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INTRODUCTION

The study of the geodesic flow in closed negatively curved manifolds is a beautiful
mix of topology, Riemannian geometry, geometric group theory and ergodic theory.
We know in this situation that closed geodesics are in one-to-one correspondence with
conjugacy classes of elements of the fundamental group, or equivalently, with the set of
homotopy classes of maps of circles in the manifold. Even though closed geodesics are
infinite in number, we have a good grasp —thanks to the notion of topological entropy—
of how the number of these geodesics grows with respect to the length. We also have
a computation of this topological entropy in hyperbolic spaces by Bowen (1972) and
Margulis (1969) and rigidity results for this entropy by Besson, Courtois, and
Gallot (1995) and Hamenstädt (1990).

While the statements of this first series of results seem to deal only with closed
geodesics, the foliation of the unit tangent bundle by orbits of the geodesic flow plays
a fundamental role. The study of invariant measures by the geodesic flow is a crucial
tool, and the equidistribution of closed geodesics by Bowen (1972) and Margulis
(1969) for hyperbolic manifolds a central result. We refer to section 1 for more precise
definitions, results and references.
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For many reasons —as we discuss in section 2— closed totally geodesic submanifolds
of dimension at least 2 are quite rare. However, in constant curvature, the foliation of the
Grassmannian of k-planes coming from totally geodesic planes is a natural generalization
of the geodesic flow and several crucial results of Ratner (1991a,b) and Shah (1991)
as well as McMullen, Mohammadi, and Oh (2017) describe closed invariant sets and
invariant measures. This foliation stops to make sense in variable curvature, at least far
away from the constant curvature situation, although for metrics close to hyperbolic
ones, a result by Gromov (1991a) —see also Lowe, 2020— shows that the foliation
of the Grassmann bundle persists when one replaces totally geodesic submanifolds by
minimal ones.

If we move in the topological direction, going from circles to surfaces, Kahn–Marković
Surface Subgroup Theorem (Kahn and Marković, 2012b) provides the existence of
many surface subgroups in the fundamental group of a hyperbolizable 3-manifold M . A
subsequent result of Kahn and Marković (2012a) gives an asymptotic of the number
of these surface groups with respect to the genus —see Theorem 3.8.

However this asymptotic counting does not involve the underlying Riemannian ge-
ometry as opposed to the topological entropy that we discussed in the first paragraph.
The next step is to use fundamental results of Schoen and Yau (1979) and Sacks and
Uhlenbeck (1982), which tells us that every such surface group can be realized by a
minimal surface —although non necessarily uniquely.

In Calegari, Marques, and Neves (2020), the authors propose a novel idea: count
asymptotically with respect to the area these minimal surfaces, but when the boundary
at infinity of those minimal surfaces becomes more and more circular, or more precisely
are K-quasicircles, with K approaching 1. The precise definition of this counting requires
the description of quasi-Fuchsian groups and their boundary at infinity, done in section 3,
and their main result (Theorem 6.1) is presented in section 6. These results define an
entropy-like constant E(M,h) for minimal surfaces in a Riemannian manifold (M,h) of
curvature less than −1. The main result of Calegari, Marques, and Neves (2020)
is to compute it for hyperbolic manifolds, gives bounds in the general case and most
notably proves a rigidity result: E(M,h) = 2 if and only if h is hyperbolic. Altogether,
these results mirror those for closed geodesics.

When one moves to studying solution of elliptic partial differential equations, for
instance minimal surfaces or pseudo-holomophic curves, the situation is different from
the chaotic behavior of the geodesic flow. While there is a huge literature about moduli
spaces of solutions when one imposes constraints such as homology classes, we do not
have that many results describing a moduli space of all solutions: possibly immersed
with dense images, in other words to continue the process for minimal surfaces described
in the introduction of Gromov (1991a) for geodesics: if one wishes to understand closed
geodesics not as individuals but as members of a community one has to look at all (not
only closed) geodesics in X which form an 1-dimensional foliation of the projectivized
tangent bundle.
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The presentation of these notes shifts around the ideas used in Calegari, Marques,
and Neves (2020) and follows more directly the philosophy introduced in Gromov
(1991a). We focus on the construction of such a moduli space —that we call the phase
space of stable minimal surfaces— and its topological properties —see section 5.1 and
Theorem 5.2. These properties are a rephrasing of Theorem 4.18 about quasi-isometric
properties of stable minimal surfaces, relying on results of Seppi (2016) and a “Morse
type Lemma” argument by Calegari, Marques, and Neves (2020, Theorem 3.1).
This space is the analogue, in our situation, of the geodesic flow and the R-action is
replaced by an SL2(R)-action.

Then we move to studying SL2(R)-invariant measures on this phase space and show
they are related to what we call laminar currents which are the analogues in our situation
of geodesic currents —see Bonahon (1997). The main result is now an equidistribution
result in this situation: Theorem 1.3. This theorem follows from the techniques of the
proof of Surface Subgroup Theorem using the presentation given in Kahn, Labourie,
and Mozes (2018).

This Equidistribution Theorem and the construction of the phase space allows, by
comparing the counting with respect to area and the genus —as inKahn andMarković,
2012a— to proceed quickly to the proof of the results of Calegari, Marques, and
Neves (2020) when, for the rigidity result, we assume that h is close enough to a
hyperbolic metric.

The whole article of Calegari, Marques, and Neves (2020) mixes beautiful ideas
from many subjects, adding to the mix of topology, Riemannian geometry, geometric
group theory and ergodic theory used in the study of the geodesic flow, a pinch of
geometric analysis. The approach given in these notes is not just to present the proof
but also to take the opportunity to tour some of the fundamental results in these
various mathematics(1). We take some leisurely approach and explain some of the main
results and take the time to give a few simple proofs and elementary discussions: the
clever proof of Thurston showing that there are only finitely many surface groups of
a given genus in the fundamental group of a hyperbolic manifold, the discussion of
stable minimal surfaces, the geometric analysis trick that derives from a rigidity result
(here the characterization of the plane as the unique stable minimal surface in R3) some
compactness results (proposition 4.9).

During the preparation of these notes, I benefited from the help of many colleagues,
as well as the insight of the authors. I want to thank them here for their crucial input:
Dick Canary, Thomas Delzant, Olivier Guichard, Fanny Kassel, Shahar Mozes, Pierre
Pansu, Andrea Seppi, Jérémy Toulisse and Mike Wolf.

(1)The introduction of Calegari, Marques, and Neves (2020) also addresses minimal hypersurfaces
in higher dimension that we do not discuss here
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1. COUNTING GEODESICS AND EQUIDISTRIBUTION

When (M,h) is a negatively curved manifold, there is a one-to-one correspondence
between conjugacy classes of elements of π1(M) and closed geodesics. Even though there
are infinitely many closed geodesics, we can count them “asymptotically”. Equivalently,
this will give an asymptotic count of the conjugacy classes of elements of π1(M), or to
start a point of view that we shall pursue later, the set of free homotopy classes of maps
of S1 in M .

We review here some important results that will be useful in our discussion and serve
as a motivation.

1.1. Entropy and asymptotic counting of geodesics

Let (M,h) be a closed manifold of negative curvature. Fixing a positive constant T ,
there are only finitely many closed geodesics of length less than T . Let us define

Γh(T ) := {geodesic γ | length(γ) 6 T} .

The following limit, when it is defined,

htop(M,h) := lim
t→∞

1
T

log (]Γh(T )) ,

is called the topological entropy of M . We will see it is always defined in negative
curvature. It measures the exponential growth of the number of geodesics with respect
to the length. The topological entropy is related to the volume entropy of M defined by

hvol(M,h) = lim inf
t→∞

1
R

log
(
Vol(B(x,R))

)
,

where B(x,R) is the ball of radius R in the universal cover M̃ of M , x any point in M̃ .
The volume entropy does not depend on the choice of the point x and we have

Theorem 1.1. — Let (M,h) be a closed negatively curved manifold.

(i) The topological htop(M,h) is well-defined. When h0 is hyperbolic(2),

htop(M,h0) = dim(M)− 1 .

(ii) We have

htop(M,h) = hvol(M,h) = lim
R→∞

log (]{γ ∈ π1(M) | dM(γ.x, x) 6 R})
R

.

The first item is a celebrated result by Bowen (1972) and Margulis (1969). The
second item is due to Manning (1979).

(2)that is when the curvature is constant and equal to −1
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1.1.1. Rigidity of the entropy. — We have several rigidity theorems for the entropy.
First in the presence of an upper bound on the curvature, a metric on closed manifold
has curvature less than −1, then

hvol(M,h) > dim(M)− 1 ,

with equality if and only if h is hyperbolic. For deeper results in the presence of upper
bounds on the curvature, see Pansu (1989) and Hamenstädt (1990). As a special
case of Besson, Courtois, and Gallot (1995), we have, when we drop the condition
on the curvature

Theorem 1.2. — Let (M,h0) be a hyperbolic manifold of dimension m and h another
metric on M , then

hvol(M,h)m Vol(M,h) > hvol(M,h0)m Vol(M,h0) .

