = 1

2 + it, i ∈ R on the critical line

L(π, s) ≪d,s,q(π) q∞(π)1/4−δ

and the implicit constant depends at most on d, s and the arithmetic conductor.

In any case, the “horizon” of the Subconvexity Problem is the

Generalized Lindelöf Hypothesis (GLH). — Given L(π, s) an L-function of
degree d ≥ 1, for any ε > 0 and s = 1

2 + it, i ∈ R, one has

L(π, s) ≪d,ε Q(π, s)ε. (2.4)

The GLH is itself a consequence of the:

Generalized Riemann Hypothesis (GRH). — The zero of Λ(π, s) are all located
on the critical line {s ∈ C, Re s = 1/2}.

2.3. Examples of L-functions

The very first example is of course the Riemann’s zeta function

ζ(s) =
∑
n≥1

1
ns

=
∏
p

(
1 − 1

ps

)−1

which has degree 1, root number one, arithmetic conductor 1 and a simple pole at s = 1.
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2.3.1. Dirichlet L-functions. — The next class of examples are the Dirichlet L-functions
associated to primitive Dirichlet characters modulo and integer q: given χ : (Z/qZ)× →
C×, such a character, its L-function is given by

L(χ, s) =
∑
n≥1

χ(n)
ns

=
∏
p

(
1 − χ(p)

ps

)−1
,

where χ is extended to a function on Z by q-periodicity and by 0 along the integers not
coprime with q. Dirichlet L-function have also degree 1, their root number is equal to a
unitary multiple of the normalized Gauss sum

gχ := q−1/2 ∑
a (mod q)

χ(a)e
(a
q

)
, e(z) = exp(2πiz),

their arithmetic conductor is q and they are holomorphic everywhere. Moreover
χ∨ = χ−1.

2.3.2. Hecke L-functions. — Examples in degree 2 include the Hecke L-functions
attached to a holomorphic Hecke eigen-cuspform of weight k ≥ 1 for a congruence
subgroup of level q for some integer q ≥ 1,

Γ0(q) =
{(

a b

c d

)
∈ SL2(Z), c ≡ 0 (mod q)

}
,

L(f, s) =
∑
n≥1

λf (n)
ns

, where f(z) =
∑
n≥1

λf (n)nk/2e(nz), Im z > 0;

these L-functions are of degree 2 with arithmetic conductor q(f) = q and archimedean
parameters {−(k − 1)/2,−(k + 1)/2}.

2.3.3. Godement–Jacquet L-functions. — All these examples are special cases of “stan-
dard” Godement–Jacquet L-functions attached to an automorphic cuspidal representation
of the linear group GLd, i.e. an irreducible infinite dimensional representation GLd(A)
contained in the space L2(GLd(Q)\ GLd(A);ω) for ω : Q×\A× → C(1) a unitary char-
acter (we denote the set of such representation A0(GLd)). Any such π decomposes as a
restricted product of local irreducible unitary representations of GLd(R) and GLd(Qp)

π ≃ π∞ ⊗
⊗′

p
πp

almost all of which are unramified principal series (i.e. admit a non-zero GLd(Zp)-
invariant vector). To each local representation πv is attached a multiset of local
parameters, a local L-factor L(πv, s) = Lv(π, s) and if v = p a local conductor q(πp) ≥ 1
equal to 1 if πp is unramified; the automorphy of π implies (see Godement and
Jacquet, 1972) that the global Euler product

L(π, s) =
∏
p

Lp(π, s)

has all the basic properties mentioned above and has conductor q(π) = ∏
p q(πp); in

addition the dual L-function L(π∨, s) is the standard L-function of the contragredient
representation of π. In fact, standard L-functions satisfy more analytic properties (like
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a zero free region à la Hadamard-de la Vallée–Poussin) but to establish these, one needs
the theory of

2.3.4. Rankin–Selberg L-functions. — Rankin–Selberg L-functions are Euler product
attached to pairs of automorphic representations (π, π′) ∈ A0(GLd) × A0(GLd′),

L(π × π′, s) =
∏
p

Lp(π × π′, s).

They have been introduced and studied by Rankin and Selberg for pairs of classical
modular forms, and the general analytic theory was developped by Jacquet, Piatetski-
Shapiro and Shalika. The local factor at a prime p not dividing q(π)q(π′) is given
by

Lp(π × π′, s) =
d∏
i=1

d′∏
i′=1

(
1 − απ,i(p)απ′,i′(p)

ps

)−1

but at the other prime it is much less explicit.
One knows that Rankin–Selberg L-functions enjoy all the basic analytic properties

mentioned above and are holomorphic everywhere excepted if d = d′ and L(π′, s) =
L(π, s+ it), t ∈ R in which case L(π × π′, s) has a simple pole at s = 1 − it.

The case of Rankin–Selberg L-function leads to further variations of the Subconvexity
problem: one can look for subconvex bounds for L(π × π′, s) when the first representa-
tion π is considered fixed and only the second π′ has its parameters varying: one has
the following relation between analytic conductors

Q(π′, s)d ≪π Q(π × π′, s) ≪π Q(π′, s)d

and the subconvexity problem admits the following variant:

Subconvexity Problem (π′-aspect). — Prove that there exists δ = δ(d, d′) > 0
such that the Rankin–Selberg L-function L(π × π′, s) satisfies, for s = 1

2 + it, i ∈ R

L(π × π′, s) ≪π,d′ Q(π′, s)d(1/4−δ)

where the implicit constant depends at most on d′ and π.

2.3.5. Automorphic L-functions for reductive groups. — More generally given a reduc-
tive group G/Q, π ∈ A(G) an automorphic representation and

r : LG = Ĝ(C) ⋊ Gal(Q/Q) → GLd(C)

a finite dimensional complex representation of its L-group, one can form a partial Euler
product (S is a finite set of primes including all the ramified primes)

LS(π, r, s) =
∏
p ̸∈S

Lp(π, r, s)

converging for Re s sufficiently large and which (conjecturally on the local Langlands cor-
respondence) can be completed to a full Euler product L(π, r, s) satisfying (conjecturally)
all the basic properties mentioned above.
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For instance Godement–Jacquet L-functions correspond to the standard representation

Std : GLd(C) → GLd(C)

and Rankin–Selberg L-functions correspond to the product G = GLd × GLd′ and the
product of the standard representations Std × Std′ .

Remark 4. — Such constructions can also be made by replacing Q by a general number
field K; any such L-function can then be viewed as an L-function over Q of degree
d[K : Q].

Remark 5. — By the functoriality principle of Langlands, it is expected any such L-
function can be decomposed as a product of standard Godement–Jacquet L-functions
(over K and in fact over Q). Notable examples are the Rankin–Selberg L-functions
and the first symmetric power L-functions of automorphic representations of GL2
(Clozel and Thorne, 2015; Cogdell, Kim, Piatetski-Shapiro, and Shahidi,
2004; Gelbart and Jacquet, 1978; Newton and Thorne, 2021a,b; Ramakrishnan,
2000).

3. 100 YEARS OF SUBCONVEXITY

3.1. Weyl’s bound

As pointed out in the introduction, this year marks the 100th anniversary of the first
subconvex Weyl bound by

ζ(1/2 + it) ≪ε (1 + |t|)1/6+ε.

This bound represents 33% of the Lindelöf Hypothesis. Weyl’s differenting method was
the starting point of van der Corput’s method also known as the theory of exponent
pairs which enable to bound sums of analytic exponentials. Weyl’s original 1/6 exponent
has since been improved, notably by Bombieri–Iwaniec and Huxley; the current record
is held by Bourgain (2017) who used the decoupling techniques he developed with
C. Demeter to reach the exponent 1/6 − 1/84 (see the presentation by Pierce, 2019 of
the decoupling method in this seminar).

3.2. Burgess’ bound

Nearly 40 years after Weyl’s bound, Burgess obtained the first subconvex bound for
Dirichlet L-functions in the conductor aspect: if q > 1 is cube-free and χ is a non-trivial
Dirichlet character of conductor q, one has

L(χ, s) ≪ε,s q
3/16+ε; (3.1)

Burgess’ bound represents 25% of GLH in the q-aspect. Burgess’ method is quite
singular and has not been much used in the context of the subconvexity problem (see
however Friedlander and Iwaniec (1985) and Kowalski, Michel, and Sawin
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(2017) for variants of Burgess’ method in different but related contexts). On the other
hand, Burgess’ bound was improved for moduli having suitable divisibility properties
(by using arithmetic variants of van der Corput’s method) see Heath-Brown (1996)
and Blomer and Milićević (2015) for representative examples. However, one had to
wait for almost 40 years and a new approach to see this bound further improved (see
below).

3.3. 1980-2000: Kloostermania and modular forms

That period witnessed a flurry of subconvex bounds (in various aspects) for Hecke
L-functions of modular forms and their Rankin–Selberg L-functions (Blomer, Harcos,
and Michel, 2007; Conrey and Iwaniec, 2000; Duke, Friedlander, and Iwaniec,
1993, 1994b, 2002; Good, 1981; Harcos and Michel, 2006; Jutila and Motohashi,
2005; Kowalski, Michel, and VanderKam, 2002; Michel, 2004; Sarnak, 2001).
The main approach was via the method of moments (see below) and the main technical
tools were the spectral theory of automorphic forms, Kuznetsov’s trace formula and
its associated Kloosterman sums; during the course of the proofs of several of these
cases it emerged that the Subconvexity problem is closely tied to another classical
problem of analytic number theory, namely the Shifted convolution Problem which
asks to evaluate correlation sums between two sequences of additively shifted Fourier
coefficients of modular forms: the problem was to evaluate various sums of the shape
(or linear combinations thereof)

S(f, g;h) =
∑
m,n

am+bn=h

λf (m)λg(n)V
(m
M
,
n

N

)
, V ∈ C∞

c (R2)

for a, b, h non zero integers.
Amongst these numerous contributions two are worth mentioning for the purpose of

this survey.
The first is the work of Duke, Friedlander, and Iwaniec (1993, 1994b, 2002) who

complemented the method of moments with the fundamental Amplification method and
also introduced the δ-symbol methodto resolve some instance of the Shifted convolution
Problem.

