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HIGH-DIMENSIONAL EXPANDERS
[after Gromov, Kaufman–Kazhdan–Lubotzky, and others]

by Uli Wagner

1. INTRODUCTION

Informally speaking, expander graphs are that combine two seemingly contradictory
properties: they are very sparse yet at the same time highly connected. There are
several different ways of quantifying mathematically what it means for a graph to be
“highly connected”, leading to different definitions of expansion (which, however, turn
out to be essentially equivalent). Arguably the most elementary one is edge expansion:

Definition 1.1 (Edge Expansion). — Let X = (V,E) be a graph.(1) For disjoint
subsets S, T ⊂ V , let . We say that X is η-edge expanding, for some η ≥ 0, if h(X) ≥ η,
i.e., if

(1) |E(S, V \ S)|
|E|

≥ η · min{|S|, |V \ S|
|V |

(∀S ⊂ V, S 6= ∅, V )

The edge expansion of X (also called Cheeger constant) is defined as the optimal η such
that (1) holds, i.e.,

(2) h(X) := min
S : ∅6=S(V

|E(S, V \ S)|
min{|S|, |V \ S|} ·

|V |
|E|

By definition, we have h(X) > 0 if and only if X is connected.
As a trivial example (which, however, will play an important role later on, for

generalizations to higher dimensions), the complete graph Kn on n vertices satisfies

h(Kn) = 1 + o(1)

(1)Throughout we will assume all graphs to be finite, simple (no loops or multiple edges) and undirected,
unless explicitly stated otherwise. For disjoint subsets S, T of V , we will denote by E(S, T ) := {vw ∈
E : v ∈ S,w ∈ T} the set of edges between S and T , and for a vertex a vertex v ∈ V , we denote by
deg(v) = |{w ∈ V | vw ∈ E}| the degree (also called valency) of v in X.
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Definition 1.2. — An infinite family of finite graphs Xn, n ∈ N, is called a family
of (bounded-degree) expander graphs if the graphs are of uniformly bounded degree and
their edge expansion is uniformly bounded away from zero, i.e., there are η > 0 and
k ∈ N such that h(Xn) ≥ η and degXn

(v) ≤ k for all vertices v of Xn and all n ∈ N.

Families of expander graphs were shown to exist by probabilistic arguments by
Kolmogorov and Barzdin (1993) and Pinsker (1973). The first explicit construction
of a family expander graphs was given by Margulis (1973) (using Kazhdan’s Property
(T)), and by now, many different constructions are known. Expansion and expander
graphs play an important role in many different areas of mathematics and computer
science and are the source of deep connections between them, see for instance the surveys
by Hoory, Linial, and Wigderson (2006) or Lubotzky (2012).

The goal of this exposé is to offer a glimpse of the emerging theory of high-dimensional
expanders, which is still in a formative stage, but has already led to a number of striking
results and applications (see, e.g., Lubotzky (2018) for a recent survey, including
many topics that we will neglect). One interesting aspect is that even the definition of
higher-dimensional expansion is not at all obvious and that, unlike in the case of graphs,
there is a rich array of mutually non-equivalent notions of high-dimensional expansion,
each of interest in its own right and with its own applications.

Here we will mainly focus on two notions of expansion that have a strong topological
flavor and that have played an important role in the study of high-dimensional expansion
in the last decade, namely the topological overlap property (also called topological
expansion), and coboundary expansion (which generalizes edge-expansion of graphs and
provides a quantitative version of vanishing of F2-cohomology).

2. TOPOLOGICAL OVERLAP AND TOPOLOGICAL EXPANDERS

As a starting point, let us consider the following classical result in discrete geometry,
due to Boros and Füredi (1984) (for d = 2) and Bárány (1982) (for general d),
which at first may seem to have little to do with to expansion:

Theorem 2.1. — Let P be a set of n points in R2. Then there exists a point R2 that
is contained in at least (2

9 + o(1)
)(

n

3

)
of the triangles (convex hulls of three points) spanned by the points in P .

More generally, for every set P of n points in Rd, there exists a point Rd that is
contained in at least

(cd + o(1))
(

n

d+ 1

)
of the affine d-simplices (convex hulls of d+ 1 points) spanned by the points in P , where
cd > 0 is a constant that depends only on d.
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Theorem 2.1 has lead to a host of related results and applications, see Matoušek
(2002, Ch. 9). Determining the optimal value of the constant cd is a well-known open
problem. It is known that c2 = 2/9 is optimal, and an analogous construction in higher
dimensions shows cd ≤ (d+1)!