The equality implies that h has constant curvature.

In this exposé, we will only use the case of m = 2, which is due to Katok (1982).

1.2. Equidistribution

This asymptotic counting has a counterpart called equidistribution. Let us first recall
that geodesics are solutions of some second order differential equation, and we may as
well consider non closed geodesics in the Riemannian manifold M . Let us consider the
phase space G of this equation as the space of maps γ from R to M , where γ is an arc
length parametrized solution of the equation. The precomposition by translation gives
a right action by R, and thus G is partitioned into leaves which are orbits of the right
action of R. The space G canonically identifies with the unit tangent bundle UM by the
map γ 7→ (γ(0), γ̇(0)), and the above R-action corresponds to the action of the geodesic
flow.

We may thus associate to each closed orbit γ of length ` a unique probability measure δγ
on G = UM supported on γ, R-invariant and so that for any function on UM∫

UM
fdδγ := 1

`

∫ `

0
f(γ(s))ds .

When M is hyperbolic, another natural and R-invariant probability measure comes from
the left invariant µLeb measure (under the group of isometries) in the universal cover.

The next result is intimately related to Theorem 1.1 and also due to Bowen (1972)
and Margulis (1969).

Theorem 1.3. — Assume (M,h0) is hyperbolic, then

lim
T→∞

1
]Γh0(T )

∑
γ∈Γh0 (T )

δγ = µLeb .
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2. TOTALLY GEODESIC SUBMANIFOLDS OF HIGHER
DIMENSION

As a first attempt of generalization, it is quite tempting to understand what happens
to totally geodesic submanifolds of higher dimension, where by totally geodesic we mean
complete and such that any geodesic in the submanifold is a geodesic for the ambient
manifold.

2.1. Closed totally geodesic submanifolds are rare
One easily constructs by arithmetic means hyperbolic manifolds with infinitely many

closed totally geodesic submanifolds, however this situation is exceptional and we have,
according to a beautiful recent theorem by Bader, Fisher, Miller, and Stover
(2021):

Theorem 2.1. — If a closed hyperbolic manifold M contains infinitely many closed
totally geodesic subspaces of dimension at least 2, then M is arithmetic.

Thus, having infinitely many closed totally geodesic submanifolds is quite rare for
hyperbolic 3-manifolds, and an asymptotic counting as we defined for geodesics does
not yield interesting results in general.

2.2. The set of pointed totally geodesic spaces and Ratner–Shah Theorem
Let (M,h) be an oriented Riemannian 3-manifold and G(M) be the bundle over M

whose fiber at a point x is the set of oriented 2-planes in the tangent space at x. Every
surface S in M then has a Gauß lift G(S) in G(M) which consists of the set of tangent
spaces to S.

2.2.1. Totally geodesic hyperbolic planes, the frame bundle and the PSL2(R)-action. —
When h is hyperbolic, the space G(M) has a natural foliation F whose leaves are Gauß
lifts of immersed totally geodesic hyperbolic planes. We can thus interpret G(M) as
the space of pointed totally geodesic planes, or equivalently as the set of (local) totally
geodesic embeddings of H2 into M , equipped with the right action by precomposition
of PSL2(R).

Let Fh0(M) be the frame bundle over M whose fiber at x is the set of oriented
orthonormal frames in the tangent space of x. We have a natural fibration

S1 → Fh0(M)→ G(M) .

The choice of a frame at a point x in H3 identifies Isom(H3), the group of orientation
preserving isometries of H3, with PSL(2,C). Thus Fh0(H3) is interpreted as the space
of isomorphisms of Isom(H3) with PSL(2,C) and as such carries commuting actions of
Isom(H3) on the left by postcomposition and PSL(2,C) on the right by precomposition.
Then the foliation of Fh0(H3) by the orbits of the right action of the subgroup PSL2(R)
of PSL(2,C), projects to the foliation F of G(H3) that we just described, with the
corresponding action of PSL2(R).
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2.2.2. Ratner–Shah Theorem. — From this interpretation of the PSL2(R)-action on
G(M), a theorem by Shah (1991), which is also a consequence of the celebrated theorem
by Ratner (1991b), gives:

Theorem 2.2. — Let (M,h0) be a closed hyperbolic 3-manifold. Then any orbit of the
PSL2(R)-action on Fh0(M) is either dense or closed. Moreover any closed set invariant
by PSL2(R) in Fh0(M) is either everything or a finite union of closed orbits.

Observe that the finiteness in the second part is obtained as a consequence of a recent
work by McMullen, Mohammadi, and Oh (2017, Theorem 11.1), see also Tholozan
(2019–2020).

We state this result as part of our promenade in the subject and will not use it in the
proof, as opposed to Calegari, Marques, and Neves (2020). However, we will use
the measure classification theorem of Ratner (1991a).

Theorem 2.3. — Let (M,h0) be a closed hyperbolic 3-manifold. Then any ergodic
PSL2(R)-invariant measure on Fh0(M) is µLeb or is supported on a closed leaf in Fh0(M).

In particular, there are only countably many ergodic PSL2(R)-invariant measures. For
a short and accessible proof of Ratner’s theorem in the context of PSL2(R)-action see
Einsiedler (2006).

We only need the following corollary that may have a direct proof.

Corollary 2.4. — Let µ be an PSL2(R)-invariant probability measure on Fh0(M).
Let p be the projection of Fh0(M) to M . Assume that p∗µ is (up to a constant) the
volume form on M , then µ = µLeb.

2.3. In variable curvature

For a generic metric, there are no totally geodesic surfaces, not even locally. Thus,
even non closed totally geodesic surfaces are rare in variable curvature. We actually
explain now a more precise result of Calegari, Marques, and Neves (2020) which
implies that if a negatively curved manifold has too many hyperbolic planes, then it is
hyperbolic.

We start by discussing briefly the boundary at infinity of negatively curved manifolds.

2.3.1. The boundary at infinity and circles. — In the Poincaré ball model, H3 is the
interior of a ball. The boundary of the ball is denoted ∂∞H3 and carries an action
of the isometry group Isom(H3) of H3, which is isomorphic to PSL(2,C). Under this
isomorphism, ∂∞H3 identifies as a homogeneous space with CP1.

Observe that the choice of real plane P in C2 defines a circle in CP1 which is the set
of complex lines intersecting non trivially the plane P . In the ball model of H3, these
circles are boundaries of hyperbolic planes totally geodesically embedded in H3 .
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The boundary at infinity ∂∞H3 has an intrinsic definition as the set of equivalence
classes of oriented geodesics which are parallel at infinity, where the equivalence is
defined as

γ1 ∼ γ2 if and only lim sup
t→∞

d(γ1(t), γ2(t)) <∞ .

This notion also makes sense in the case of a nonpositively curved simply connected
manifold M̃ and allow us to define the notion of the boundary at infinity ∂∞M̃ .

We recall here briefly that M̃ t ∂∞M̃ admits a topology and becomes so a compactifi-
cation of M̃ as a closed ball. Moreover, if M̃ is the universal cover of a closed manifold
that admits a hyperbolic metric, we have an identification of ∂∞M̃ with ∂∞H3.

If M has dimension at least 3, by Mostow rigidity, the above identification of ∂∞M̃
with CP1 is unique up to the action of PSL(2,C) and thus circles make perfect sense
in ∂∞M̃ .

2.3.2. A characterization of hyperbolic metrics. —

Proposition 2.5. — Assume that the curvature of the closed 3-manifold M is less
than −1. Assume that every circle at infinity bounds a totally geodesic hyperbolic surface.
Then M is hyperbolic.

Sketch of a proof. — Since the curvature is negative, a circle at infinity cannot bound
more than one totally geodesic surface. Let T be the space of triples of pairwise distinct
elements in ∂∞H3. Every such triple τ defines a unique circle γ and thus a unique totally
geodesic oriented hyperbolic plane H in M̃ , the universal cover of M . Since γ is the
boundary at infinity of H, a triple of points τ = (a, b, c) define a frame (x, u, v) where x
is a point in H and (u, v) an orthonormal basis of TxH by the following procedure: x is
on the geodesic joining a to c, u is the vector tangent at x in the direction of b and v
the tangent vector in the direction of c. Let us define

β(τ) = (x, u, v, n) , such that (u, v, n) is an oriented orthonormal basis of TxM̃ .

Then β is π1(M)-equivariant from Fh0(H3) to Fh(M). One can show that β has degree 1
and is surjective. It follows in particular that there is a totally geodesic hyperbolic plane
through any tangent plane in M . Thus M has constant curvature −1.