The second contribution is the work of Conrey and Iwaniec (2000) who used the
method of moments together with the spectral theory of GL2-automorphic forms to
reach the Weyl bound (i.e. 33% of GLH) when χ is a quadratic character of modulus q:
for Re s = 1/2, one has

L(χ, s) ≪ε,s q
1/6+ε; (3.2)

improving on Burgess’ 40 years old bound. Recently, Petrow and Young (2019, 2020)
have proven the Conrey–Iwaniec bound for arbitrary Dirichlet characters and in the
s-aspect as well:
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Theorem 1 (Petrow–Young). — Let χ (mod q) be a primitive Dirichlet character
(possibly complex, possibly with modulus q divisible by cubes) for Re s = 1/2, one has

L(χ, s) ≪ε (|s|q)1/6+ε.

We will briefly discuss their proof in the present report.

3.4. 2000-today: Extension to number fields

In the beginning of the 2000’s the subconvexity problem started to be systematically
considered for L-functions defined over a general number field.

An important example is the work of Cogdell, Piatetski-Shapiro and Sarnak who
solved an instance of the subconvexity problem for character twists of L-functions of
Hilbert modular forms over a totally real field; they then used it to resolve the last
remaining case of Hilbert’s 11th problem (the Hasse principle for representations of
algebraic integers by ternary quadratic forms defined over a totally real fields). Their
proof went by generalising to totally real fields some classical techniques existing over Q
and in particular an instance of the Shifted convolution Problem (see Cogdell (2003)
for a survey.

A change of paradigm occurred with the work of Venkatesh (2010) who, inspired
by some earlier work of Bernstein and Reznikov (2010) formulated the subconvexity
problem as the problem of bounding certain automorphic periods; combining local
and global aspects of the theory of automorphic representations and transposing some
classical techniques to the adelic setting –like the amplification method–, Venkatesh
established some important new cases (sometimes new even over Q) of the subconvexity
problem for standard L-functions of Hecke characters, GL2,K standard L-functions,
GL2,K × GL2,K Rankin–Selberg L-functions as well as GL2,K × GL2,K × GL2,K triple
product L-functions for K an arbitrary number field. Venkatesh’s adelic periods
approach together with other arguments eventually led to the complete resolution of
the subconvexity problem (simultaneously in all aspects) for GL1,K and GL2,K standard
L-functions over an arbitrary number field K (Michel and Venkatesh, 2010).

Recently Nelson (2020) widely expended the period approach of Michel and
Venkatesh (2010) to provide an adelic treatment of the work of Conrey–Iwaniec–
Petrow–Young and obtained the following Weyl type bound:

Theorem 2 (Nelson). — Given K/Q a number field and

χ : K×\A×
K → C(1)

a Hecke character of finite order with cube-free conductor q(χ) ⊂ OK, the Weyl bound
holds

L(χ, s) ≪[K:Q],ε,s NrK/Q(q(χ))1/6+ε. (3.3)

It is believable that Nelson’s proof carries over to yield the Weyl bound simultaneously
for all aspects and without cube-freeness assumption.
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Also recently Balkanova, Frolenko and Wu gave another fairly different approach to
this bound (at the moment for K totally real) (Balkanova, Frolenkov, and Wu,
2021; Wu, 2021).

3.5. 2010-today: subconvexity in higher ranks
The past decade has also witnessed the development of subconvex bounds for L-

functions attached to automorphic forms/representations on GLd for d ≥ 3.
One of he first examples is due to Li (2011) who solved the problem in the s-aspect

for the Standard L-function L(sym2f, s) of the symetric square (or Gelbart–Jacquet) lift
attached to a modular form f of level 1: there is an absolute constant δ > 0 such that

L(sym2f, s) ≪ |s|3/4−δ.

Li also solved the problem for the value at s = 1/2 of the Rankin–Selberg L-function
L(sym2f × g, s) of the symmetric square lift of f and a modular form g of level 1 in the
q∞(g)-aspect: there is an absolute constant δ > 0 such that

L(sym2f × g, 1/2) ≪ q∞(g)3/4−δ.

Li’s proof use the method of moments (by evaluating a first moment through the
Kuznetsov formula) together in a crucial fact (due to Lapid) that the central value
L(sym2f × g, 1/2) is non-negative. A bit later, by a similar approach, Blomer (2012)
also proved a subconvex bound for character twist L-functions: there is an absolute
constant δ > 0 such that for χ (mod q) a quadratic character, one has

L(sym2f × g × χ, 1/2) ≪ q3/2−δ.

Here again the restriction to a quadratic character is necessary to ensure the non-
negativity of the central value L(sym2f × g × χ, 1/2).

3.5.1. Munshi’s δ-symbol method. — Munshi (2015a,b) introduced his own variant
of the δ-symbol method (see below) to obtain subconvex bounds for the standard
L-function L(φ, s) attached to a φ a spherical (i.e. SO3(R)-invariant) GL3-automorphic
form of level 1:

Theorem (Munshi). — There is an absolute constant δ > 0 such that for Re s = 1/2
and χ a Dirichlet character of prime modulus q, one has

L(φ, s) ≪φ |s|3/4−δ, L(φ× χ, s) ≪s,φ q(χ)3/4−δ.

A few years later, Holowinsky and Nelson (2018) discovered a simplification
of Munshi’s original approach that led to a drastic improvement of the value of the
exponent δ; eventually Lin (2021) used the Holowinsky–Nelson method to obtain a joint
subconvex bound: for q and χ (mod q) a Dirichet character, one has

L(φ× χ, s) ≪ε,φ Q(χ, s)3/4−1/36+ε.

Subsequently, Munshi (2021) perfected the δ-symbol method and solved the subcon-
vexity problem for GL3 × GL2 Rankin–Selberg L-functions in the s-aspect:
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Theorem (Munshi). — Given φ as above and g a modular form, both of level 1, one
has

L(φ× g, s) ≪ε,φ,g |s|
3
2 − 1

51 +ε.

Building on this work, several new cases of subconvexity were established: Sharma
(2019) solved the problem for arbitrary character twists of prime conductor:

Theorem 3 (Sharma). — For χ (mod q) a Dirichlet character of prime conductor, one
has

L(φ× g × χ, s) ≪ε,φ,g,s q
3
2 − 1

32 +ε.

There have since be several further developments: for instance in a very recent preprint,
Kumar (2020) has announced the resolution of the problem in the q∞(g)-aspect:

L(φ× g, s) ≪ε,φ,s q∞(g) 3
4 − 1

102 +ε.

3.5.2. Further subconvex bounds in higher rank. — All the high rank cases discussed
so far concerned situations where the varying quantities are attached to automorphic
forms/representations of small rank (GL1 or GL2).

Blomer and Buttcane (2020) solved for the first time, a subconvexity problem for
L-functions in a generic family of GL3 automorphic representations: there is an absolute
constant δ > 0 such given 0 < c < C and φ be a spherical GL3-cusp form of level 1
whose archimedean parameters {µ1, µ2, µ3} satisfy a non-degeneracy assumption

∀1 ≤ i ̸= j ≤ 3, c ≤ |µi|
max(|µ1|, |µ2|, |µ3|)

≤ C, c ≤ |µi − µj|
max(|µ1|, |µ2|, |µ3|)

≤ C. (3.4)

One has
L(φ, s) ≪s,c,C q∞(φ)1/4−δ. (3.5)

Their proof used the method of moments (the fourth moment of L(φ, s)) supplemented
by the amplification method. The evaluation of the fourth moment was based on the
Kuznetzov formula for GL3 which was developed by Buttcane in a series of papers
(Buttcane, 2016, 2020, 2021).

3.6. Subconvexity in arbitrarily large rank
We conclude this long enumeration with the most recent works of Nelson (2021a,b)

and Nelson and Venkatesh (2021).

3.6.1. L-functions associated with unitary groups. — Let E/Q be a quadratic field,
n ≥ 1, and let U(V ) and U(W ) be respectively the unitary groups of an n+1-dimensional
hermitian space V/E and of W ⊂ V a non-degenerate codimension one subspace; let π
and σ be respectively automorphic cuspidal representations of U(V ) and U(W ) which
are everywhere tempered. By the works of Mok (2015) and Kaletha, Minguez, Shin,
and White (2014) are naturally associated to π and σ two automorphic representations
πE and σE of GLn+1,E and GLn,E; let

L(πE × σ∨
E, s) =: L(π, σ, s)
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be their associated Rankin–Selberg L function (it has degree 2(n+ 1)n as an L-function
“over” Q).

Nelson (2021b) has solved the subconvexity problem for the central value L-function
L(πE × σ∨

E, 1/2) for representations π, σ satisfying the following additional conditions
– The representations π and σ are everywhere tempered.
– The pair (π, σ) is everywhere locally distinguished (i.e. for every place v, one has

HomU(W )(Qv)(πv, σv) ̸= {0}).
– There is a fixed finite set of places S of Q containing the archimedean place outside

of which π and σ are unramifed.
– For every prime p ∈ S, the local component πp and σp belong to fixed compact

sets Πp, Σp of the unitary duals of U(V )(Qp) and U(W )(Qp). In particular

q(πE × σ∨
E) ≪ 1

where the implicit constant depends on the Πp, Σp, p ∈ S.
– There is some constant 1 < C such that for

T := max({|µπE ,i|, 1 ≤ i ≤ 2(n+ 1)} ∪ {|µσE ,j|, 1 ≤ j ≤ 2n})

the maximal value of the archimedean parameters of L(πE, s) and L(σE, s), then

C−1 ≤ q∞(πE × σ∨
E, 1/2)

T 2(n+1)n ≤ C (3.6)

Theorem 4 (Nelson). — Under the assumption above, there exists δ = δ(n) > 0 such
that

L(πE × σ∨
E, 1/2) ≪ q∞(πE × σ∨

E, 1/2)1/4−δ (3.7)
where the implicit constant depends on n, C, and the compact sets Πp, Σp, p ∈ S. In
fact the subconvex exponent δ = δ(n) > 0 is explicit and is the inverse of a polynomial
of degree 5 in n.