(d+1)d+1 = e−Θ(d) (Bukh, Matoušek, and Nivasch, 2010).
On the other hand, Bárány’s proof yields cd ≥ (d + 1)−d, and despite several later
improvements, the best known lower bound is still of the form e−Θ(d log d).

Theorem 2.1 can be restated as follows. Let ∆d
n denote the complete d-dimensional

simplicial complex on n vertices (in other words, the d-dimensional skeleton of the
(n − 1)-dimensional simplex). Then, for every affine map F : ∆d

n → Rd, there is a
point p ∈ Rd that is contained in the F -images of at least a (cd + o(1))-fraction of the
d-dimensional faces of ∆d

n.
Gromov (2010) showed that this remains true for arbitrary continuous maps:

Theorem 2.2 (Gromov). — For every continuous map F : ∆d
n → Rd, there is a point

p ∈ Rd that is contained in the F -images of at least a (ctop
d + o(1))-fraction of the

d-dimensional faces of ∆d
n, where c

top
d is a constant depending only on d.

Gromov’s argument yields a lower bound of cd ≥ ctop
d ≥ 2d

(d+1)!(d+1) , recovering the
optimal constant c2 = ctop

2 = 2/9 in the plane, and improving on the previously known
bounds for cd by a factor exponential in d for general dimensions; however, the lower
bound is still of the form e−Θ(d log d) and thus far from the upper bound.

One aspect that makes Theorem 2.2 interesting is that for d ≥ 2 and an arbitrary
continuous map F : ∆d

n → Rd, there is no obvious candidate for the point p. (By contrast,
for d = 1, we can simply take p to be the median of the images of the vertices; moreover,
for affine maps, as in Theorem 2.1, one can show that the centerpoint of the vertex
images, a generalization of the median, works in any dimension d, albeit leading to a
non-optimal constant, see Bukh, Matoušek, and Nivasch (2010).)

Gromov’s argument(2) for the existence of a suitable point p relies on a certain higher-
dimensional expansion property of ∆d

n, coboundary expansion,(3) which we will formally
define in Section 3 below and which generalizes edge-expansion of graphs (corresponding
to 1-dimensional coboundary expansion). The resulting proof is remarkably robust an
yields a much more general result as well as a whole new circle of questions.

Definition 2.3. — Let X be a finite d-dimensional simplicial complex.

1. We say that X has the ε-topological overlap property, for some real parameter
ε > 0, if for every continuous map F : X → Rd, there exists a point p ∈ Rd that is
contained in at least an ε-fraction of the F -images of d-dimensional faces of X.

(2)As explained in Guth (2014), the argument can be seen as analogous to the proof of the Waist
Inequality in Gromov (1983).
(3)Remarkably, the notion of coboundary expansion arose independently and somewhat earlier in the
work of Linial and Meshulam (2006) on random complexes.
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2. An infinite family of d-dimensional complexes is a family of topological expanders
if all the complexes in the family have the ε-topological overlap property, for a
uniform ε > 0.

In this language, Theorem 2.1 says that for every d, the complete complexes ∆d
n form

a family of geometric expanders (cf., Remark 2.7), and Theorem 2.2 asserts that they
form a family of topological expanders. As remarked above, Gromov’s proof leads to a
more general result, which can be informally summarized as follows (see Theorem 4.2
below for the formal statement): every d-dimensional complex that has the coboundary
expansion property in dimensions 1, . . . , d satisfies the topological overlap property (with
an overlap constant ε that depends on d and on the coboundary expansion constants
ofX). Gromov (2010) showed that various other families of d-dimensional complexes are
coboundary expanders, hence topological expanders, e.g., spherical buildings; however,
none of these examples are of bounded degree, i.e., for each of these complexes, the
number of d-faces containing a given vertex (or even containing a given (d − 1)-face)
tends to infinity with the size of the complex.

This naturally raises the question whether there are, for instance, families of 2-
dimensional topological expanders that are of bounded degree, either in the weak sense
that every edge is contained in a bounded number of triangles, or in the strong sense
that every vertex is contained in a bounded number of triangles.