3. SURFACE SUBGROUPS IN HYPERBOLIC 3-MANIFOLDS

Let us move to topological questions. The natural question is, after we have spent
some time in the first sections studying homotopy classes of circles in negatively curved
manifolds, to understand conjugacy classes of fundamental groups of surfaces in 3-
manifolds. We will spend some time recalling classical facts about quasi-Fuchsian surface
groups, the surface subgroup theorem by Kahn and Marković, and finally asymptotic
counting of those surface subgroups by the genus.



1179–09

To be explicit, a surface group is the fundamental group of a compact connected
orientable surface of genus greater than or equal to 2.

Any such group can be represented as a Fuchsian subgroup, that is a discrete cocompact
subgroup of the isometry group PSL2(R) of the hyperbolic plane H2.

We concentrate our discussion first on discrete surface subgroups of Isom(H3).

3.1. Quasi-Fuchsian groups and quasicircles

Let S be a closed connected oriented surface S of genus greater than 2. Let ρ0 be
a faithful representation of the fundamental group π1(S) in Isom(H2) whose image is
a cocompact lattice Γ. Seeing H2 sitting as a geodesic plane in H3, gives rise to an
embedding of Isom(H2) in Isom(H3). The corresponding morphism of Γ < Isom(H2) in
Isom(H3) is called a Fuchsian representation and its image a Fuchsian group(3).

We saw in paragraph 2.3.1 that such a Fuchsian group preserves a circle in ∂∞H3.
This motivates the following definitions.

Definition 3.1. — (i) a quasi-Fuchsian representation is a morphism ρ from a
cocompact lattice Γ of Isom(H2) in Isom(H3), such that there exists a continuous
injective map Λ from ∂∞H2 to ∂∞H3 which is ρ-equivariant.

(ii) The map Λ is called the limit map of the quasi-Fuchsian morphism.
(iii) a quasi-Fuchsian group is the image of a quasi-Fuchsian representation.
(iv) a quasi-Fuchsian manifold is the quotient of the hyperbolic space by a quasi-Fuchsian

group.
(v) The limit set ∂∞Γ of a quasi-Fuchsian group Γ is the image of its limit map.

In this definition, observe that the choice of a quasi-Fuchsian representation depends
on the choice of a realization of the surface group as a lattice in PSL2(R). Similarly,
the limit map of a quasi-Fuchsian representation depends on the choice of a lattice in
PSL2(R), while ∂∞Γ only depends on the quasi-Fuchsian group Γ.

Quasi-Fuchsian manifolds are not compact: they are homeomorphic to S × R, if the
quasi-Fuchsian group is isomorphic to π1(S). However, they keep some cocompactness
feature:

Proposition 3.2. — Let ∂∞Γ be the limit set of a quasi-Fuchsian surface group Γ and
Env(∂∞Γ) be the convex hull (for instance in the projective Klein model) of ∂∞Γ in H3.
Then
(i) the distance to Env(∂∞Γ) is convex(4),
(ii) the group Γ acts cocompactly on Env(∂∞Γ).

The quotient Env(∂∞Γ)/Γ is called the convex core of the quasi-Fuchsian manifold
associated to Γ.

(3)we warn the reader our definitions are slightly non standard here
(4)A function is convex its restriction to any geodesic is convex. In nonpositive curvature, any distance
to a convex set is convex
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Quasi-Fuchsian groups are plentiful, and in particular

Proposition 3.3. — Any small deformation of a Fuchsian group is quasi-Fuchsian.

The limit map of a quasi-Fuchsian group has many remarkable properties:

Proposition 3.4. — Given the limit map Λ of a quasi-Fuchsian group, there exists
a constant K, such that for any quadruple of pairwise distinct points (x, y, z, t) in
∂∞H2 ' RP1, then

(1)
∣∣∣[Λ(x),Λ(y),Λ(z),Λ(w)]

∣∣∣ 6 K
∣∣∣[x, y, z, w]

∣∣∣ ,
where [a, b, c, d] denotes the cross-ratio of the quadruple (a, b, c, d) in either RP1 or CP1.

More generally a map Λ from RP1 to CP1 is called K-quasisymmetric if it satisfies
inequality (1). The image of a K-quasisymmetric map is called a K-quasicircle. The
above proposition can be strengthened as

Proposition 3.5. — The limit map of any quasi-Fuchsian representation is K-
quasisymmetric for some K. If K = 1, then the group is actually Fuchsian.

Accordingly, a surface group is K-quasi-Fuchsian if it admits a K-quasisymmetric
limit map. The constant K gives a feeling of how far a quasi-Fuchsian group is from
being Fuchsian.

Not all discrete surface groups in Isom(H3) are quasi-Fuchsian. We shall see an
example of that in the next paragraph.

3.2. Surface subgroups in fundamental groups of closed hyperbolic 3-
manifolds

Solving a crucial conjecture of Thurston, Kahn and Marković proved that fundamental
groups of closed hyperbolic 3-manifolds contain surface groups. The amazing proof, in
Kahn and Marković (2012b), uses mixing and equidistribution of the geodesic flow
and we shall have to extract further information from it.

Kahn–Marković surface subgroup theorem states the existence of many surface groups
which are “more and more” Fuchsian in some precise way

Theorem 3.6. — [Kahn–Marković surface subgroup theorem] Let M be
a closed hyperbolic 3-manifold. Let ε be any positive constant. Then there exists a
quasi-Fuchsian subgroup in π1(M) whose limit map is a (1 + ε)-quasicircle.

This result was explained in a Bourbaki exposé byBergeron (2013). The quantitative
part of the result plays a crucial role in the proof of Agol’s Virtual Haken Theorem by
Agol (2013) stating that any hyperbolic 3-manifold has a finite covering which is a
surface bundle over the circle. Quite interestingly, in those manifolds fibering over the
circle the fundamental group of the fiber is not quasi-Fuchsian.
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To add a little perspective that will come up later, recall that surface groups and
fundamental groups of hyperbolic manifolds are prototypes of Gromov-hyperbolic groups.
Gromov has broadened Thurston’s conjecture in the following question.

Question 1. — Does any one-ended Gromov-hyperbolic group contain a surface group?

3.3. Counting surface subgroups
A classical theorem in geometric group theory says

Theorem 3.7. — A Gromov-hyperbolic group contains only finitely many conjugacy
classes of surface groups of a given genus.

This result is suggested in Gromov (1987), a proof and a generalization is given in
Delzant (1995).

The special case of the fundamental group of a hyperbolic 3-manifold is due to
Thurston (1997) and his beautifully simple proof works in general for fundamental
groups of negatively curved manifolds. We prove it in theorem 4.5 after our discussion
of minimal surfaces.

For a hyperbolic manifold M , let S(M, g) be the number of conjugacy classes of
surface subgroups in π1(M) of genus g. Thurston already gave a crude estimate of an
upper bound for S(M, g), later on improved by Masters (2005) and Soma (1991). A
crucial improvement of this count is made in Kahn and Marković (2012a).

Theorem 3.8. — Let M be a hyperbolic 3-manifold, then there exist constants c1 and c2
so that for g large enough

(2) (c1g)2g 6 S(M, g) 6 (c2g)2g ,

where c2 only depends on the injectivity radius of M .

The previous upper bound by Masters was of the form gc2g. To get the lower bound,
it is actually enough —and distressing— to have the existence of one surface group,
and counts its covers —see proposition 6.7. However, Kahn and Marković also have the
same estimates in the harder case when one counts commensurability classes.

We deduce,

Corollary 3.9. —

(3) lim
g→∞

log(S(M, g))
2g log(g) = 1 .

Kahn and Marković conjecture a more precise asymptotic(5):

Conjecture 3.10. — Let M be a hyperbolic 3-manifold, then there exists a constant
c(M) only depending on M , so that

lim
g→∞

1
g

(S(M, g))
1
g = c(M) .

(5)also for commensurability classes
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Observe that this counting is purely topological, the results do not make any reference
to the underlying Riemannian structure of the manifold.

To summarize this discussion, according to Kahn and Marković (2012b), there
are many surface groups in π1(M) and we have a purely topological asymptotic of the
growth of the numbers of those when the genus goes to infinity. Calegari–Marques–Neves
article also addresses the question of counting those subgroups but with a geometric
twist. Before explaining their result, let us review some fundamental results on minimal
surfaces.

4. MINIMAL SURFACES IN 3-MANIFOLDS

In order to recover the flexibility that we lost when considering closed totally geodesic
submanifolds, let us now introduce minimal immersions which will allow us to extend
our discussion about geodesics. We now spend some time recalling some basic properties
and definition of minimal immersions, before actually addressing the question of counting
surface subgroups.