The proof which we discuss in §8.4 uses the method of moments (the first moment of
L(πE × σ∨

E, 1/2)) supplemented by the amplification method and also a crucial use of
the positivity of the central value L(πE × σ∨

E, 1/2) (which again follows from the validity
of the conjectures of Gan–Gross–Prasad and Harris). The evaluation of the first moment
is performed by a relative trace formula approach and the choice of the test function
builds crucially on the methods developed by Nelson and Venkatesh (2021).

Remark 6. — In stating this subconvex bound, one could have removed the condition that
(π, σ) is everywhere locally distinguished: by the Gan–Gross–Prasad–Harris conjecture
which has been established in this case (see Beuzart-Plessis, 2019, for a recent
account), one has

L(πE × σ∨
E, 1/2) = 0

if the pair (π, σ) is not everywhere locally distinguished. However this condition is
essential for the proof.
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Remark 7. — The subconvex bound is valid more generally when the unitary groups
are defined over a general number field F (relatively to a quadratic extension E/F ).

3.6.2. Non-conductor dropping. — The technical looking condition (3.6) – analogous
to the non-degeneracy condition (3.4) – states that the archimedean parameters of
L(πE×σ∨

E, s) are all approximately of the same size T , so the conductor of L(πE×σE, 1/2)
is a big as it could be; in particular the parameters of πE and σE are away from one
another:

∀i, j, |µπE ,i − µσE ,j| ≫ T.

This condition is therefore called the non-conductor dropping assumption.
An important special case where the non-conductor dropping assumption holds if

when σE is fixed and all the archimedean parameters of πE are large and of about the
same size and vice versa.

3.6.3. Extension to the split case. — A few months ago, (Nelson, 2021a) has an-
nounced the resolution of subconvexity problem in the q∞(π)-aspect (cf. (2.3)) for
standard L-functions of automorphic representations of GLn+1,Q for any n under a
non-conductor dropping assumption:

Let π an automorphic cuspidal representation of GLn+1, whose archimedean are all
of about the same size: there is some absolute constant 1 < C such that for

T := max({|µπE ,i|, 1 ≤ i ≤ (n+ 1)}

one has

C−1 ≤ q∞(π, 1/2)
T n+1 ≤ C. (3.8)

There exists δ = δ(n) > 0 (explicit) such that

L(π, 1/2) ≪q(π),C q∞(π)
1
4 −δ. (3.9)

An important special case is when π is of the shape

π = π0 × | · |itA, t ∈ R

when π0 is a fixed and t → ∞: the non-conductor dropping condition (3.8) is automati-
cally satisfied and for s = 1/2 + it, one has

L(π, 1/2) = L(π0, s) ≪π0 |s|
n+1

4 −δ;

this solves the subconvexity problem in the s-aspect for all standard L-functions !
Nelson’s proof (which I have not been able to absorb yet) can be interpreted as a

“degenerate specialisation” of Nelson (2021b) when

– E is the split quadratic algebra E = Q × Q so that GLn+1,E ≃ GLn+1 × GLn+1,
U(En+1) ≃ GLn+1, GLn,E ≃ GLn × GLn, U(En) ≃ GLn,
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– π = π and σ = 1 ⊞ · · · ⊞ 1 is the least cuspidal (Siegel) Eisenstein series of GLn.
In particular

L(πE ⊗ σE, 1/2) = |L(π, 1/2)|2n

and
q∞(πE ⊗ σE) ≍ |T |(n+1)2n.

However the “adaptation” of the proof of Theorem 4 to this very degenerate situation
comes with considerable technical difficulties due to the fact that σ is not cuspidal.

Remark 8. — In fact Nelson’s bound (3.9) generalizes (up to the value of δ) all the
results enumerated in §3.5 concerning the s or the archimedean aspect, including the
case of GL2 × GL3 Rankin-Selberg L-functions (which are GL6 standard L-functions by
Kim and Shahidi, 2002) as well the cases of GL2 and GL2 × GL2 L-function (which
are GL4 standard L-functions by Ramakrishnan, 2000) in these same aspects, as long
the the non-conductor dropping assumption is satisfied.

Remark 9. — One important and certainly delicate challenge would be to remove the
non-conductor dropping assumption; so far this done only for GL2 and GL2 × GL2
L-functions by Michel and Venkatesh, 2010 by adapting an argument of Michel,
2004.

4. SOME APPLICATIONS OF THE SUBCONVEXITY PROBLEM

The intensive activity surrounding the subconvexity problem during the past 40 years
was largely driven by external applications: in this section we provide a sample of these:

4.1. Representation by ternary quadratic forms

We start with the following classic theorem

Theorem (Duke, 1988). — Let d > 0 be a square-free integer not congruent to
7 (mod 8), then d is representable as a sum of three squares:

R3(d) = {(a, b, c) ∈ Z3, a2 + b2 + c2 = d} ≠ ∅.

Moreover as d → ∞
r3(d) = |R3(d)| = d1/2+o(1)

and the set d−1/2.R3(d) ⊂ S2 ⊂ R3 become equidistributed on the unit sphere relative
to the rotationally invariant probability measure µS2. More precisely there exists an
absolute constant δ > 0 such that for φ any continuous function on S2 one has

1
r3(d)

∑
(a,b,c)

a2+b2+c2=d

φ
( a

d1/2 ,
b

d1/2 ,
c

d1/2

)
= µS2(φ) +Oφ(d−δ). (4.1)
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Proof. — By approximation and symmetry it is sufficient to prove (4.1) when φ is a
non-constant harmonic homogeneous polynomial which is SO3(Z)-invariant; moreover
we may also assume that φ is an eigenfunction of the Hecke operators Tp, p ̸= 2 on the
sphere obtained from Hurwitz quaternions of norm p (see Sarnak, 1990). By a formula
of Waldspurger (1985) there exists an holomorphic Hecke eigenform φJL such that∣∣∣∣ 1

r3(d)
∑

(a,b,c)
a2+b2+c2=d

φ
( a

d1/2 ,
b

d1/2 ,
c

d1/2

)∣∣∣∣2 = c(φ, d)L(φJL, 1/2)L(φJL × χ−d, 1/2)
d1/2

where 0 < c(φ, d) = doφ(1) and χ−d is the Kronecker symbol of the imaginary quadratic
field Q(

√
−d). The conductor of the L-function L(φJL × χ−d, 1/2) satisfies

Q(φJL × χ−d, 1/2) ≍ Q(φJL, 1/2)d2

and we have a subconvex bound (establishd in Duke, Friedlander, and Iwaniec
(1993) for the first time)

L(φJL × χ−d, 1/2) ≪φ (q2)1/4−δ.

It follows that
1

r3(d)
∑

(a,b,c)
a2+b2+c2=d

φ
( a

d1/2 ,
b

d1/2 ,
c

d1/2

)
≪φ d

−δ.

Remark 10. — Duke’s original proof was a bit different: the “Weyl” in (4.1) is up to a
constant the Fourier coefficient of a theta series and Duke used a method of Iwaniec
(1987) to bound such coefficients non-trivially. The two proofs are in fact connected by
another formula of Kohnen and Zagier (1981) and Waldspurger (1981).

This proof is one of several examples of a general scheme of applications of subconvexity
to certain equidistribution problems on arithmetic locally homogeneous spaces. For
such problems, one is reduced to showing that some Weyl sums converge to 0 and, by
a general version of Weyl’s equidistribution criterion, one may assume that the test
functions attached to them are automorphic forms. In that case, the Weyl sums are
related to values of L-function and a subconvex bound is often just what is needed to
establish the convergence to 0 (see also Einsiedler, Lindenstrauss, Michel, and
Venkatesh, 2011 and the presentation given by Breuillard, 2010 in this seminar for
an exotic example combining subconvexity and ergodic theory).

As already pointed out, a striking application of the subconvexity problem for L-
functions defined over a general number field is surveyed in Cogdell (2003) (see
Blomer and Harcos, 2010 for a complete proof): the resolution of the last remaining
case of Hilbert’s 11th problem (which we state here in a simplified form) by extending to
totally real number field an earlier result of Duke and Schulze-Pillot (1990) over Q.

Theorem (Cogdell–Piatetski-Shapiro–Sarnak). — Let K be a totally real number field
with ring of integers OK and q : O3

K → OK be a non-degenerate, totally definite, integrally
valued ternary quadratic form. Any sufficiently large and square-free integer d in OK,
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which is locally representable (integrally) by q is representable (integrally) by every form
in the genus of q.

4.2. The Quantum Unique Ergodicity conjecture
Given X = Γ\H a compact hyperbolic Riemann surface with hyperbolic probability

measure µX and (φj)j≥1 an orthonormal basis of Laplace eigenvalues with λj → ∞. The
behaviour of φj as j → ∞ has been much studied in the context of the Quantum Chaos
and in particular the sequence of probability measures

dµj(z) := |φj(z)|2dµX(z).

By a general result of Schnirelman, Zelditch and Collin de Verdière for almost every j
(i.e. outside a subsequence of density zero)

µj → µX , j → ∞

and Rudnick and Sarnak have surmised that this is always the case: this is the Quantum
Unique Ergodicity (QUE) Conjecture.

Much progress have been made when X is arithmetic (for instance if Γ comes from a
congruence subgroup of an indefinite quaternion algebra defined over Q). In particular
Lindenstrauss (2006) proved the conjecture when the φj are also eigenforms of the
Hecke operators. Lindenstrauss’s proof is based on ergodic theory however the conjecture
can also be approached through the subconvexity problem.

Let φ and g be Hecke cuspforms for some congruence subgroup of SL2(Z) and trivial
nebentypus; let L(sym2φ, s) and L(sym2φ× g, s) be the standard and Rankin–Selberg
L-functions associated to the the symetric square lift of (the representation generated
by) φ and (the representation generated by) g.

The following corollary is a consequence of formulas by Ichino (2008) and Watson
(2002) which relate the Weyl sums of the QUE equidistribution problem to central value
of special triple product L-functions

L(φ× φ× g, s) = L(g, s)L(sym2φ× g, s).

Corollary. — The resolution of the subconvexity problem for

L(sym2φ, s) and L(sym2φ× g, 1/2)

in the q∞(sym2φ)-aspect implies the Quantum Unique Ergodicity Conjecture for compact
and and non-compact arithmetic hyperbolic surfaces. Moreover if ψ is a smooth compactly
supported function on X, one has, for some δ > 0

µj(ψ) = µX(ψ) +Oψ(λ−δ
j ).