Both of these questions have been answered affirmatively, the first by Lubotzky and
Meshulam (2015), using a probabilistic construction based on random Latin squares,
and the second by Kaufman, Kazhdan, and Lubotzky (2016), using a construction
of Ramanujan complexes given by Lubotzky, Samuels, and Vishne (2005).

Let us state these results. For the first, let n ∈ N and let Tn = V1 ∗ V2 ∗ V3 be the
complete tripartite 2-dimensional complex on three pairwise disjoint sets V1, V2, V3 of
n vertices each. (Thus, a subset σ ⊆ V1 t V2 t V3 is a face of V1 ∗ V2 ∗ V3 if and only
if |σ ∩ Vi| ≤ 1 for i = 1, 2, 3.) Thus, Tn has 3n vertices, 3n2 edges (1-simplices), and
n3 triangles (2-simplices).

For our purposes, a Latin square is a collection L of triangles of Tn such that every
edge of Tn is contained in exactly one triangle in L. (Hence, for every vertex v ∈ Vi
of Tn, the link Lv := {σ \ v | σ ∈ L} forms a perfect matching in the complete bipartite
graph Vj ∗ Vk on the remaining two vertex sets, j, k 6= i.) Let Ln denote the set of all
Latin squares. For D ∈ N, define a random subcomplex Y (n,D) as follows: Choose D
Latin squares L1, . . . , LD ∈ Ln independently uniformly at random, and let Y (n,D) be
the subcomplex of Tn that has the same 1-skeleton as Tn as whose triangles are exactly
the triangles in L1 ∪ · · · ∪ LD.

Theorem 2.4 (Lubotzky and Meshulam). — There exist constants D ∈ N and ε > 0
such that asymptotically almost surely (with probability tending to 1 as n → ∞), the
random complex Y (n,D) has the ε-topological overlap property. Thus, there exists an
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infinite family of 2-dimensional topological expanders that are of bounded degree in the
weak sense.

More precisely, Lubotzky and Meshulam show that, asymptotically almost surely,
Y (n,D) has 2-dimensional coboundary expansion at least η, for some other constant
η > 0. The topological overlap property then follows from Gromov’s result (since
the 1-skeleton of Y (n,D), which is a complete tripartite graph, is a very good edge
expander).

The second construction, of a family of 2-dimensional topologocial expanders that
are of bounded degree in the strong sense that the number of triangles containing a
given vertex is bounded by some uniform constant for all complexes is the family, is
considerably more elaborate, and we will treat it mostly as a “black box”, focusing
on the properties used in Kaufman, Kazhdan, and Lubotzky (2016) to prove the
topological overlap property.

Let q be a large but fixed prime power. For an integer r ≥ 2. The spherical building
S(r, q) is defined as the complex of flags of nonempty proper linear subspaces of Frq,
i.e., the vertices of S(d, q) are the nonempty proper linear subspaces W ⊂ Frq, and a set
{W0,W1, . . . ,Wk} of subspaces forms a k-dimensional simplex of S(r, q) if and only if
W0 ⊂ W1 ⊂ · · · ⊂ Wk (possibly after reordering the Wi). Thus, S(r, q) is a simplicial
complex of dimension r − 2.

Let us say that a finite 3-dimensional complex X is magical if it has the following
properties:

1. For every vertex v of X, the link Xv of v in X is isomorphic to S(4, q). It follows
that the 1-skeleton X(1) of X is a k-regular graph, where k ∼ q4 is the number of
vertices of S(4, q) (proper nonempty subspaces of F4

q).
2. The second-largest eigenvalue of the adjacency matrix of the 1-skeleton X(1) is at

most 6
√
k.

An infinite family of magical 3-dimensional complexes is constructed in Lubotzky,
Samuels, and Vishne (2005). (Using more proper terminology, these complexes are
3-dimensional non-partite Ramanujan complexes obtained as (non-partite) quotients of
the Bruhat–Tits building of type Ã2 associated with the local field Fq((t)).)

The main result of Kaufman, Kazhdan, and Lubotzky (2016) can be stated as
follows:

Theorem 2.5 (Kaufman, Kazhdan, and Lubotzky). — There exist constants ε > 0 and
q0 ∈ N such that for every prime power q ≥ q0 and every magical 3-dimensional complex
as defined above, the 2-skeleton X(2) has the ε-topological overlap property. Thus, there
exists an infinite family of 2-dimensional topological expanders that are of bounded degree
in the strong sense.