4.1. Minimal immersions

Let (M, g) be a Riemannian manifold. We denote in general by d vol(h), the volume
density of a metric h. An immersion f from a compact manifold N into M is a minimal
immersion if f is a critical point for the volume functional

Vol(f) :=
∫
N

d vol f ∗g .

More precisely, this means that for any family of smooth deformations {ft}t∈]−1,1[ with
f0 = f we have

(4) d
dt

∣∣∣∣∣
t=0

Vol(ft) = 0 .

To the family of deformations {ft}t∈]−1,1[ is associated the infinitesimal deformation
vector ξ which is the section of f ∗(TM) given by

(5) ξ(x) = f ∗
( d

dt

∣∣∣∣
t=0
ft(x)

)
.

4.1.1. The first variation formula. — One can now compute effectively the left hand
side of equation (4) by a classical computation which is called the first variation formula.
Let us introduce the second fundamental form II which is the symmetric tensor with
values in the normal bundle given by

II(X,Y) = p(∇XY)
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where X and Y are tangent vectors to N , ∇ is the Levi-Civita connection of g pulled
back on f ∗(TM), and p is the orthogonal projection of f ∗(TM) on the normal bundle
of N . Then the first variation formula reads

d
dt

∣∣∣∣∣
t=0

Vol(ft) =
∫
N
〈ξ | H〉 d vol(f ∗g) .

where H is the mean curvature vector defined as the trace of II.
Thus being a minimal immersion is equivalent to the fact that the mean curvature

vanishes identically. As an important corollary, we have two useful properties

Corollary 4.1. — (i) The restriction of a convex function to a minimal submanifold
is subharmonic.

(ii) The curvature of a minimal surface at a point is less than the ambient curvature
of its tangent plane.

One then defines a minimal immersion from a (possibly non compact, possibly
with boundary) manifold as one for which the mean curvature vanishes everywhere.
Equivalently, one can show that those are the immersions f for which for any variation
{ft}t∈]−1,1[ with f0 = f , constant on the boundary as well as outside a bounded open
set U , we have

d
dt

∣∣∣∣
t=0

∫
U

d vol(f ∗t g) = 0 .

When the dimension of N is 1, minimal immersions are exactly parameterizations of
geodesics.

4.1.2. The second variation formula. — The misleading terminology “minimal immer-
sions” or “minimal surfaces” tends to suggest that minimal surfaces are not only critical
point of the area functional but actual minima. This not always the case.

In order to understand whether the immersion is actually a local minimum of the
volume functional, we need —as in the case for geodesics— to study the second variation
formula of the volume.

Let us assume for simplicity that the source is compact, since our goal is only to
present the subject.

Let us denote by ξ an infinitesimal variation of f as in equation (5). We may as
well assume that this infinitesimal variation is normal since tangent deformation do not
affect the volume. Then the second variation formula is given by

(6) D2
f Vol(ξ, ξ) := d2

dt2
∣∣∣∣
t=0

∫
N

d vol(f ∗t g) = 2
∫
N

(Rξ + aξ − bξ)d vol(f ∗g) ,
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where Rξ, aξ and bξ are the trace —with respect to the induced metric— of the symmetric
tensors defined by respectively

Rξ(X, Y ) := 〈R(ξ,X)ξ | Y 〉 ,
aξ(X, Y ) := 〈p(∇Xξ) | p(∇Y ξ)〉 ,
bξ(X, Y ) := 〈B(X)ξ | B(Y )ξ〉 ,

where X and Y are tangent vectors and ξ is normal, R is the curvature tensor of the
Levi-Civita curvature ∇ of the ambient manifold, B is the shape operator defined by

〈B(X)ξ | Y 〉 = 〈II(X,Y) | ξ〉 .

Since our ultimate goal is to understand the sign of D2 Vol, we now comment on the
sign of these quantities:

(i) aξ is nonnegative.
(ii) bξ is nonnegative, but vanishes when the submanifold is totally geodesic.
(iii) Rξ is nonnegative when the ambient curvature is nonpositive. When the ambient

manifold is hyperbolic, Rξ = 2‖ξ‖2.

In particular, when the ambient curvature is nonpositive and the submanifold is totally
geodesic then D2

f Vol(ξ, ξ) is nonnegative and the minimal immersion is a local minimum.
This covers for instance the case of geodesics in nonpositive curvature.

However, in general one cannot expect that just controlling the sign of the curvature
would guarantee that the minimal immersion is an actual local minimum. Nevertheless,
we shall see that under some other additional assumptions the minimal immersion will
be a local minimum. We now introduce the standard terminology:

Definition 4.2. — A minimal immersion f is stable(6) if for any compactly supported
infinitesimal deformation ξ, D2

f Vol(ξ, ξ) > 0.

Thus a totally geodesic surface in a nonpositively curved manifold is stable. A famous
result proved independently in Pogorelov (1981), Carmo and Peng (1979), and
Fischer-Colbrie and Schoen (1980) states

Theorem 4.3. — The plane is the only stable embedded complete minimal surface
in R3.

As a standard phenomenon, we will explain later on, that such a rigidity result implies
a compactness property for the space of stable minimal surfaces (proposition 4.9).

(6)The terminology is unstable here: some people call this condition semistable
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4.2. Minimal surfaces in 3-manifolds

Let us now focus on minimal immersions of surfaces in 3-manifolds. The volume is
then called the area of the immersion, and denoted by Area(f).

Two important results by Schoen and Yau (1979) and Sacks and Uhlenbeck
(1982) guarantee the existence of minimal surfaces from some topological data. Here is
a special case of their result.

Say a continuous map between two connected manifolds is incompressible if it is
injective at the level of fundamental groups.

Theorem 4.4. — Let f be a continuous incompressible map from a closed surface
to a compact negatively curved 3-manifold. Then there exists a minimal immersion,
homotopic to f , which is minimal and achieves the minimum of the area amongst all
possible maps homotopic to f .

In particular, surface groups in fundamental groups of compact hyperbolic manifolds
can be represented by minimal surfaces, albeit not necessarily uniquely as we shall see.

As an application, let us now give a hint of the proof by Thurston (1997) of
theorem 3.7 in the case of the fundamental groups of a hyperbolic manifold as was
explained to us by Delzant.

Theorem 4.5. — The fundamental group of a hyperbolic manifold only contains finitely
many conjugacy classes of surface groups of a given genus.

Proof. — Let S be a minimal surface in M representing a surface group. The curvature
of the minimal surface S is bounded from above by the curvature of M , and thus the
area Area(S) of S is bounded from above by 4π(g − 1), where g is the genus of S.

Moreover since the surface is incompressible, the injectivity radius iS of S is bounded
from below by the injectivity radius iM of M . Let then a(iM) be a lower bound of the
area of a ball of radius iM/2 in S and observe that by comparison theorems, we can
have an explicit formula for a(iM) in terms of iM .

Thus we can cover S by Area(S)/a(iM ) balls of radius iM/2. Hence π1(S) is generated
by curves of length (in S) less than 2iM Area(S)/a(iM) and hence less than 8πiM(g −
1)/a(iM). The same holds a fortiori for the length of those curves in M . This implies
that there is only finitely many possibilities for conjugacy classes of surface groups.

Observe that Thurston originally used pleated surfaces rather than minimal ones:
we only use the fact that the surface representing the surface group has curvature no
greater than −1.
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4.2.1. Back to quasi-Fuchsian manifolds. — The work of Schoen and Yau carries on
immediately in the context of quasi-Fuchsian manifolds, due to the existence of a convex
hull which traps minimal surfaces:

Proposition 4.6. — Let M be a 3-manifold of curvature less than −1. Let ρ be a
representation of π1(S) in the isometries of M . Let C be a convex set in M invariant
by the action of ρ(Γ). Let f be a minimal immersion of the universal cover S̃ of S,
equivariant under ρ, then f(S) is a subset of C.

Proof. — The distance function to the convex set C is convex and strictly convex for
positive values. Hence by corollary 4.1, its pullback on S is strictly subharmonic for
positive values and π1(S)-invariant, hence vanishes identically.

However the number of those surfaces is not a priori bounded, as it follows from
results of Anderson (1983) and Huang and Wang (2015)

Theorem 4.7. — For any given positive integer N , there exists a quasi-Fuchsian
manifold that contains at least N distinct (closed, incompressible and embedded) minimal
surfaces.

For a survey about the use of minimal surfaces in 3-manifolds, see Hass (2005).

4.3. Compactness results

The set of minimal surfaces enjoy compactness properties. In particular we have the
standard fact valid in all dimensions.

Proposition 4.8. — Let {(Mm, hm, xm)}m∈N be a sequence of pointed Riemannian
manifolds converging to a Riemannian manifold (M∞, h∞, x∞). For each m, let Sm be
a complete minimal surface without boundary in Mm, so that xm belongs to Sm. Assume
that, for every R, the second fundamental form of Sm is bounded independently on m,
on every ball in Sm containing xm and radius R.