Remark 11. — If φ has a special shape, the L-function L(sym2φ × g, s) factor into a
product of lower degree L function for which the subconvexity problem is known and
hence the QUE conjecture: this is the case when φ is an Eisenstein series or a CM form
(the base change of a Hecke character of a quadratic field), see Luo and Sarnak (1995)
and Sarnak (2001).
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4.3. Weak Subconvexity

This point is the perfect moment to introduce another variant of the Subconvexity
Problem. As we have seen in the beginning, if L(π, s) is an L-function of degree d whose
local non-archimedean parameters are all bounded by 1, an immediate application of
the approximate functional equation yield the convexity bound

L(π, s) ≪d Q(π, s)1/4(logQ(π, s))d−1

and in fact this can be improved to a log-free convexity bound (Heath-Brown, 2009)

L(π, s) ≪d Q(π, s)1/4.

The Weak Subconvexity Problem asks, not for a saving by a positive power of Q(π, s),
but rather for a saving of a power of log(Q(π, s)), for instance

Weak Subconvexity Problem. — Prove that for any ε > 0,

L(π, s) ≪d,ε Q(π, s)1/4(logQ(π, s))ε−1.

Soundararajan (2010) developed a set of techniques to solve this problem for a very
general class of L-functions (see also the recent Soundararajan and Thorner, 2019).
The methods involved have little to do with the general theory of automorphic forms
but rather with the basic analytic properties of their L-functions (zero-free regions etc.)
along with the general theory of multiplicative functions. In particular, Soundararajan
solved the Weak Subconvexity Problem for L-functions of interest to the Quantum
Unique Ergodicity Conjecture:

Theorem (Soundararajan, 2010). — Let φ be an holomorphic Hecke-cuspform of
weight k ≥ 2 and g be a Hecke cuspform, one has

L(sym2φ, s) ≪ε,s k
1/2(log k)ε−1

and
L(sym2φ× g, 1/2) ≪ε,g k(log k)ε−1.

Remarkably this weak subconvex bound paired with additional methods from classical
analytic number theory enabled Holowinsky and Soundararajan (2010) to solve
the holomorphic version of the QUE conjecture which so far does not seem accessible to
ergodic methods.

Given φ a holomorphic Hecke cuspform of weight k for SL2(Z), one defines the
associated probability measure on the modular curve Y0(1) = SL2(Z)\H

dµφ(z) := yk|φ(z)|2
∥φ∥2 dµY0(1)(z), ∥φ∥2 = µY0(1)(yk|φ(z)|2) = 3

π

∫
Y0(1)

yk|φ(z)|2dxdy
y2 .
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Theorem (Holowinsky–Soundararajan). — For φ as above, one has

µφ → µY0(1), k → ∞.

More precisely, there exists δ > 0 such that for ψ a smooth compactly supported function,
one has,

µφ(ψ) = µY0(1)(ψ) +Oψ((log k)−δ).

As striking corollary (due to Rudnick, 2005) concerns the distribution of the zeros
of the modular form φ:

Theorem (Rudnick). — For φ as above let

Z(φ) = {z0 ∈ Y0(1), φ(z0) = 0}

be the multiset of zeros of φ (one has |Z(φ)| ≃ k/12). As k → ∞, the multiset Z(φ)
becomes equidistributed on Y0(1) for the measure µY0(1): for ψ a smooth, compactly
supported function, one has, as k → ∞,

1
|Z(φ)|

∑
z0∈Z(φ)

ψ(z0) = µY0(1)(ψ) + oψ(1).

In particular the multiplicity of any zero of φ is o(k).

5. THE METHOD OF MOMENTS

One of the most useful method to solve the subconvexity problem is the method of
moments whose principle is as follows:

To simplify notation we assume s = 1/2 and write Q(π) for the analytic conductor
Q(π, 1/2). Given L(π0, 1/2) a central L-value attached to some automorphic object π0
one is interested in bounding, one choose a suitable family F of similar objects contain-
ing π0 and such that for π ∈ F

Q(π) ≍ Q(π0).
For k an integer we consider the normalized k-th moment

Mk(F) =
∑
π∈F

L(π, 1/2)k
Q(π)k/4 if k is odd,

Mk(F) =
∑
π∈F

|L(π, 1/2)|k
Q(π)k/4 if k is even.

If the family F is large and regular enough, we expect to be able to prove (unconditionally)
that the Generalized Lindelöf Hypothesis holds on average: for any ε > 0,

Mk(F) ≪ε Q(π0)ε−k/4|F|. (5.1)

Suppose this is the case; then if k is even or for k odd, if we know in addition that

∀π ∈ F , L(π, 1/2) ≥ 0,
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we obtain (removing all non-negative terms but the one of interest)

L(π0, 1/2) ≤ Q(π0)1/4Mk(F)1/k ≪ε Q(π0)ε|F|1/k.

If F is small enough, so that for some δ > 0, one has

|F| ≤ Q(π0)k/4−δ

we would have solved the problem.

Remark 12. — Here to simplify the discussion, the family F was presented as a finite
set with the uniform counting measure. In reality F is rather to be a subspace of a
space of automorphic representation (which could contain both discrete and continuous
component) and comes equipped with a measure whose total volume is |F|.

5.1. Computing moments: approximate functional equation

To evaluate the moments Mk(F) the most naive (but often successful way) is to use
an approximate functional equation like (2.2) to represent the central value L(π, 1/2)
as finite sums of length ≍ Q(π)1/2, expand the k-th power and invert summations.
Before doing so, it is beneficial to remember that the powers L(π, s)l, l ≥ 1 can also
be considered as L-functions: namely as a Rankin–Selberg L-function of π against the
automorphic isobaric sum representation ⊞l1 which is directly related to Eisenstein
series. In elementary terms, one has the approximate identity between Dirichlet series

L(π, 1/2)l ≍
∑

n≪Q(π)l/2

λπ(n)τl(n)
n1/2

for τl the divisor function of order l. For instance, if k = 2l is even, the k-th moment
would look like

∑
π∈F

∑
m,n≪Q(π0)l/2

τl(m)τl(n)λπ(m)λπ(n)
m1/2n1/2 =

∑
m,n≪Q(π0)l/2

τl(m)τl(n)
m1/2n1/2

∑
π∈F

λπ(m)λπ(n).

One can then evaluate the inner sum over the family F∑
π∈F

λπ(m)λπ(n)

by means of a “trace formula”: this formula identify the sum with a sum of “geometric
terms” which depend on m,n and involve a suitable transform of the characteristic
function of F (or rather of the measure whose support is F); one can then recombine
the various m,n sums together: in the classical setting the “trace formula” is often
the Kutnetzov formula either for GL2 or for GL3 and the geometric terms are sums of
Kloosterman sums in 2 or 3 variables.
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5.2. The Amplification method
It happens (more often than not) that one can achieve (5.1) for the limit case

|F| = Q(π0)k/4+o(1)

and not for higher k and this just does not solve the problem. In such a situation, a
technique due to Iwaniec comes to the rescue, the Amplification method: in this limiting
situation, one is often able to have a precise asymptotic formula of the relevant moment:

Mk(F) = Q−k/4|F |(1 +O(|F|−η), (5.2)

for some η > 0 and Q ≍ Q(π0). Iwaniec’s idea is to modify the mesure on F , weighting
each π with an addition quadratic term (called an “amplifier”) of the shape

A0(π)2 =
∣∣∣∑
ℓ≤L

x0,ℓλπ(ℓ)
∣∣∣2

for L a small power of Q(π0) and such that
– The volume of F for this modified measure remains the same,
– The amplifier at π0 is a bit large: A0(π0) ≫ Lα (and by preservation of the total

volume, one expects the weight of any π ≠ π0 to be small although one does not
explicitly need to prove it)

Remark 13. — Amplifiers do exists: an obvious possibility would be to choose x0,l to be
proportional to λπ0(l) because (by Rankin–Selberg theory) one expects that∑

l≤L
|λπ0(ℓ)|2 ≫ L

and for π ̸= π0, one expects that∑
l≤L

λπ0(ℓ)λπ(ℓ) ≪ L1/2;

however, proving these expectation would often require the GRH. It is however possible
to construct amplifiers using the combinatorial properties of Hecke operators: for instance
for f a Hecke eigenform, and for p a prime not dividing the level of f , the relation

λf (p)2 − λf (p2) = χf (p)

allows such a construction (Duke, Friedlander, and Iwaniec, 1994b).

One can then try to evaluate this amplified moment which, for k even, equals

Ma
k(F) =

∑
π∈F

A0(π)2|L(π, 1/2)|k.

The analysis of this amplified moment is very similar to the initial one: in the classical
setting, this amounts to replacing some terms λπ(n) by λπ(ℓn) (using the multiplicativity
of λπ). Since L is small, this does not perturb too much the outcome: one obtains
instead of (5.2), an asymptotic formula of the shape

Ma
k(F) = Q−k/4|F |(1 +O(LA|F|−η),
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where the exponent A could be large but is fixed.
By positivity, we obtain

A0(π0)2/kL(π0, 1/2) ≪ Q(π0)1/4(1 + LA/kQ(π0)−δ)

and choosing L = Q(π0)η with η positive but small enough (so that LA/kQ(π0)−δ = 1)
we obtain

L(π0, 1/2) ≪ Q(π0)1/4−2αδ/k

which is a often barely) subconvex bound.

6. THE BOUND OF CONREY, IWANIEC, PETROW AND YOUNG

In this section we briefly explain the principle of proof of Theorem 1 (in the q aspect
only). It is based on the two facts:

– If f(z) is a primitive Hecke cuspform with trivial nebentypus, one has the inequality
due to Guo (1996)

L(f, 1/2) ≥ 0.
– Let Eχ,χ(s, z) be the Eisenstein series (of level q2 and trivial nebentypus) constructed

out of a “new” flat section of the induced representation IndGL2
B (χ, χ), then for

s = it, one has
L(Eχ,χ(it, •), 1/2) = |L(χ, 1/2 + it)|2.