In the rest this exposé, we will discuss some of the concepts and ideas that underlie
the proofs of Theorems 2.2, 2.4, and 2.5, in particular the notions of coboundary
expansion (and a technical, but important, generalization, cosystolic expansion), and
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we will provide an outline of the proof of Gromov’s Topological Overlap Theorem that
coboundary expansion implies topological overlap.

Remark 2.6. — Both Theorems 2.4 and Theorem 2.5 have been generalized to arbitrary
dimension d, the former by Lubotzky, Luria, and Rosenthal (2019) (building on
the breakthrough work of Keevash (2014) on designs) and the latter by Evra and
Kaufman (2016).

Remark 2.7. — If, in Definition 2.3, we additionally require all maps to be affine,
we arrive at the analogous notions of the geometric overlap property and families of
geometric expanders. Fox, Gromov, Lafforgue, Naor, and Pach (2012) provide
several constructions (both probabilistic ones and deterministic ones based on Ramanujan
complexes) showing that, for every d, there exist infinite families of geometric expanders
that are of bounded degree in the strong sense.

3. COBOUNDARY AND COSYSTOLIC EXPANSION

Let X be a finite d-dimensional simplicial complex. We denote by X(k) the set of
k-dimensional faces (or k-faces) of X, for k ∈ {−1, 0, . . . , d}, and by Ck(X) := Ck(X;F2)
be the space of k-dimensional simplicial cochains with coefficients in F2, i.e., the space
of functions f : X(k)→ F2 = {0, 1}. Equivalently, we can view F2-valued cochains as
subsets of X(k) via the correspondence f ↔ S = supp(f) ⊆ X(k).

Let

(3) 0 // C−1(X)︸ ︷︷ ︸
∼=F2

δ
// C0(X) δ

// C1(X) δ
// · · · δ

// Cd(X) // 0

be the simplicial cochain complex(4) of X, where the coboundary operator δ : Ck−1(X)→
Ck(X) is given by

(4) δf(σ) :=
∑

τ∈X(k−1),τ⊂σ
f(τ) (σ ∈ X(k))

The simple but fundamental fact underlying the definition of cohomology is that
the composition δ ◦ δ of consecutive coboundary operators is zero, i.e., the space
Bk(X) := im(δ : Ck−1(X) → Ck(X)) of k-dimensional coboundaries is a subspace of
the space Zk(X) := ker(δ : Ck(X)→ Ck+1(X)) of k-dimensional cocycles; the quotient
Hk(X) := Zk(X)/Bk(X) is the k-dimensional (reduced) cohomology group of X (with
F2-coefficients) of X.

In particular, vanishing cohomology Hk(X) = 0 means that if f ∈ Ck(X) satisfies
δf = 0 then f ∈ Bk(X). The notion of coboundary expansion provides a way of

(4)More precisely, we work with the augmented cellular cochain complex of X, unless stated otherwise,
i.e., we consider X to have a unique (−1)-dimensional cell, the empty cell ∅, which is incident to every
vertex of X.
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quantifying this, saying, roughly, that if f ∈ Ck(X) is “far from” Bk(X) then “δf must
be “large”. To make this precise, we need to be able measure the “size” of a cochain.

Definition 3.1. — Suppose that we have a discrete probability measure πk on the
set X(k) of k-simplices of X, i.e., an assignment X(k) 3 τ 7→ πk(τ) ≥ 0 with∑

τ∈X(k) πk(τ) = 1. Then the weighted Hamming norm (with respect to πk) of a cochain
f ∈ Ck(X) is defined as

‖f‖ = ‖f‖πk
:= πk(supp(f)) =

∑
τ∈supp(f)

πk(τ)

In what follows, we will mainly use two special cases:
1. (Uniform weights) The uniform distribution πk(σ) = 1/|X(k)|.
2. (Garland weights) The distribution on X(k) given by

πk(τ) = |σ ∈ X(d) | τ ⊆ σ}|
|X(d)| ·

(
d+1
k+1

) .

This corresponds to choosing a random τ ∈ X(k) by first chosing σ ∈ X(d)
uniformly at random and then choosing τ uniformly at random among the k-
simplices contained in σ.

In what follows, suppose we have fixed a weighted Hamming norm on Ck(X), for k
between −1 and d.