Then the sequence of pointed minimal surfaces {(Sm, xm)}m∈N converges uniformly
on every compact to a pointed minimal surface (S∞, x∞) in M∞

The following is essentially contained in Fischer-Colbrie and Schoen (1980) and
is a consequence of Theorem 4.3. Let λ be the function on a minimal surface defined as
the positive eigenvalue of the shape operator.

Proposition 4.9. — Let M be a 3-manifold with a metric h with curvature bounded
from above by −1. Then there is a positive K only depending on M , such that for any
stable minimal disk D embedded in the universal cover M̃ , we have λ(D) 6 K.

We sketch a proof to emphasize the standard philosophy in geometric analysis that a
rigidity result yields a compactness result.
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Sketch of a proof. — Let us give a proof by contradiction and assume that there exists
a sequence of stable complete minimal disks {Dm}m∈N and a point xm in Dm so that
{λm(xm)}m∈N goes to infinity. Here we denote by λm the function λ on Dm. We
can assume using the cocompact group π1(M) in Isom(M̃) that xm lies in a compact
fundamental domain for π1(M).

The optimum would be to find a point xm in Dm where λm achieves its maximum
value Λm, which happens for instance if the disk projects to a closed surface in M .
However, since this is not necessarily the case, we use a classical trick in geometric
analysis.

Let then Km be the maximum of λm on the ball of center xm and radius 10. According
to the Λ-maximum lemma as in Gromov (1991b, Paragraph 1.D), and assuming
λm(xm) > 1 there exists ym, such that

(7) Λm := λm(ym) > sup
{
Km,

1
2λm(z) | d(z, ym) 6 1

2
√
λm(ym)

}
.

Observe that {Λm}m∈N also goes to infinity. We now consider the metric hm = Λmh

on M , associated to a distance dm, and observe that (M̃, hm, ym) converges smoothly
on every compact to a Euclidean space. The new eigenvalue function λ̃m is now equal
to λm/Λm.

Thus we obtain from the assertion (7), that

λ̃m(z) 6 2, if dm(z, ym) 6
√

Λm

2 .

Thus the sequence of minimal surface {(Sm, ym)}m∈N has bounded second fundamental
form on larger and larger balls, and thus, by proposition 4.8, the sequence converges
(on every compact) to a minimal surface (S∞, y∞) in (M,h∞, y∞). Now S∞ is a stable
minimal surface in the Euclidean 3-space (M,h∞). By Theorem 4.3, S∞ is a plane and
thus its second fundamental form is zero. Hence, λ̃m converges to zero uniformly on
every compact and this contradicts λ̃m(ym) = 1. This proves by contradiction that
{Λm}m∈N is bounded. It follows that {Km}m∈N — and in particular {λm(xm)}m∈N — is
bounded.

4.4. Almost Fuchsian minimal surfaces, Uhlenbeck’s result and the asymp-
totic Plateau problem

The examples constructed by Anderson, then by Huang and Wang are far from being
Fuchsian but the situation improves when we are close to being Fuchsian.

4.4.1. Almost Fuchsian minimal surfaces. — Let us go back to the second variation
formula (6) for surfaces in the case of hyperbolic 3-manifolds. We saw that the Hessian
of the volume at a minimal immersion f is given by

(8) D2
f Vol(ξ, ξ) = 2

∫
N

(Rξ + aξ − bξ)d vol(f ∗g) ,
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where aξ > 0, Rξ = 2‖ξ‖2 and

bξ = Trace 〈B(X)ξ | B(Y )ξ〉 = 2λ2‖ξ‖2 ,

where λ is the positive eigenvalue of B. Thus if we assume that λ < 1 we can guarantee
that bξ 6 Rξ and thus that D2 Vol(ξ, ξ) > 0, for a non vanishing ξ, hence that S is
stable.

This suggest the following definition, where the term almost Fuchsian was coined by
Krasnov and Schlenker (2007).

Definition 4.10. — (i) A nearly geodesic minimal surface is a complete minimal
surface S in H3 with λ(S) < 1. If the nearly geodesic surface is invariant under a
quasi-Fuchsian group, we say the quasi-Fuchsian group is almost Fuchsian and the
nearly geodesic surface almost Fuchsian.

(ii) An almost Fuchsian manifold is a quasi-Fuchsian manifold that contains an almost
Fuchsian minimal surface.

Using our freshly minted terminology, we can rephrase the previous discussion as the
first part of the proposition

Proposition 4.11. — A nearly geodesic minimal surface in a hyperbolic 3-manifold is
stable.

Then, as suggested by this stability result, Uhlenbeck (1983) proved the following,
which is a simple application of the maximum principle.

Theorem 4.12. — An almost Fuchsian manifold contains a unique minimal embedded
incompressible surface, which is then stable.

4.4.2. Asymptotic Plateau problem. — Let us quit the realm of equivariant minimal
surfaces. As a special case of a theorem of Anderson (1982) we have

Theorem 4.13. — Given any embedded circle C in ∂∞H3, there exists a minimal
embedded surface in H3 bounded by C in the Poincaré ball model.

Let us then say that

Definition 4.14. — An embedded minimal surface S is solution of the asymptotic
Plateau problem defined by the embedded circle C in ∂∞H3 if in the ball model the
closure S of S is S t C. Alternatively we say that C is the boundary at infinity of S,
that S is bounded by C and write C = ∂∞S.

One naturally hopes there should be a correspondence between K-quasicircle and
almost Fuchsian minimal surfaces. This is indeed obtained as a consequence of a theorem
of Seppi (2016, Theorem A), while the second part follows from an extension of Guo,
Huang, and Wang (2010), where the result is only stated for almost Fuchsian surfaces.
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Theorem 4.15. — There exist constants K0 and C0 such that if S is a complete
embedded minimal surface whose boundary at infinity is a K-quasicircle, with K less
than K0, then

λ(S) 6 C0 log(K) .

Conversely, there exists λ0, such that if λ(S) 6 λ 6 λ0, then the surface S is embedded
in H3 and the boundary at infinity is a K(λ)-quasicircle, with

lim
λ→0

K(λ) = 1 .

For a survey in the asymptotic Plateau problem for minimal surfaces see Coskunuzer
(2014), for results when the target is negatively curved see Lang (2003).

4.5. In variable curvature

Assume now that the closed hyperbolic manifold (M,h0) is also equipped with a
metric h of curvature less than −1.

For any set Λ in ∂∞M̃ , let Envh(Λ) be the convex hull of Λ that is the intersection of
all convex subsets of M̃ whose closure in M̃ t ∂∞M̃ contains Λ.

Observe again that thanks to Mostow rigidity K-quasicircles in the boundary at
infinity of the universal cover of (M,h) is a topological notion. We denote by M̃ the
universal cover of M .

For the paper being discussed, the authors need to obtain a control between minimal
surfaces for both (M,h) and (M,h0) given in Calegari, Marques, and Neves, 2020,
Theorem 3.1. This result follows from results of Bowditch (1995).

Theorem 4.16. — [Morse Lemma for minimal surfaces] There exists a positive
constant R, such that if S and S0 are incompressible minimal surfaces in M , for h
and h0, having the same fundamental group, then

d0(S0, S) 6 R ,

where R only depends on h, h0 and λ(S0), and d0 is the distance with respect to h0.

Correctly extended this result also makes sense for other minimal surfaces than
equivariant ones, and could be understood as a Morse Lemma for minimal surfaces.
Since S and S0 are trapped in Envh(Λ) and Envh0(Λ) respectively by proposition 4.6, it
is enough to prove

Proposition 4.17. — For any set Λ in ∂∞M̃ = ∂∞H3, we have

(9) dh(Envh(Λ),Envh0(Λ)) 6 R ,

for some constant only depending and h and h0.
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Indication of the proof. — We prove that by introducing the following set: for any p,
let

Clohp(Λ) := {γ(t) | t > 0 , γ geodesic for h with γ(0) = p, γ(+∞) ∈ Λ} .

Then, by a result of Bowditch (1995, proposition 2.5.4), there is some positive constant
R1(h) only depending on h, so that for any p in Envh(Λ),

(10) dh(Envh(Λ),Clohp(Λ)) 6 R1(h) .

Take now geodesics γ and γ0 joining two points of Λ, then by the Morse Lemma for
geodesics, we can find points p and p0 in γ and γ0 respectively so that

(11) dh(p, p0) 6 R2 ,

where R2 only depends on h and h0. As a final ingredient observe that for any p and q,

(12) dh(Clohp(Λ),Clohq (Λ)) 6 R3 + dh(p, q) ,

where R3 only depends on h. Observing that p belongs to Envh(Λ) while p0 belongs to
Envh0(Λ), and combining inequalities (10), (11) and (12), we get the desired inequality (9)
with

R = R2 +R2 +R1(h) +R1(h0) .