We denote by B0(q, χ−2) an orthogonal basis made of weight 0 Maass forms f with
Laplace eigenvalue

λf = (1/2 + itf )(1/2 − itf ) = 1/4 + t2f > 0 i.e. tf ∈ R∪] − i/2, i/2[,

which are also eigenform of the Hecke operators Tp, (p, q) = 1; we also denote by
BE(q, χ−2) an orthonormal basis made of (flat sections) of the induced representations
having the same level and nebentypus (such basis decomposes into a disjoint union
indexed by the pairs of characters (χ1, χ2) such that χ1.χ2 = χ−2).

Using Atkin–Lehner Theory, Petrow and Young show that one can find bases as above
so that, for any f ∈ B0(q, χ−2) and any E(fs, •), f ∈ BE(q, χ−2) the twisted L-function
(formed out of the Fourier expansion)

L(f × χ, 1/2) or L(E(fs) × χ, 1/2)

is a positive multiple (with constant 1 if the form is a newform) of the L-value

L((f × χ)new, 1/2) or L((E(fs) × χ)new, 1/2)

of the newform underlying f × χ or E(fs) × χ; in particular, this twisted L-function is
non-negative.
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For T ≥ 1, let hT : R∪] − i/2, i/2[→ R≥0 a suitably smooth non-negative function
vanishing for |t| ≥ T , Petrow and Young compute the cubic moment

M3(h) =
∑

f∈B0(q,χ−2)
h(tf )wfL(f × χ, 1/2)3

+
∑

f∈BE(q,χ−2)

1
2πi

∫
R
h(t)wf (t)L(E(fit) × χ, 1/2)3dt

where the wf , wf(t) are non-negative weights (involving the values at 1 of the adjoint
L-functions) satisfying

wf = (q(1 + |tj|))o(1), wf (t) = (q(1 + |t|))o(1).

The outcome of this computation is the following

Theorem 5 (Petrow–Young). — Notations as above, there is an absolute constant A
such that for T ≥ 1,

M3(hT ) ≪ε T
Aq1+ε.

In particular, by positivity, one has, for f ∈ B0(q, χ−2) or f ∈ BE(q, χ−2),

L(f × χ, 1/2) ≪ (1 + |tf |)Aq1/3+ε, L(E(fit) × χ, 1/2) ≪ (1 + |t|)Aq1/3+ε.

In particular when f ∈ BE(q, χ−2) is the “new” flat section of the pair (1, χ−2), one has

L(E(fit) × χ, 1/2) = |L(χ, 1/2 + it)|2 ≪ (1 + |t|)Aq1/3+ε.

Remark 14. — In fact Petrow and Young have showed that one could take A = 1 + ε

above so that the Weyl bound holds simultaneously in the q and s-aspect.

6.1. Sketch of the proof

Applying the approximate functional equation to

L(f × χ, 1/2) and L(f × χ, 1/2)2

converts these L-values into finite sums of length ≈ q(1 + |tj|) and ≈ q2(1 + |tj|)2

respectively; inverting summations and applying Kuznetzov’s formula, the evaluation of
the third moment is then essentially reduced to that of the following kind of sum:

q
∑

n1,n2,n3≪q

χ(n1)χ(n2n3)√
n1n2n3

∑
c≡0 (mod q)

Sχ2(n1, n2n3; c)
c

g
(√

n1n2n3

c

)
where

Sχ2(n1, n2n3; c) =
∑

x (mod c)
(x,c)=1

χ2(x)e
(n1x+ n2n3x

c

)
, x.x ≡ 1 (mod c)

is a twisted Kloosterman sum and gT is a function depending on hT . The computation
then proceeds by applying the Poisson summation formula to each variable n1, n2, n3.
We won’t be able to provide more details of the subsequent, very delicate analysis of
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this sum, except to say that, at the end, the main object of interest is the following
Mellin transform (to simplify, we assume that q is prime)∑

ψ (mod q)
gχ(ψ)L(ψ, s1)L(ψ, s2)L(ψ, s3)L(ψ, s4) (6.1)

where ψ runs over multiplicative characters modulo q, the si = 1
2 + iti, i ≤ 4 are complex

numbers, all on the critical line (and for all practical purposes, one can imagine they
are all equal to 1/2) and gχ(ψ) is the following exponential sum,

gχ(ψ) =
∑
u,v

χ(u)χ(u+ 1)χ(v)χ(v + 1)ψ(uv − 1).

This algebraic exponential sum in two variables can be bounded using the theory
of ℓ-adic sheaves and Deligne’s Weil II main theorem (Petrow and Young, 2020,
Thm 6.9): for q a prime, one has

|gχ(ψ)| = O(q). (6.2)

Therefore, using the fourth moment crude bound∑
ψ (mod q)

|L(ψ, s1)L(ψ, s2)L(ψ, s3)L(ψ, s4)| ≪si
q1+ε (6.3)

(i.e. GLH holds on average for the fourth power of Dirichlet L-functions), one obtains∑
ψ (mod q)

gχ(ψ)L(ψ, s1)L(ψ, s2)L(ψ, s3)L(ψ, s4) ≪ε,s1,...,s4 q
2+ε (6.4)

which implies (5) when q is prime.

Remark 15. — This analysis essentially carries over when q is composite but cube free
(although the proof becomes much more involved in its combinatorial aspects). On
the other hand, when q contains large cube divisors, the bound (6.2) fails when ψ

belongs to certain cosets of the group of characters modulo q; it is eventually possible
to “compensate” this loss by bounding the fourth moment (6.3) along such bad (and
sparse) cosets of character and to obtain Weyl’s bound for a general modulus q (see
Petrow and Young, 2019).

Remark 16. — The bound (6.4) is probably not optimal: indeed the function

ψ 7→ gχ(ψ)

is highly oscillating (just compute its first and second moments) in fact, it should satisfy
a Sato–Tate law as in Katz, 2012); on the other hand the function

ψ 7→ L(ψ, s1)L(ψ, s2)L(ψ, s3)L(ψ, s4)

is not expected to oscillate a lot: if s1 = · · · = s4 = 1/2, this is just |L(ψ, 1/2)|4 and
Young has given an asymptotic formula for the average of this function with a main term
of size q(log q)O(1) and a power saving error term (Young, 2011). In fact, replacing q2+ε

by q2−δ, δ > 0 in (6.4) would allow to apply the amplification method and to improve
the Weyl exponent 1/6 in Theorem 1 (at least for the q aspect).
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6.2. Motohashi’s formula

As we have discussed above, the proof of Theorem 1 builds on a connection between
the cubic moment of Hecke L-functions M3(h) and the fourth moment of Dirichlet
L-functions (6.1). Such a connection is not at all accidental and was discovered by
Motohashi (1993, 1997) for modular forms of level 1: his formula relates cubic moments
of modular forms of level 1 to the fourth moment of Riemann’s ζ-function on the critical
line and takes the following form: for g an holomorphic function of rapid decay in a
sufficiently wide horizontal strip {|Im t| ≤ A}, A ≥ 1 one has (see Motohashi, 1997,
Chap. 4) ∫

R
|ζ(1/2 + it)|4g(t)dt = M3,0(g̃) + M3,E(g̃) + M3,h(g̃) + Z(g)

where g̃ : R∪ iR → C is an explicit transform of g involving hypergeometric and Gamma
functions, Z(g) is an explicit linear form and

M3,0(g̃) =
∑

f∈B0(1)
g̃(tf )wfL(f, 1/2)3,

for B0(1) an orthonormal basis of Hecke Maass cuspforms of level 1 while

M3,E(g̃) = 1
2πi

∫
R
g̃(t)wf (t)L(E(it, •), 1/2)3dt

for E(it, •) the non-holomorphic Eisenstein series of level 1 (normalized so that
L(E(it, •), 1/2) = |ζ(1/2 + it)|2) and M3,h(g̃) is the similar cubic moment involving
orthonormal bases of holomorphic Hecke cuspforms of level 1 and even weight k ≥ 2.

Therefore the work of Conrey–Iwaniec–Petrow–Young provides a sort of approxi-
mate inversion of Motohashi’s formula for χ-twist of modular forms of level q and
nebentypus χ−1.

7. SUBCONVEXITY VIA THE δ-SYMBOL

In this section, we present Munshi’s use of the δ-symbol in the context of the
subconvexity problem; we will in fact, discuss in detail Sharma’s Theorem 3 which is
another instance of Munshi’s approach.

The δ-symbol is designed to evaluate how two arithmetic functions correlate with one
another: consider the correlation sum∑

n≤N
λf (n)λg(n) =

∑∑
m,n≤N

λf (m)λg(n)δm=n.

As in the circle method, the principle is to have a workable analytic expression for the
Kronecker symbol

δm=n = δm−n=0

allowing to somewhat separate the m and n variables from one another. The detection
of the condition m − n = 0 is build on congruences (using the obvious fact that all
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non-zero integers divide 0 while only very few integers divide a given non-zero integer).
There are multiple versions of this method: the first instance can be found in Duke,
Friedlander, and Iwaniec (1994a); here is another one from Heath-Brown (1996)

Theorem (Heath-Brown). — There exist a non-negative function smooth h : R>0×R →
R≥0 supported in the domain x ≤ max(1, 2|y|) and such that for any A ≥ 1 and C ≥ 1

δn=0 = 1 +OA(C−A)
C2

∑
c≥1

∑
u(c)

(u,c)=1

e
(
un

c

)
h
(
c

C
,
n

C2

)
.

For the purpose of this exposition, this formula means that for |n| ≤ N ≤ C2/2, one
can make the approximation

δn=0 ≍ 1
C2

∑
c≤C

∑
u(c)

(u,c)=1

e
(
un

c

)
.

We can now start describing Sharma’s proof as presented in Sharma (2019). Let φ be
a GL3 cuspform of level 1, g a modular cuspform of level 1 and χ a non-trivial Dirichlet
character of prime modulus; the objective is solve the subconvexity problem for the
Rankin–Selberg L-function L(φ× g× χ, s) as q → ∞ along the primes: in that case the
analytic conductor is ≈ q6.