Definition 3.2 (Cofilling/Coisoperimetric Inequality). — Let L > 0. Given b ∈ Bk(X),
we call f ∈ Ck−1(X) a cofilling for b if δf = b. We say that X satisfies an L-cofilling
inequality (or coisoperimetric inequality) in dimension k if, for every b ∈ Bk(X), there
exists a cofiling f ∈ Ck−1(X) such that ‖f‖ ≤ L‖b‖.

Any two cofillings of a given coboundary differ by a cocycle. Thus, X satisfies an
L-cofilling inequality in dimension k if and only if

(5) ‖δf‖ ≥ 1
L
·min{‖f + z‖ : z ∈ Zk−1(X)} for all f ∈ Ck−1(X).

We can strengthen (5) by replacing cocycles with coboundaries and obtain a condition
that also allows us to draw conclusions about the cohomology of X. For f ∈ Ck−1(X),
let

(6) ‖[f ]‖ := min{‖f + δg‖ : g ∈ Ck−2(X)}

denote the distance (with respect to the norm ‖ · ‖) of f to the space Bk−1(X) of
coboundaries.

Definition 3.3 (Coboundary Expansion). — Let η > 0. We say that X is η-expanding
in dimension k, if for every (k − 1)-cochain f ∈ Ck−1(X),

(7) ‖δf‖ ≥ η · ‖[f ]‖.



1187–08

The k-dimensional coboundary expansion (or Cheeger constant) of X is defined as

h(k)(X) := min
f∈Ck−1\Bk−1

‖δf‖
‖[f ]‖

Example 3.4. — With respect to uniform weight, 1-dimensional coboundary expansion
is the same as edge expansion of graphs as defined in the introduction, i.e., h(1)(X) =
h(X(1)).

Lemma 3.5. — Let η > 0, and assume that ‖f‖ > 0 for all f ∈ Ck−1(X) \ {0}
(equivalently, that all simplices have positive weight). A complex X is η-expanding in
dimension k if and only if Hk−1(X) = 0 and X satisfies a 1/η-coisoperimetric inequality
in dimension k.

Proof. — Suppose that X is η-expanding in dimension k. Clearly, (7) implies (5), i.e.,
X satisfies a 1/η-cofilling inequality. Moreover, if f ∈ Ck−1(X) \ Bk−1(X) then, by
our assumption on the weights, ‖[f ]‖ > 0, hence ‖δf‖ > 0, hence f 6∈ Zk−1(X). Thus,
Zk−1(X) = Bk−1(X), i.e., Hk−1(X) = 0.

Conversely, assume that Hk−1(X) = 0. Then Zk−1(X) = Bk−1(X), so (7) and (5) are
equivalent.

Definition 3.6. — An infinite family of d-dimensional simplicial complexes is a family
of coboundary expanders if h(k)(X) ≥ η for all complexes in the family and all 1 ≤ k ≤ d,
for some constant η > 0.

The following lemma, which first observed by Linial and Meshulam (2006) and
Meshulam and Wallach (2009) in their study of random complexes and later, inde-
pendently, by Gromov (2010), provides a first example of such a family:

Lemma 3.7. — Let ∆d
n be the complete d-dimensional complex on n vertices. (Note

that uniform weights and Garland weights agree in this case.)
∆d
n has coboundary expansion h(k)(∆d

n) ≥ 1 for 1 ≤ k ≤ d.

Proof. — Because we are working with uniform weights and the k-skeleton of ∆d
n

equals ∆k
n, it is enough to consider the case d = k. Given b ∈ Bd(∆d

n) and a vertex v,
define bv ∈ Cd−1(∆d

n) by bv(τ) = b(τ ∪ {v}) if v 6∈ τ , and bv(τ) = 0 otherwise. Then
δbv = b for all v, and Ev‖bv‖ = ‖b‖. Thus, ∆d

n satisfies a coisoperimetric inequality with
constant 1, and since Hd−1(∆d

n) = 0, this is equivalent to coboundary expansion 1, by
the preceding lemma.

Definition 3.8 (Large Cosystoles). — Let ϑ > 0. We say that a simplical complex X
has ϑ-large cosystoles in dimension j if ‖α‖ ≥ ϑ for every α ∈ Zj(X) \Bj(X).
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Example 3.9. — Consider the case k = 1, with the normalized Hamming norm. In
this case, η-expansion in dimension 1 corresponds to η-edge expansion of a graph (the
1-skeleton of the complex). An L-cofilling inequality in dimension 1 means that every
connected component of the graph is 1/L-edge expanding. Having ϑ-large cosystoles in
dimension 0 means that every connected component contains at least a ϑ-fraction of the
vertices.