4.5.1. Minimal surfaces and quasi-isometries. — Let again (M,h0) be a closed hyper-
bolic 3-manifold and h another metric on M of curvature less than −1.

As a consequence of proposition 4.16, a priori bounds on the curvature of minimal
surfaces given by proposition 4.9, Theorem 4.15 that gives this result in the hyperbolic
case, and classical arguments about quasi-isometries, we have

Theorem 4.18. — There exist positive constants ε0 and K so that the following holds.
Assume h is close enough to a hyperbolic metric h0. Let S be an area minimizing
minimal incompressible surface in (M,h), such that the boundary at infinity of π1(S) is
(1 + ε0)-quasicircle, then

(i) the conformal minimal parametrization φ from H2 to S, is, as a map to the
universal cover of M , a K-quasi-isometric embedding,

(ii) φ admits an extension to RP1 which is a K-quasi-symmetric map with values in
∂∞M̃ = ∂∞H3.

We recall that a map is a K-quasi-isometric embedding if the image of every geodesic
is a K-quasi-geodesic.
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4.6. The case of fibered manifolds

To conclude our promenade in minimal surfaces in hyperbolic manifolds, and after
discussing almost Fuchsian manifolds, let us say a word about manifolds fibering over
the circle, even though none of this will be used further on.

By Agol’s Virtual Haken Theorem, any hyperbolic 3-manifold has a finite cover
that fibers over the circle. The fibers of these fibrations are not quasi-Fuchsian, but
nevertheless can be represented by minimal surfaces by theorem 4.4.

This fibration is taut by a result of Sullivan (1979), which means one can realize
this foliation by minimal surfaces for some metric.

A long standing question was whether this fibration could be realized by a minimal
fibration in the hyperbolic metric. The answer to this question is no: there exists
3-manifolds fibering over the circle, so that the fibers of this fibration cannot be all
minimal surfaces. This is a result of Hass (2015) —see also Huang and Wang (2019).

5. EQUIDISTRIBUTION IN THE PHASE SPACE OF MINIMAL
SURFACES

5.1. A phase space for stable minimal surfaces

Dealing with solutions of ordinary differential equations, for instance geodesics, we
introduced the phase space of the problem, which can be identified the space of pairs
(x, L)(7), where x is a point in the orbit L of the ordinary differential equation. One
can generalize this construction to solutions of partial differential equations as was
done in Gromov (1991a) for minimal surfaces and harmonic mappings and studied in
Labourie (2005) for surfaces with constant Gaußian curvature in negatively curved
3-manifolds. We will do so for stable minimal surfaces and describe measures on this
space.

Let M be a closed manifold equipped with a metric h of curvature less than −1,
and M̃ its universal cover.

In this section H2 will be the upper half plane model of the hyperbolic plane, which
comes with a canonical identification of ∂∞H2 with RP1 and Isom(H2) with PSL2(R).
We say a minimal immersion from H2 to M is conformal if the pullback metric is in the
conformal class of the hyperbolic metric.

Definition 5.1. — [Conformal minimal lamination] Let us fix some small ε0
and large constant K so that Theorem 4.18 holds.
(i) Let Fh(M̃) be the space of stable minimal conformal immersions of H2 in M̃

which are K-quasi-isometric embeddings, equipped with the topology of uniform
convergence on every compact, and Fh(M) := Fh(M̃)/π1(M).

(7)One has to be careful of what we call “orbit” to avoid the space to be non Hausdorff
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(ii) For ε 6 ε0, let Fh(M̃, ε) be the set of those φ in Fh(M̃) so that φ(∂∞H2) is a
(1 + ε)-quasicircle. Similarly, let Fh(M, ε) := Fh(M̃, ε)/π1(M).

The space Fh(M) together with the action of PSL2(R) by precomposition is called the
conformal minimal lamination of M .

Finally denote by Q(K) the space of K-quasicircles in ∂∞H3 equipped with the
Gromov–Hausdorff topology. Then

Theorem 5.2. — (i) The map from Fh(M̃) to M̃ , given by φ 7→ φ(i) is a proper
map.

(ii) The action of PSL2(R) by precomposition on Fh(M) is continuous and proper.
(iii) Moreover, the map ∂ from Fh(M̃) to Q(1 + ε), which maps φ to φ(RP1) is

continuous and PSL2(R)-invariant.

We may assume that (1 + ε) 6 K, and we will consider from now on Q(1 + ε) as a
subset of Q(K) to lighten the notation.

Proof. — The first point is a rephrasing of proposition 4.9 and 4.8. The second point
and third point also follow from the first and from the fact that any element of Fh(M)
is a K-quasi-isometric embedding.

Here is a corollary, using the constants that appear in the previous theorem.

Corollary 5.3. — The map ∂ gives rise to a continuous map —also denoted ∂— from
Fh(M)/PSL2(R) to Q(K).

A recent preprint of Lowe (2020) states —in this language— that upon small
deformation h of the hyperbolic metric the projection from Fh(M, 0) to G(M) is a
homeomorphism. This is a special case of a theorem by Gromov (1991a).

5.2. Laminar measures and conformal currents

This paragraph is an extension of the theory of geodesic currents and invariant
measures as in Bonahon (1997).

Definition 5.4. — (i) A laminar measure on Fh(M̃)/π1(M) is a PSL2(R)-invariant
finite measure.

(ii) A conformal current is a π1(M)-invariant locally finite measure on Q(K).

Here are two examples which are the analogues of the situation for closed geodesics.
Let Γ be a Fuchsian group acting on H2. Let U be a fundamental domain of the action
of Γ on PSL2(R). Let ρ be a representation of Γ into π1(M).

Proposition 5.5. — For ε small enough, let φ be a an element of Fh(M̃), equivariant
under a representation ρ from Γ to π1(M), such that ρ is injective and its boundary at
infinity is a (1 + ε)-quasicircle Λ0.
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(i) Let δhφ be the measure on Fh(M) defined by∫
Fh(M)

f dδhφ = 1
Vol(U)

∫
U
f(φ ◦ g) dµ(g),

where µ is the bi-invariant measure on PSL2(R). Then δhφ is a PSL2(R)-invariant
probability measure.

(ii) Let δρ be the measure on Q(K) defined by

δρ =
∑

γ∈π1(M)/ρ(Γ)
γ∗δΛ0 ,

where δΛ0 is the Dirac measure supported on Λ0. Then δρ is a locally finite π1(M)-
invariant measure on Q(K).

The only non-trivial point is the fact that δρ is a locally finite measure. This is checked
at the end of the proof of the next proposition.

The next proposition is crucial

Proposition 5.6. — There exist some positive constant ε and a continuous map πh
from the space of laminar measures (up to multiplication by a constant) to the space of
conformal currents (up to multiplication by a positive constant) so that

πh(δhφ) = δρ ,

if φ is an element of Fh(M, ε) equivariant under a representation ρ.
Moreover the support of πh(µ) is the image by ∂ of the support of µ.

Proof. — Let us fix a nonnegative function Ξ supported on a bounded neighborhood of
the identity in PSL2(R).

Let µ be a laminar measure on Fh(M). Let us lift µ to a locally finite π1(M)-invariant
measure µ̃ on Fh(M̃). Let Λ be a (1 + ε)-quasicircle. Let T be the space of triples of
pairwise distinct points of ∂∞. Let U be a small neighborhood of Λ in Q(K). Let F be
a continuous map from U to T so that if (a0, a1, a∞) = F(Λ), then a0, a1, a∞ belong
to Λ.

For any φ in Fh(M) so that ∂φ = Λ is in U , let gφ be the unique element of PSL2(R)
so that φ ◦ gφ(0, 1,∞) = F(Λ). Let then ξF be the function defined on ∂−1U , by

ξF(φ) = Ξ(gφ) .
Finally let us define, when f is supported in U ,

(13)
∫

Λ
f dπh(µ) :=

∫
Fh(M̃)

ξF · (f ◦ ∂) dµ̃.

Since ξF · (f ◦ ∂) is compactly supported, the left hand side is a well-defined finite real
number.

Then, one sees that the left hand side does not depend on the choice of F since µ̃
is PSL2(R)-invariant. By construction π(µ) is locally finite since µ̃ is, similarly π(µ)
is invariant under the action of π1(M) since µ̃ is. Finally the formula shows that π is
continuous in the weak topology.
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We leave the reader check the equality π(δhφ) = δρ.

5.3. Equidistribution
We can now explain the equidistribution result that follows from the techniques in

Kahn and Marković (2012b).