From the approximate functional equation for L(φ × g × χ, s), Sharma’s theorem
essentially amounts to a bound of the shape∑

n∼q3

λφ(1, n)√
n

λg(n)χ(n) ≪ q3/2−δ (7.1)

where (λφ(r,m))r,m are the Fourier coefficients of φ and (λg(n))n are those of g.
Applying directly the δ-symbol to detect the condition m − n = 0 for the two

sequences (λφ(1,m)/
√
m)m∼q3 and (λg(n)χ(n))n∼q3 would produce a sum over the

additive characters of modulus c ≤ C with C = (q3)1/2 = q3/2. Instead, following Munshi,
one perform a “reduction trick”: one first detect the congruence m− n ≡ 0 (mod q) and
then apply the δ-symbol to the (smaller) quotient m−n

q
; in other terms, we write

δm−n=0 = δm−n≡0 (mod q) × δm−n
q

=0.

The first condition is detected through additive characters modulo q:

δm−n≡0 (mod q) = 1
q

∑
u (mod q)

e
(um
q

)
e
(
−un

q

)
and combining with the δ-symbol we obtain (using that q is prime)

δm−n=0 ≈ 1
qC2

∑
c≤C

∑
u (mod cq)
(u,cq)=1

e
(um
cq

)
e
(
−un

cq

)

for C ≍ (q2)1/2 = q.
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Remark 17. — Therefore the size of the set of additive characters involved in the δ-
symbol is the same (qC2 ≍ q3) but its structure has changed and is better adapted to
the present situation (because of the multiplicative character χ (mod q) in the second
sequence). This reduction is one of the key innovations responsible for the success of
Munshi’s δ-symbol method.

Our sum of interest becomes
1
qC2

∑
c≤C

∑
u (mod cq)
(u,cq)=1

( ∑
m∼q3

λφ(1,m)√
m

e
(um
cq

))(∑
n∼q3

λg(n)χ(n)e
(
−un

cq

))

and one can now work separately on the inner m and n sums which are sums of Fourier
coefficients of automorphic forms twisted by additive characters.

The automorphy of the GL3, level 1 cuspform φ and of the GL2 level q2 (twisted)
cuspform g × χ and in particular the properties of their respective Whittaker models
implies that these sums essentially transform as follow:

∑
m∼q3

λφ(1,m)√
m

e
(um
cq

)
≍

∑
m≪(cq)3/q3

λφ(1,m)√
m

S(um, 1; cq)
√
cq

∑
n∼q3

λg(n)χ(n)e
(
−un

cq

)
≍ q3

cq

∑
n≪ (cq)2

q3

λg(n) 1
q1/2

∑
b (mod q)

χ(b)e
(bc+ un

cq

)

where S(um, 1; cq) is the classical Kloosterman sum.
Summing over the u variable yields a sum of the shape

1
qC2

q2

C
C1/2 ∑

c≤C

∑
m≪c3

λφ(1,m)√
m

∑
n≪c2/q

λg(n)e
(mnq̄

c

)
U(m,n, c; q).

where
U(m,n, c; q) = 1

q

∑
u(q)

(u,q)=1

S(c̄3ūm, 1; q)
∑

b (mod q)
χ(b)e

(t b+ u

q

)
.

To proceed further, another key observation is necessary: the variable m ≪ C3 is long
compared to C2q so it is reasonable to “smooth” that variable (i.e. remove λφ(1,m))
using the Cauchy–Schwarz inequality: the sum is bounded by

≤ q

C5/2

( ∑
m∼C3

|λφ(1,m)|2
m

)1/2
×

( ∑∑
c,c′≪C

n,n′≪C2/q

λg(n)λg(n′)
∑

m≪C3

e
(mnq̄

c

)
e
(

− mn′q̄

c′

)
U(m,n, c; q)U(m,n′, c′; q)

)1/2

The diagonal term (c = c′, n = n′) in the inner sum yields a contribution of size
≪ qC1/2 ≈ q3/2 (using that the algebraic exponential sum U is bounded by O(q1/2)).
Outside of the diagonal, one applies the Poisson summation formula on the m-sum:
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one obtains a sum of length ≪ C3/C2q = C/q ≈ 1 involving the Fourier transform
(mod qcc′) of the function

x (mod qcc′) 7→ e
(xnq̄
c

)
e
(
−xn′q̄

c′

)
U(x, n, c; q)U(x, n′, c′; q).

The hardest cases are the generic ones (c, n) ̸= (c′, n′) and involve bounding some
algebraic exponential sums modulo q in 7 variables:

1
q1/2

∑
x (mod q)

U(x, n, c; q)U(x, n′, c′; q)e
(−xy

q

)
.

Using the Newton polygon non-degeneracy criterion of Adolphson and Sperber
(1989), Sharma shows that Deligne’s bound O(q−5/2q7/2) = O(q) is satisfied (see also
Lin, Michel, and Sawin (2021) for a more systematic proof using the general properties
of hypergeometric sums and sheaves): eventually the sum (7.1) is bounded by

≪ε q
ε(qC1/2 + intermediate terms + q3/4C1/2) ≪ qε(q3/2 + intermediate terms + q5/4).

The main term in this bound (coming from the diagonal term) just misses the target
but one can improve the situation by a further trick (akin to an amplification) which
eventually yields the subconvex bound

L(φ× g × χ, s) ≪ε,φ,g,s q
3/2−1/16+ε.

8. SUBCONVEXITY VIA AUTOMORPHIC PERIODS

The use of automorphic periods in the context of the subconvexity problem was
pionereed by Venkatesh (2010) inspired in parts by the earlier works Bernstein and
Reznikov (2010) and Clozel and Ullmo (2005). The automorphic period approach,
when it works, has the advantage to extending seemlessly to L-functions defined over a
general number field. In this section we review this circle of ideas.

In very rough terms, the general shape of an automorphic period is as follows: G is a
reductive group (defined over Q) H ⊂ G is a Q-subgroup, π ∈ A(G), σ ∈ A(H) are
automorphic representations for G and H and φ ∈ π, ψ ∈ σ are automorphic forms in
these representation: their associated automorphic period is the integral (normalized à
la Waldspurger)

P(φ, ψ) =
∫

[H]
φ(h)ψ(h)dh

where [H] := H(A)/H(Q).
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8.1. Subconvex bound for twisted Hecke L-function (after Venkatesh)
We sketch the principles of this approach in one of the simplest yet meaningful case

of the Hecke L-function L(π × χ, 1/2).
Let χ : Q×\A× → C(1) be a idele character and π ∈ A0(GL2) be an automorphic

cuspidal representation: for φ ∈ π ⊂ L2
0(GL2, 1) an automorphic form which corresponds

to a pure tensor (i.e. φ ≃ ⊗vφv in the Whittaker model), one has, for suitable choices of
measures, the following identity between global and local integrals (see Jacquet and
Langlands, 1970)

P(φ, χ) :=
∫

[A]
φ(h)χ(h)dh = Λ(π × χ, 1/2)

∏
v

∫
A(Qv) φv(h)χv(h)dh
Lv(π × χ, 1/2) (8.1)

where
A =

{
h =

(
t 0
0 1

)}
⊂ GL2

is the subgroup of upper-diagonal matrices, [A] = A(Q)\A(A) and

χ(h) := χ(det(h)) = χ(t).

By the Plancherel formula, one has∑
χ∈[̂A]

|P(φ, χ)|2 =
∫

[A]
|φ(h)|2dh

(we have written the integral over the space of unitary characters [̂A] as a discrete sum
although it has continuous components) and the left-hand side can be seen as a second
moment of L(π × χ) weighted by local integrals.

Suppose that χ0 corresponds to some Dirichlet character, ramified at a finite prime q
and π is everywhere unramified (corresponds to a weight 0 Maass form of level 1); let
φnew ≃ ⊗vφ

new
v ∈ π be the new vector, let nq be the q-adic unipotent matrix

nq :=
(

1 1/q
0 1

)
∈ GL2(Qq)

and set
φ0 := nq.φ

new.

An evaluation of the local period
∫
A(Qq) φ

new
q (h.nq)χ0,v(h)dh (Michel and Venkatesh,

2010, § 3.3.2) shows that

P(φ0, χ0) ≍ L(π × χ0, 1/2)
q1/2 (8.2)

and by positivity
|L(π × χ0, 1/2)|2

q
≪ 1

q

∑
χ (mod q)

∫
t∈[−1,1]

|L(π × χ, 1/2 + it)|2dt ≪
∫

[A]
|φnew(h.nq)|2dh

Since
∫

[A] |φnew(h.nq)|2dh ≪ 1, we “trivially” recover the convexity bound. To go further,
we will pretend that [A] is compact ([A] does not even have finite volume): this issue can
be addressed rigorously by a suitable regularization/truncation argument; alternatively,
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one might look instead for a similar integral when A is an anisotropic torus (modulo
the center): the argument would then be completely rigorous and, in effect, would
yield subconvex bounds for certain Rankin–Selberg L-functions. We consider then the
spectral decomposition

nq.|φnew|2 = ∥φnew∥2
2.1 +

∑
ψ∈B0(1)

⟨|φnew|2, ψ⟩nq.ψ + Eisenstein spectrum contribution

(8.3)
where B0(1) is an orthonormal basis of spherical automorphic cuspforms of level 1. The
cuspidal contribution is bounded by (Michel and Venkatesh, 2010, § 4.4.2)∑

ψ∈B0(1)
⟨|φnew|2, ψ⟩

∫
[A]
ψ(h.nq)dh =

∑
ψ∈B0(1)

⟨|φnew|2, ψ⟩P(nq.ψ, 1) ≪ q−δ, δ > 0

and similarly for the Eisenstein spectrum contribution. We therefore obtain an asymp-
totic formula ∫

[A]
|φnew(h.nq)|2dh =

∫
[GL2]

|φnew(g)|2dg +O(q−δ). (8.4)

Since there is a main term, this not good enough. To get away with it, Venkatesh
applies an adelic version of the amplification method: the contribution of χ0 is amplified
by replacing φnew by the slighly more complicated vector

A0(φnew) =
∑
l≤L

χ0(l)a(l)l.φnew

where L < q is some parameter and

a(l)l :=
∏
p|l

(
l 0
0 1

)
∈
∏
p|l
A(Qp).