4. COSYSTOLIC EXPANSION IMPLIES TOPOLOGICAL OVERLAP

Local Sparsity of X. — For the formal statement of the overlap theorem, we need one
more technical condition on X.

Definition 4.1. — (Local Sparsity) Let ε > 0. We say that X is locally ε-sparse if

‖{σ ∈ X(k) | v ∈ σ}‖ ≤ ε

for every vertex v of X and 0 ≤ k ≤ d, i.e., v is contained in at most an ε-fraction of
k-simplices of X.

We are now ready to state Gromov’s theorem.

Theorem 4.2 (Gromov’s Topological Overlap Theorem). — For every d ≥ 1 and
L, ϑ > 0 there exists ε0 = ε0(d, L, ϑ) > 0 such that the following holds:
Let X is a finite d-dimensional simplicial complex, and suppose that
1. X satisfies a L-cofilling inequality in dimensions 1, . . . , d;
2. X has ϑ-large cosystoles in dimensions 0, . . . , d− 1; and
3. X is locally ε-sparse for some ε ≤ ε0.
Then for every continuous map F : X → Rd there exists a point p ∈M such that

(8) ‖{σ ∈ X(d) | p ∈ f(σ)}‖ ≥ µ,

where µ = µ(d, ε, L, ϑ) > 0 is a constant that depends only on d, ε, L, and ϑ.

Remark 4.3. — The conclusion of the theorem remains true if Rd is replaced by an
arbitrary piecewise-linear manifold M , with a constant µ that is independent of M—it
depends only on whether a map X →M may be surjective (which can only happen if
M is bounded) or not.

We can view the map F : X → Rd as a map F : Sd whose image avoids some point v0
of Sd. By standard arguments, we may assume, without loss of generality, that the
map is piecewise linear with respect to the standard piecewise linear structure of Sd
(i.e., simplicial with respect to some subdivision of X and some triangulation of Sd).
Moreover, we may assume that there exists some triangulation T of Rd such that f is in
general position with respect to T , i.e., for every simplex σ of X and τ of T , f(σ) and τ
intersect transversely in a finite number of points if dim σ+ dim τ = d, and f(σ)∩ τ = ∅
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if dim σ + dim τ < d. This allows us, for any k-simplex τ of T and any (d− k)-simplex
σ of X, the algebraic intersection number

F (σ) · τ ∈ F2 = |σ ∩ F−1(τ)| (mod 2)

By linearity, we can extend this to an intersection number homomorphism

(9) F t : Ck(T )→ Cd−k(X),

from arbitary k-chains (F2-linear combinations of k-simplices) of T to cochains of X.
Moreover, by subdividing T further if necessary and using the local sparsity of X,

it is easy to see that we may assume that T is sufficiently fine in the sense that, for
every k > 0 and every k-simplex τ of T ,

(10) ‖F t(τ)‖ ≤ dε

It is well-known that the intersection number homomorphism is a chain-cochain map,
i.e., it commutes with the boundary and coboundary operators in the following sense:

Lemma 4.4. — F t(∂σ) = δF t(σ).

Definition 4.5 (Chain-cochain homotopy). — Consider two chain-cochain maps
ϕ, ψ : Ck(M)→ Cd−k(X) from the (non-augmented) chain complex of M to the cochain
complex of X. A chain-cochain homotopy between ϕ and ψ is a family of linear maps
h : Ck(M)→ Cd−k−1(X) such that ϕ−ψ = h∂ + δh. To keep track of the various maps,
it is convenient to keep in mind the following diagram:

(11) 0 // Cd(M)
ϕ

��

ψ
��

∂
//

h
}}

Cd−1(M)
ϕ

��

ψ
��

∂
//

hyy

· · ·

hzz

∂
// C1(M)
ϕ

��

ψ
��

∂
//

h
{{

C0(M)
ϕ

��

ψ
��

//

hyy

0

0 // C0(X)
δ
// C1(X)

δ
// · · ·

δ
// Cd−1(X)

δ
// Cd(X) // 0

Proof of Theorem 4.2. — Let µ and ε0 be parameters that we will determine in the
course of the proof. We assume that X satisfies the assumptions of the theorem, in
particular that it is locally ε-sparse for some ε ≤ ε0.