Theorem 5.7. — [Equidistribution] Let M be a closed hyperbolic 3-manifold. There
exists a sequence {δ0

m}m∈N of laminar measures on Fh0(M, 1/m), such that δ0
m is sup-

ported on finitely many closed leaves and so that the sequence of {δ0
m}m∈N converges to

µLeb.

We will call in the sequel the sequence of measures obtained in this theorem a Kahn–
Marković sequence. This result is an extended version of Calegari, Marques, and
Neves (2020, Theorem 4.2).

Sketch of the proof. — We use a different geometric presentation than Hamenstädt
(2015) and Kahn and Marković (2012b), developed in Kahn, Labourie, and Mozes
(2018). The following convention will hold through this sketch
(i) All references in this sketch are from Kahn, Labourie, and Mozes (2018).
(ii) Ki will be constants only depending on the closed hyperbolic manifold M =

H3/π1(M).
(iii) o(m) will denote a function that converges to 0 when m goes to infinity.
(iv) α− and α+ are the repulsive and attractive fixed points of the element α in π1(M),

while `(α) is the length of the associated geodesic.
(v) ε will be a (small) positive constant and R be a (large) positive constant.
A tripod is a triple of pairwise distinct points in CP1 ' ∂∞H3. Let T be the space of

tripods. The space T is canonically identified with the frame bundle Fh0(H3) and carries
a canonical metric. Every point x in T also defines an ideal triangle ∆x in H3 and we
denote by b(x) the barycenter of this triangle. We see the barycentric map x 7→ b(x) as
a projection from T to H3

We remark that there is an open subset ∆ in PSL2(R), invariant by the right action
of S1, so that

b(∆(x)) = ∆x ,

and thus for any function defined on H3, we have

(14) 1
Vol(∆)

∫
∆
g ◦ b ◦ u(x) dµ(u) = 1

π

∫
∆x

g d area ,

where dµ is the bi-invariant measure in PSL2(R).
A triconnected pair of tripods [definition 10.1.1] is a quintuple (t, s, c0, c1, c2) so that t

and s are points in T /π1(M) and ci are three homotopy classes of paths from t to s.
We denote by π the projection from T to T /π1(M).

Let also define π0 and π1 as the forgetting maps taking values in the frame bundle

π0 : (t, s, c0, c1, c2) 7→ t , π1 : (t, s, c0, c1, c2) 7→ s .
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The space of triconnected pair of tripods tripods carries a measure µε,R [defini-
tion 12.2.3] satisfying the following property, property which is established by a suitable
closing lemma [Theorem 10.3.1][Theorem 9.2.2]:

Let ε be small enough, then R large enough. If (t, s, c0, c1, c2) is in the support of
µε,R, there exists three elements α, β and γ of π1(M) so that,
(i) let t0 = (α−, β−, γ−) and s0 = (α−, α(γ−), β−), then π(t0) and π(s0) are K1

ε
R
close

to t and s respectively,
(ii) α, β and γ are in the homotopy classes of c0 · c−1

1 , c2 · c−1
0 and c1 · c−1

2 respectively.
(iii) The complex cross-ratio of (α−, α(γ−), β−, γ−) is K1

ε
R
close to R.

(iv) The complex length of α, β, γ is K2
ε
R
close to 2R.

Observe that αγβ = 1. Moreover, gluing the two ideal triangles T0 := ∆t0 and S0 = ∆s0 ,
then taking the quotient by π1(M) one gets a pleated pair of pants P in M , whose
fundamental group is generated by (α, β, γ).

Conversely, given three elements in π1(M), α, γ, and β so that αγβ = 1, one gets
a unique triconnected pair of tripods (called exact) by setting t = (α−, β−, γ−) and
s = (α−, α(γ−), β−) and c0, c1, c2 the obvious paths.

We define a triple (α, β, γ) satisfying the last two items (iii) and (iv) as an (ε, R)-pair
of pants. the sequence of measures π0

∗µε,R and π1
∗µε,R converges to µLeb by a mixing

argument as R goes to infinity, when ε is fixed.
More precisely, we can choose a sequence {Rm}m∈N going to ∞, so that setting

µm = µ 1
m
,Rm

, then for any continuous function f on Fh0(M), then we have [proposi-
tion 10.2.6][equation 93]:

(15) lim
m→∞

∫
(f ◦ π0) dµm = lim

m→∞

∫
(f ◦ π1) dµm =

∫
fdµLeb .

According to [proposition 18.0.3], and using mixing again, the proof goes by showing
that one can approximate µm by measures νm with finite support {Pm

1 , . . . , P
m
Nm
}, on

exact triconnected pair of tripods and rational weights, with the following property. The
sequence of measures π0

∗νm and π1
∗νm converges to µLeb by a mixing argument as R goes

to infinity. In other words, for any function f ,

(16) lim
m→∞

1
Nm

Nm∑
i=1

f(π0(Pm
i )) = lim

m→∞

1
Nm

Nm∑
i=1

f(π1(Pm
i )) =

∫
fdµLeb .

Without loss of generality, we assume that the weight of each P i
m —that may appear

with multiplicity— is 1/Nm: in other words the Pi are counted with multiplicities to
have the same weights.

Let us assume now assume that f = g ◦ b, where b is the barycentric map from Fh0(M)
to on M and g is defined on M . Using the invariance of µLeb under the left action of
PSL2(R) we get that

(17) lim
m→∞

1
2πNm

(Nm∑
i=1

∫
∆0(P i

m)
g d area +

Nm∑
i=1

∫
∆1(P i

m)
g d area

)
=
∫
fdµLeb ,
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where ∆0(P ) := ∆π0(P ) and ∆1(P ) := ∆π1(P ) are ideal triangles: Indeed we apply
equation (16), to f ◦ u, for all u in ∆ and apply formula (14).

Moreover, the measure νm satisfies a matching condition ( [lemma 14.2.1]) that we
now describe. Let {Pm

1 , . . . , P
m
Nm
} be the support of νm.

The matching condition is that for each m, we can find by (see [definition 14.1.1][The-
orem 16.3.1]) a family of closed surfaces Sm = (Sm1 , . . . , SmMm

) in M obtained by gluing
the pleated pair of pants {Pm

1 , . . . , P
m
Nm
} in M such that every pair of pants appears

exactly once. In particular, we get from equation (17) that

(18) lim
m→∞

1
2πχ(Sm)

∫
Sm

gd area =
∫
fdµLeb .

For each Sim, let Σi
m be the associated minimal surface and Σm the union of all Σi

m. As
part of the construction, each Sim is (1+o(m))-almost Fuchsian and thus the projection pm
from the pleated surface Sim to the minimal surface Σi is (1 + o(m))-bi-Lipsichitz and
satisfies d(x, pim(x)) 6 o(m).

It follows from equation (18) that

lim
m→∞

1
2πχ(Σm)

∫
Σm

gd area =
∫
fdµLeb .

In other words, setting δ0
m the measure on Fh0(M) supported on Σm, we have

lim
m→∞

p∗δ
0
m = p∗µLeb .

We can now conclude using corollary 2.4.

6. CALEGARI–MARQUES–NEVES ASYMPTOTIC COUNTING

The article of Calegari, Marques, and Neves (2020) deals with the counting of
surface subgroups. Let Σ be the set of conjugacy classes of surface subgroups in π1(M)
for a manifold M . For Π an element of Σ and h a Riemannian metric on M , we define

MinAreah(Π) := inf{Area(S) | S is an incompressible surface in M with π1(S) ∈ Π} .

Assume now that M is a 3-manifold that admits a hyperbolic metric. For a conjugacy
class of surface group Π, we define ε(Π) as

ε(Π) 6 ε ,

if Π is quasi-Fuchsian and the limit circle is a (1 + ε)-quasicircle. Let then

Sh(M,T, ε) := {Π ∈ Σ | MinAreah(Π) 6 T , ε(Π) 6 ε} ,(19)

Eε(M,h) := 1
4π lim inf

T→∞

log (]Sh(M,T, ε))
T log T ,(20)

E(M,h) := lim
ε→0

Eε(M,h) .(21)

The main result of Calegari, Marques, and Neves (2020) is then
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Theorem 6.1. — Let (M,h0) be a hyperbolic 3-manifold

(i) for any Riemannian metric h on M , we have E(M,h) 6 2hvol(M,h)2,
(ii) assume furthermore that h has curvature less than −1 then E(M,h) > 2, with

equality if only if the metric h is hyperbolic.

This result is only for counting conjugacy classes of surface groups. Except for the
equality case for which the method does not apply, the theorem also holds for counting
commensurability classes. We believe the same result holds for commensurability classes
after a suitable adaptation of theorem 1.3.

Thus we have an exact analogue to Bowen (1972) and Margulis (1969) for the first
assertion as well as a rigidity result analogue to Hamenstädt (1990) for the second
assertion.