One obtains instead that for some θ, A > 0

L2 |L(π × χ0, 1/2)|2
q

= (
∑
l≤L

χ0(l)χ0(l))2 |L(π × χ0, 1/2)|2
q

≪
∫

[GL2]
|A0(φnew)|2dg + LAq−δ ≪ L2−2θ + LAq−δ;

for this one open the square and expand the l-sum in the corresponding “main term”
and use the decay of “matrix coefficients”∫

[GL2]
φnew(g)φnew(a(l−1l′)g)dg ≪ [l, l′]−2θ.

Eventually this yields
L(π × χ0, 1/2) ≪ q1/2−δ′

upon choosing L a suitable positive power of q.

Remark 18. — Wu (2014) showed that any exponent

δ′ <
1
8(1 − 2θ)

is admissible in the bound above.
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8.2. Computing moments via automorphic periods

Identities relating values of L-functions to automorphic periods such as (8.1) exist for
a numerous pairs (G,H) and take usually the shape

|
∫

[H] φ(h)ψ(h)dh|2

⟨φ, φ⟩⟨ψ, ψ⟩
= c(π, σ)Λ(π, σ, 1/2)

∏
v

∫
H(Qv)

⟨h.φv, φv⟩⟨h.ψv, ψv⟩
⟨φv, φv⟩⟨ψv, ψv⟩

dh (8.5)

where the terms in the local integrals are matrix coefficients of the local representations
constituting π and σ and c(π, σ) is a positive global factor of great theoretical significance
for which we will only retain the estimate

c(π, σ) = Q(π, σ, 1/2)o(1).

The Hecke–Jacquet–Langlands identity (8.1) (squared) is an example for the pair
(G,H) = (GL2 × GL2, A × A); the case of GL2 × GL2 Rankin–Selberg L-functions
corresponds to G = GL2 × GL2, H = GL2 (diagonally embedded) (and ψ an Eisenstein
serie); similarly Waldspurger’s formula discussed in §4.1 corresponds to G = PB× for B
a quaternion algebra, H a (non-split) torus associated with a quadratic subfield of B
or equivalently G = SO(V ), H = SO(W ) with W ⊂ V , dim V = dimW + 1 = 3;
finally the GL2 × GL2 × GL2 triple product L-functions in section §4.3 corresponds to
G = SO(V ), H = SO(W ) for W ⊂ V and dim V = dimW + 1 = 4. All these cases are
examples of Gan–Gross–Prasad pairs for which the formula (8.5) is conjectured in a
very precise form (Gan, Gross, Prasad, and Waldspurger, 2012).

Identities such as (8.5) make it possible to compute weighted first/second moments of
L(π, σ, 1/2) by averaging the left-hand size of (8.5) over orthogonal families (φ, ψ) ∈
(π, σ) of forms and their representations. Various kinds of averages are possible: for
instance, one could fix φ0 ∈ π0 and average over an orthonormal basis of automorphic
forms on [H] (we call this situation the vertical direction) or one could fix ψ0 ∈ σ0
and average over an orthonormal basis of automorphic forms on [G] (we call this the
horizontal direction).

8.3. An example in the vertical direction

The case discussed in Section 8.1 is along the vertical direction and, as we have seen,
by Plancherel formula, this amounts to evaluate the integral along [H] of the restriction
of |φ0|2[H]; after decomposing spectrally the square |φ0|2 along a basis of automorphic
forms on G and and integrating the resulting linear combination over [H] one obtains
(at least formally) an equality with another sum of periods:

∑
σ∈A(H)

∑
ψ∈Bσ

|
∫

[H] φ0(h)ψ(h)dh|2

⟨φ0, φ0⟩⟨ψ, ψ⟩
=
∫

[H]

|φ0(h)|2
⟨φ0, φ0⟩

dh

=
∑

π′∈A(G)

∑
φ′∈Bπ′

⟨ |φ0)|2
⟨φ0, φ0⟩

, φ′⟩
∫

[H]
φ′(h)dh.
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(again we write the integrals over the space of automorphic representations of G and H
as discrete sums although then might contain continuous components). These kind
of considerations played an important role in Michel and Venkatesh (2010) and
Venkatesh (2010); of course this identity needs to be complemented by additional
technical arguments to address convergence issues related to the possible non-compactness
of the adelic quotients.

Another striking example, we describe Nelson’s proof of Weyl’s bound for L-functions
of finite order Hecke characters over a general number field F (Theorem 2, Nelson,
2020). We start by explaining how the Conrey–Iwaniec–Petrow–Young–Motohashi
formula can be derived (at least formally) from automorphic periods consideration.

Let E(g) be an Eisenstein series attached to the induced representation IndGL2
B (1, 1)

and consider the (non-convergent) automorphic period∫
[A]

|E(h)|2dh

Decomposing (formally) |E|2 along a basis automorphic forms with trivial central
characters we obtain

|E|2 =
∑
π

∑
φ∈Bπ

⟨|E|2, φ⟩φ

so that ∫
[A]

|E(h)|2dh =
∑
π

∑
φ∈Bπ

⟨|E|2, φ⟩
∫

[A]
φ.

For π generic and φ ∈ π a factorable vector, the integral along [A] (possibly after
analytic continuation and regularisation) is equal, up to local factors, to the Hecke
L-function L(π, 1/2); the inner product (again possibly after analytic continuation and
regularisation), is a Rankin–Selberg integral factoring as a product of local integrals
times the Rankin–Selberg L-function

Λ(π × (1 ⊞ 1), 1/2) = Λ(π, 1/2)2

and therefore∫
[A]

|E(h)|2dh =
∑
π gen.

Λ(π, 1/2)3 × local terms + non-generic contrib.

Alternatively (this was the starting point in § 8.1) we have, by Plancherel formula,
(again formally) for the torus quotient [A] ≃ Q×\A×∫

[A]
|E(h)|2dh ≃

∑
ω∈[̂A]

|
∫

[A]
E(h)ω(h)dh|2

and by Hecke theory, the Hecke integral
∫

[A] E(h)ω(h)dh (after analytic continuation)
factors as a product of local terms times L(ω, 1/2)2. Therefore, one expects a relation
of the shape∑

π∈Agen(GL2,1)
Λ(π, 1/2)3w(π) =

∑
ω∈ ̂Q×\A×

w̃(ω)|Λ(ω, 1/2)|4 + non-generic contrib
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where the weights w(π) and w̃(χ) depend on the local components of the flat section f

used to define the Eisenstein series E.
Nelson (2020, Thm 10.4) has provided a rigorous derivation of this identity over

a general number field F ; the non-generic contribution is then made of 15 additional
degenerate terms that arise during various regularisation processes.

Moreover, for χ : F×\A×
F → C(1), a Hecke character of finite order and with cube-free

conductor q ⊂ OF , Nelson has given examples of non-negative weights w(π) whose
support contains χ-twists π′ × χ where π′ is generic, has conductor divisible by q2 and
central character χ−2; n particular the twist has trivial central character and

L(π′ × χ, 1/2) ≥ 0.

Nelson has also bounded adequately the corresponding weights w̃(ω) (using in particular
the bound (6.2) of Petrow and Young) and he eventually obtained the Weyl bound (3.3).

8.4. An example in the horizontal direction

We conclude this survey with a discussion of the proof of Theorem 4 by Nelson.
Let us recall that the objective is the subconvexity problem for the central value of a

certain Rankin–Selberg L-function

L(πE × σ∧
E, 1/2)

where πE (resp. σE) is a certain automorphic cuspidal representations of GLn+1,E
(resp. GLn,E) where E/Q is a quadratic field. The representations πE, σE are obtained
respectively from automorphic representations π and σ of the unitary group U(V ) =: G
of an hermitian space of dimension n + 1 and its subgroup U(W ) =: H for W a non
degenerate subspace of dimension n.

To simplify slightly this discussion, we assume that σ (and hence σE) is fixed. Moreover
to ease future notations, we will write π0 for π.

By (3.6), the archimedean Langlands parameters of π0,E have size ≍ T ≥ 1 for T
large; in particular the analytic conductor

Q(π0,E × σ∧
E, 1/2) ≍ T 2n(n+1),

and the convexity bound in the T aspect becomes

L(π0,E × σ∧
E, 1/2) ≪ T

n(n+1)
2 +o(1)

and the purpose of Theorem 4 is to improve this bound.
The proof is via automorphic periods: for (G,H) = (U(V ), U(W )), the conjecture

of Gan–Gross–Prasad predicts that for suitable cuspidal automorphic representations
π, σ of G and H and automorphic forms in these φ ∈ π, ψ ∈ σ, the square of the period
|P(φ, ψ)|2 satisfy the identity (8.5) with

L(π, σ, s) = L(πE × σ∧
E, s).



1190–35

This conjecture has been established under the assumptions of Theorem 4 thanks to
the work of Jacquet–Rallis, Waldspurger, Zhang, Yun and many others (see Beuzart-
Plessis, 2019, for a recent survey and Beuzart-Plessis, Chaudouard, and Zydor,
2020, for some recent developments).

Therefore, the objective is to bound non trivially a unitary period P(φ0, ψ0) for
a suitable choice of automorphic forms φ0, ψ0. Such a bound is obtained again by
estimating an amplified second moment of the periods P(φ, ψ0) for φ varying over a
basis of automorphic forms. This second moment is realized via the Relative Trace
Formula pioneered by Jacquet to establish instances of the functoriality principle and
identities between automorphic periods and values of L-functions; for an early example
using of the Relative Trace Formula to compute moments of L-functions (in the case
G = GL2 and H = A the diagonal torus) see Ramakrishnan and Rogawski (2005).

Let us recall its basic principles.
Given f ∈ C∞

c (G(A)) a smooth compactly supported function, let

Kf (x, y) =
∑

γ∈G(Q)
f(x−1γy)

be the automorphic kernel of the convolution map on L2([G])

φ 7→ R(f)φ : x 7→
∫
G(A)

f(g)φ(xg)dg.