Let F : X → Rd ⊂ Sd be a map. By the discussion above, we may assume that f is
piecewise linear and in general position with respect to a sufficiently fine triangulation T
of Sd and that the image of f avoids some vertex v0 of the triangulation.

We wish to show that there is a vertex v of T such that the intersection number
cochain F t(v) ∈ Cd(X) satisfies ‖F t(v)‖ ≥ µ. We assume that this is not the case and
we proceed to derive a contradiction.

Let v0 be a fixed vertex of T with ‖F t(v0)‖ = 0.
We define a chain-cochain map(5)

G : C∗(T )→ Cd−∗(X)

(5)That is, a homomorphism G : Ck(T )→ Cd−k(X) for every k such that G(∂c) = δG(c) for c ∈ Ck(T ).
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by setting G(v) := F t(v0) for every vertex v of T and G(c) = 0 for every c in Ck(T ;F2)
and every k > 0.

We will construct a chain-cochain homotopy H : C∗(T ) → Cd−1−∗(X) between F t

and G; that is, for every k, we construct a homomorphism

H : Ck(T )→ Cd−1−k(X)

such that

(12) F t(c)−G(c) = H(∂c) + δH(c)

for c ∈ Ck(T ). We stress that for this proof, we work with non-augmented chain and
cochain complexes as in (11), i.e., we use the convention that C−1(X) = 0. It follows
that G(c) = 0 for k > 0 and that H(c) = 0 for c ∈ Cd(M).

The chain-cochain homotopy H will yield the desired contradiction: Given the
triangulation T of Sd, the formal sum of all d-dimensional simplices of T is a d-
dimensional cycle ζ (which represents the fundamental class [Sd] ∈ Hd(Sd)). Note
that F t(ζ) = 1 ∈ C0(X) (every vertex v of X is mapped into the interior of a unique
d-simplex of M) but G(ζM) = 0. This is a contradiction, since

0 6= 1 = F t(ζ)−G(ζ = H(∂ζ)︸ ︷︷ ︸
=0 since ∂ζ=0

+δ H(ζ)︸ ︷︷ ︸
=0

= 0.

To complete the proof, it remains construct H, which we will do by induction on k.
For k = 0, we observe that for every vertex v of T , the cochains F t(v) and G(v) =

F t(v0) are cohomologous, i.e., their difference is a coboundary: Since Sd is connected,
hence there is a 1-chain (indeed, a path) c in T with ∂c = v− v0, and so F t(v)−G(v) =
F t(v−v0) = δF t(c). For every vertex v of T , we setH(v) to be a cofilling of F t(v)−G(v)
of minimal norm (if there is more than one minimal cofilling, we choose one arbitrarily).
Thus, the homotopy condition (12) is satisfied for 0-chains (since chains and cochains of
dimension less than zero or larger than d are, by convention, zero).

By choice of H(v) and the coisoperimetric assumption on X, we have

‖H(v)‖ ≤ L ‖F t(v)− F t(v0)‖︸ ︷︷ ︸
<2µ

< s0 := 2Lµ.

Inductively, assume that we have already defined H on chains of dimension less than k
and that ‖H(ρ)‖ < si for every i-simplex of T , i < k, where si is a parameter that we
will determine inductively. Thus, if τ is a k-simplex of T , then H(∂τ ) is already defined
and has norm less than (k + 1)sk−1.

Moreover, we have ‖F t(τ)‖ ≤ dε, by the sparsity assumption on X and since the
triangulation T is sufficiently fine.

By construction, z := F t(τ)−H(∂τ) is a (d− k)-dimensional cocycle, and

(13) ‖z‖ ≤ ‖F t(τ)−H(∂τ)‖ < dε+ (k + 1)sk−1.
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If z is cohomologically trivial, i.e., z ∈ Bd−k(X), then we define H(τ) to be a minimal
cofilling of z and extend H to Ck(T ) by linearity. By assumption on X, we get

‖H(τ)‖ < sk := L (dε+ (k + 1)sk−1) .
Note that this recursion yields sk = dε(L+ · · ·+ Lk) + (k + 1)!Lk+12µ.

If z is nontrivial,(6) then by the assumption on large cosystoles and (13),
ϑ ≤ ‖z‖ < dε+ (k + 1)sk−1,

which is a contradiction if we choose µ and ε0 (and hence ε) sufficiently small with
respect to d, L and ϑ.
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