The equality case involves a mix of analytical and dynamical properties.
Let us now explain a proof of their result insisting on the use of the phase space of

stable minimal surfaces, which synthesizes some of the proofs in Calegari, Marques,
and Neves (2020).

6.1. Counting surfaces: from genus to area

The next proposition is an easy exercise on counting, inclusion and inequalities and is
used several times in the proof.

Proposition 6.2. — Let S be a set of conjugacy classes of surface subgroups. Let S(g)
be the set of those elements of S of genus less than g,

(i) assume that we have a positive constant c, so that

]S(g) 6 (cg)2g,

as well as constants K0 and K1, so that for any Π in S of genus g, we have

g −K1 6 K0 MinAreah(Π) .

Then
lim sup
T→∞

log (] {Π ∈ S | MinAreah(Π) 6 T})
T log(T ) 6 2K0 .

(ii) Assume that we have a constant c, so that

]S(g) > (cg)2g,

as well as constants K0 and K1 so that for any Π in S of genus g, we have

g −K1 > K0 MinAreah(Π) .

Then
lim sup
T→∞

log (] {Π ∈ S | MinAreah(Π) 6 T})
T log(T ) > 2K0 .
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6.2. The upper bound in variable curvature

Our first proposition is

Proposition 6.3. — Let h be any Riemannian metric on a manifold M admitting a
hyperbolic metric. Then for all ε, we have E(M,h, ε) 6 2htop(M)2.

Proof. — Recall that

htop(M) = hvol(M) = lim
R→∞

log (]{γ ∈ π1(M) | dM(γ.x, x) 6 R})
R

.

where x is a point in the universal cover M̃ of M and dM the distance in this universal
cover. If S is an incompressible surface in M lifting to a disk in M̃ , we have

{γ ∈ π1(S) | dS(γ.x, x) 6 R} ⊂ {γ ∈ π1(M) | dM(γ.x, x) 6 R} ,

and thus
hvol(S) 6 hvol(M) .

Combining with Theorem 1.1 as in Katok (1982), we get

hvol(M)2 Area(S) > hvol(S)2 Area(S) > 4π(g − 1) .

Proposition 6.2 applied to S = Sh(M, ε) —using the upper bound given by theorem 3.8—
yields the result.

6.3. The upper bound in constant curvature

When (M,h0) is hyperbolic, the previous upper bound gives E(M,h0) 6 8, we however
have a finer estimate.

Proposition 6.4. — For the hyperbolic metric h0, we have E(M,h0) 6 2.

Proof. — For a closed minimal surface in Sh0(M,T, ε), recall that by Theorem 4.15

λ(S) 6 C0 log(1 + ε) =: η(ε) .

Thus by the Gauß–Bonnet formula

4π(g − 1) =
∫
S
(1 + λ(S)2)d area 6 (1 + η(ε)2) Area(S) .

From proposition 6.2 applied to S = Sh0(M, ε), we get that

Eε(M,h0) 6 2(1 + η(ε)2) ,

and the result follows.
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6.4. The lower bound
Proposition 6.5. — Let h be any Riemannian metric of curvature less than −1 on a
3-manifold M then E(M,h) > 2.

Proof. — Since the curvature of a minimal surface S is less than that of the ambient
manifold by Gauß equation, in that case we get that all minimal surfaces have curvature
less than −1. Hence by Gauß–Bonnet

4π(g − 1) > Area(S) .

Applying proposition 6.2 yields the inequality.

6.5. The equality case
The equality case is the rigidity result for the asymptotic counting of Calegari,

Marques, and Neves (2020).

Theorem 6.6. — Let h be a metric of curvature less than −1. Assume that E(M,h) = 2.
Then h is hyperbolic.

We assume in the sequel that h is a metric of curvature less than −1 with E(M,h) = 2.
We give a proof in the simpler case when h is close to a hyperbolic metric, so that
Theorem 4.18 holds.

6.5.1. Finding surfaces which are more and more hyperbolic. — Let S be a closed
surface. Let GS(g) be the set of connected finite covers of S of genus less than g, and
GS the set of all connected finite covers. Then we have

Proposition 6.7. — There is a constant c1 only depending on S, so that for g large
enough

](GS(g)) > (c1g)2g .

Proof. — By Müller and Puchta (2002), the number of index n subgroups of the
fundamental group π1(S) of a genus g0 orientable surface grows like 2n(n!)2g0−2(1+o(1)).
On the other hand, the genus g of a surface whose fundamental group has index n in
π1(S0) is g = n(g0 − 1) + 1. It follows that

](GS(g)) > (c1g)2g .

where c1 only depends on g0.

Proposition 6.8. — For every positive integer m, let Sm be a finite union of stable
minimal surfaces S1

m, . . . , S
p
m with ε(Sim) 6 1

m
. Let λim be positive numbers so that

pm∑
i=1

λim = 1 .

Then

(22) lim
m→∞

pm∑
i=1

λim
Area(Sim)

4π(gim − 1) = 1 .
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where gim is the genus of Sim.

Proof. — Since Gauß–Bonnet formula gives 4π(gim − 1) > Area(Sim), we have

lim sup
m→∞

pm∑
i=1

λim
Area(Sim)

4π(gim − 1) 6 1 .

Assume now that the limit in the equation (22) is smaller than k, with k < 1, then for
arbitrarily large m, we can find im in {1, . . . , pm} so that
(23) k4π(gimm − 1) > Area(Simm ) .

As in the beginning of paragraph 6.3, let Gm be the set of of connected finite covers
of Simm , and Gm(g) the set of connected finite covers of genus g. Obviously inequality (23)
holds for all surfaces in Gm.

Thus we could apply proposition 6.2 —using proposition 6.7— to get

Eε(M,h) > 2
k
> 2 ,

and our contradiction.

6.5.2. From more and more hyperbolic to more and more totally geodesic. — The
previous proposition has a consequence for laminar measures

Proposition 6.9. — Let {µm}m∈N be a sequence of laminar probability measures on
Fh(M) converging to a laminar measure µ∞. Assume that each µm is supported on
finitely many closed leaves of Fh(M, 1

m
). Then µ∞ is supported on the set of totally

geodesic maps from H2 to M whose boundaries are circles.

Proof. — Let us consider the function F on Fh(M) defined by associating to a conformal
minimal immersion φ of H2 in M , the conformal factor F (φ) of φ at i.

Assume that φ0 is equivariant under a representation ρ of a Fuchsian group Γ and if
S is the image of φ0 in M , we have

Area(S)
4π(g − 1) =

∫
Fh(M)

Fdδφ0 .

Then, proposition 6.8 tells us that

lim
m→∞

(∫
Fh(M)

F dµm
)

= 1 , hence
∫
Fh(M)

F dµ∞ = 1 .

By the Ahlfors–Schwartz–Pick Lemma since the curvature of S is less than −1, we have
the inequality F 6 1. It follows that µ∞ is supported on the set F = 1. In particular
for any φ in the support of µ∞, φ is an isometric immersion. Thus the curvature of the
image of S is −1. Since the curvature of M is less than −1, this only happens when S
is a totally geodesic hyperbolic disk.

Finally, µ∞ is supported on the intersection for all m of Fh(M, 1
m

). Since the map ∂
is continuous (corollary 5.3), this intersection is Fh(M, 0).

Thus the support of µ∞ is contained in the set of conformal isometries into totally
geodesic disks whose boundaries are circles.
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6.5.3. Conclusion. — In this conclusion, we finally use the restricting hypothesis that
h is close to a hyprbolic metric so that Theorem 4.18 holds.

Let {δ0
m}m∈N be the Kahn–Marković sequence of laminar measures obtained in Theo-

rem 1.3 for Fh0(M). For every m, let us write

δ0
m =

m∑
i=1

λimδφi
m
, with

m∑
i=1

λim = 1 ,

where the φim are stable conformal immersions in (M,h0) equivariant under a cocompact
group. Let

δm =
m∑
i=1

λimδψi
m
.

where ψim is a stable conformal immersion in (M,h) equivariant under a cocompact
group and homotopic to φim.

Let us extract a subsequence so that {δm}m∈N converges to µ∞, while, by the Equidis-
tribution Theorem 1.3, {δ0

m}m∈N converges to µLeb.
Let us consider the projections πh and πh0 as in proposition 5.6 and observe that

πh(δm) = πh0(δ0
m) .

Thus by taking limits and using the continuity of πh and πh0 , we have
πh(µ∞) = πh0(µLeb) ,

and in particular πh(µ∞) and πh0(µLeb) have the same support. We conclude by making
two observations
(i) the support of πh0(µLeb) is the set of all circles,
(ii) any circle in the support of πh0(µ∞) bounds a totally geodesic hyperbolic plane by

proposition 6.9.
Thus every circle at infinity bounds a totally geodesic hyperbolic disk in M , hence by
proposition 2.5, h is hyperbolic.
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