Decomposing this kernel over an orthonormal basis of automorphic forms (again we
ignore the possible non-compactness of [G]) , one has

Kf (x, y) =
∑

π∈A(G)

∑
φ∈Bπ

Rf (φ)(x)φ(y)

and ∫∫
[H]×[H]

Kf (x, y)ψ0(x)ψ0(y)dxdy =
∑

π∈A(G)

∑
φ∈Bπ

P(Rf (φ), ψ0)P(φ, ψ0). (8.6)

Via the formula (8.5) the left-hand side of this equality is a weigthed sum of the L-values
L(πE ×σ∧

E, 1/2) for π ranging over the automorphic representations of G. The next step
is to construct an adequate function f and a vector ψ0 ∈ σ such that

– All the weights in the above sum are non-negative: this is easily achieved by
taking f to be a convolution f1 ∗ f∧

1 for f1 smooth compactly supported and
f∧

1 (g) := f 1(g−1).
– The weight assigned to the specific L-function L(πE,0 × σ∧

E, 1/2) is 1 say (and is
significantly smaller for automorphic representations π having their archimedean
parameters away from whose of π0).

The design of f and ψ0 is in fact a local problem and the crucial place is the archimedean
one. For this, Nelson uses his earlier work with Venkatesh (Nelson and Venkatesh,
2021) which constitutes a far reaching and quantitative extension of Kirillov’s orbit
method.
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8.4.1. The orbit method after Nelson–Venkatesh. — Given a Lie group G(R) with
Lie algreba g and dual g∗, the orbit method (see Kirillov, 2004) postulates, and
sometimes establishes rigorously (for instance in the case of compact or nilpotent groups)
a correspondence

π ∈ Irrt(G(R)) ⇐⇒ Oπ ⊂ g∗

between the tempered unitary dual of G(R) and the set of co-adjoint orbits (the G(R)-
orbit in g∗ under the conjugation); in addition it relates the Fourier transform along
some co-adjoint orbit Oπ to the infinitesimal character χπ of π (see Rossmann, 1978,
for the case of reductive groups).

Nelson and Venkatesh, 2021 go further by establishing, an approximate correspon-
dence between balls of symplectic volume 1 in the co-adjoint orbit Oπ and unitary vectors
in π. More precisely, using method from microlocal analysis, Nelson and Venkatesh
associate to a bump function a on g∗ concentrated around a ball of volume one in Oπ, a
family of operators (Opπ,h(a))h>0 indexed by a real parameter h → 0 (these are obtained
by convolving the group action with the Fourier transform of ξ 7→ a(hξ) to g precom-
posed with the logarithmic map). They show that as h → 0, Opπ,h(a) is approximately
of rank 1 (by computing its trace via Kirillov’s formula) and those image contains an
approximate eigenvector under the action of exp(hx) for any x ∈ g sufficiently small.
Moreover, this analysis remain valid even if π is varying, as long as h is a bit smaller
than the inverse squareroot of any of the parameters of π.

The orbit method also extends to the relative setting: given H(R) ⊂ G(R) a subgroup
(with Lie algebra h ⊂ g and dual h∗ ↞ g∗) such that (G(R), H(R)) form a Gan–Gross–
Prasad pair, and given π ∈ Irrt(G(R)), σ ∈ Irrt(H(R)) two tempered representations:
the question of whether these representations are distinguished by one another (i.e.
whether σ occurs in the decomposition of π|H(R) ) should be readable from the relative
positions of their respective coadjoint orbits Oπ,Oσ Guillemin and Sternberg,
1982. The most natural condition is that the projection of Oπ to h∗ intersects Oσ (the
representations are orbit-distinguished). The theory of Nelson and Venkatesh provides
again a quantitative version of this principle: under the slightly stronger condition that
the representations are stably orbit-distinguished (there is ξ ∈ Oπ whose projection
intersects Oσ and with finite H-stabilizer ) their methods allow the construction of good
test vectors: vectors in π whose projection to σ is “large”.

We will not provide more details (this circle of ideas should deserve another full
Bourbaki seminar). We will simply state informally its first application to the theory of
L-functions: an asymptotic formula for the first moment of L(πE × σ∧

E, 1/2) but in the
vertical direction.

Theorem (Nelson and Venkatesh, 2021, Thm. 1.1). — Let π0 ∈ A(G) be fixed,
then under some suitable assumptions (similar to whose of Theorem 4) one has, as
T → ∞

1
|Fπ,T |

∑
σ∈Fπ,T

c(π, σ)L(πE × σ∧
E, 1/2) = 1

2 + o(1)



1190–37

where σ runs over the automorphic representations of H globally distinguished by π

whose archimedean parameters are contained in the interval [T/2, T ].

The mechanism of the proof is similar to (but much more sophisticated than) the
approach described in § 8.1: it consists in using the Nelson–Venkatesh version of the
orbit method (with parameter h = 1/T ) to construct a suitable family of automorphic
forms φT ∈ π (which are pure tensors of L2-norm 1). By Parseval, the square of the
L2-norm of the restriction φT |[H] is equal to the sum over a basis of automorphic forms
for H, of the squared periods |P(φT , ψ)|2. The conclusion follow from (8.5) and the
following asymptotic formula, similar in spirit to (8.4) but proven using Ratner’s theory:∫

[H]
|φT (h)|2dh ≃

∫
[G]

|φT (g)|2dg = 1 + o(1), T → ∞.

Remark 19. — Since the error terms o(1) in the formula and Theorem above build
on Ratner’s theory these are not explicit and it is not possible (for now) to use the
amplification method as in §8.1.

8.4.2. End of the proof of Nelson’s Theorem 4. — Using the orbit method described
above, Nelson constructs, a smooth compactly supported function f = fT = f1,T ∗ f∧

1,T
and a vector ψ = ψT ∈ σ. These are again local problems and the most important place
is the archimedean one.

The construction of the archimedean component f∞ of f is roughly as follows: let
Oπ0 ⊂ g∗ be the coadjoint orbit corresponding to π0 and τ ∈ Oπ0 an element of size
≍ T whose restriction

τH := τ|h ∈ h∗

belongs to Oσ (such a τ exists because π0 and σ are distinguished). From the element τH ,
Nelson constructs the vector ψ ∈ σ (whose archimedean component is the “microlocalized”
vector at τH). The fonction f1∞ is obtained by composing the logarithm map near the
identity with the Fourier transform of a bump function on g∗ which is concentrated in
a “tube” centered at τ , of length h−1 = T 1/2+ε in the direction of Oπ and of width T ε

transversally to Oπ for ε > 0 to be chosen arbitrarily small; the fact that the bump
function has a thinner support transversal to Oπ requires a refinement of the microlocal
calculus developed in Nelson and Venkatesh, 2021 (which was designed for lengths
equal to T 1/2+ε in all directions). Consequently f∞ (obtained from f1∞ by convolution)
is a smooth function supported in an absolutely bounded neighborhood of the identity eG
with a pike there:

f∞(eG) = T n(n+1)/2+o(1).

These constructions single out on the righthand side of (8.6), a family, FT,σ say,
of automorphic cuspidal representations of G distinguished by σ, whose archimedean
parameters have size T 1+o(1) and such that for any such π ∈ FT,σ

L(πE × σ∧
E, 1/2) = T n

2/2+o(1) ∑
φ∈Bπ

P(Rf (φ), ψ)P(φ, ψ);
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a version of Weyl’s law (following from the orbit method and the definition of f) shows
that the size of this family is

|FT,σ| = T
1
2n(n+1)+o(1).

By positivity and (8.6) we obtain that
1

T
n(n+1)

2 +o(1)

∑
π∈FT,σ

L(πE × σ∧
E, 1/2) ≪ 1

T
n
2 +o(1)

∑
π∈A(G)

∑
φ∈Bπ

P(Rf (φ), ψ)P(φ, ψ)

≪ 1
T

n
2 +o(1)

∫∫
[H]×[H]

∑
γ∈G(Q)

f(x−1γy)ψ(x)ψ(y)dxdy

It remains to analyse the right hand side of this expression: this is the geometric part
of the relative pre-trace formula. It then “suffices” to show that

1
T

n
2 +o(1)

∫∫
[H]×[H]

∑
γ∈G(Q)

f(x−1γy)ψ(x)ψ(y)dxdy ≪ T−δ

for some δ > 0: indeed by positivity
1

T
n(n+1)

2 +o(1)
L(π0,E × σ∧

E, 1/2) ≤ 1
T

n(n+1)
2 +o(1)

∑
π∈FT,σ

L(πE × σ∧
E, 1/2) ≪ T−δ

and consequently
L(π0,E × σ∧

E, 1/2) ≪ T
n(n+1)

2 −δ/2.

For this last point, the rapid decay of f and ψ implies that the γ-sum contains
an absolutely bounded number of terms. Moreover the contribution of the γ close to
ZG(R).H(R) can be precisely evaluated and if a too obvious choice is made for the
non-archimedean components of f (i.e. the characteristic functions of small enough open
compact subgroups), this contribution will result in a main term of size T o(1) which is
not good enough. Fortunately, one can incorporate in the definition of f an amplifier
along the lines of § 5.2 (for instance by altering f at a number of small places where E
splits) to make this main term small.

Eventually, the remaining (and perhaps hardest) step of the whole proof is to bound
of contribution of the (finitely many) γ ∈ G(Q) which are away from ZG(R).H(R) (say
at distance ≥ T η for η > 0 small): one has to show that for H a fundamental domain of
[H] one has for any such γ

1
T

n
2

∫∫
H×H

f(x−1γy)ψ(x)ψ(y)dxdy ≪ T−δ, δ = δ(η) > 0.

The (almost) invariance of ψ under the the action of centralizer of τH , H(R)τH
makes it

possible to reduce the proof to the following local volume bound whose importance was
emphasized by Marshall in a non-archimedean setting: given Ω ⊂ H(R) a compact set;
for x, y ∈ H and γ ∈ G(R) at distance ≥ T η, η > 0 from ZG(R).H(R), one has

Vol
({
z ∈ H(R)τH

, f∞(x−1γyz) ̸= 0
}

∩ Ω
)

≪Ω T
−δ′
, δ′ = δ′(η) > 0.

Nelson proved this bound by establishing a stronger bound:
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Vol
({
z ∈ ZH(R), f∞(x−1γyz) ̸= 0

}
∩ Ω

)
≪Ω T

−δ′
.

We refer to Nelson, 2021b, §14 & §15 for precise statements and their proofs.
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