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MANOLESCU’S WORK ON THE TRIANGULATION CONJECTURE

by András I. Stipsicz

1. INTRODUCTION

Simplicial complexes are topological spaces with a simple underlying combinatorial
structure. Indeed (in the compact case) such a space can be described by a system
of subsets of a finite set — for the precise definition see Section 3. The combinatorial
structure allows us to define invariants in a straightforward, computable manner. In
particular, simplicial homology (and cohomology) is among the nicest invariants both
from the point of view of definition and computation. The local structure of a simplicial
complex can be, however, rather complicated — for example, different dimensional
simplices might meet at a point.

Another convenient class of topological spaces is provided by manifolds, i.e. topological
spaces which near every point look like Euclidean spaces. This definition gives a good
idea about the local structure of the space, but gives little information about answers to
global questions like homologies, etc.

It would be optimal to know that topological spaces having simple local structures
also have nice global properties. The Triangulation Conjecture asserts exactly that:

Conjecture 1.1. — A manifold is homeomorphic to a simplicial complex.

The question in this form has been raised in 1926 by Kneser. The answer turned out
to be affirmative in dimensions at most three, and for those manifolds of any dimension
which admit a smooth structure. The general case, however, stayed open for almost a
century. Work of Casson —relying on groundbreaking results of Freedman regarding
topological 4-manifolds— showed that in dimension four (where smooth and topological
manifolds are known to be more different than in any other dimensions) Conjecture 1.1
is false. Previous experience with the oddity of this particular dimension, however,
warned mathematicians to draw any conclusion about the general case.

Results of Kirby and Siebenman on piecewise linear structures on manifolds helped to
put the question into perspective, while results of Galewski–Stern and Matumoto from
the late 70’s provided a reformulation of the problem in terms of three-manifolds and
cobordism properties of those. More precisely (and rather surprisingly) they showed
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that every closed topological manifold of dimension at least five is triangulable (i.e.,
homeomorphic to a simplicial complex) if there is a three-manifold Y which is an integral
homology sphere (that is, H∗(Y ;Z) ∼= H∗(S3;Z)), admits Rokhlin invariant µ(Y ) equal
to 1 (for the definition of µ(Y ), see Subsection 2.1) and the connected sum Y#Y is the
boundary of a smooth four-manifold W with H∗(W ;Z) ∼= H∗(D4;Z). (Here S3 denotes
the three-dimensional sphere, while D4 stands for the four-dimensional disk.)

In studying the Seiberg–Witten equations and invariants, in 2013 Ciprian Manolescu
discovered a new set of invariants of three-manifolds, eventually leading him to show

Theorem 1.2 ([Man16b]). — If an integral homology three-sphere Y admits µ(Y ) = 1
then Y#Y does not bound an integral homology disk W .

Appealing to further related results of Galewski–Stern, this finding then implied

Theorem 1.3. — For every dimension n ≥ 5 there is a closed, connected topological
n-manifold which admits no triangulation, i.e., it is not homeomorphic to a simplicial
complex.

This theorem puts an end to a long-standing question; the importance of Manolescu’s
result, however, is not limited to his disproof of Conjecture 1.1, it also lies in the
way he proved Theorem 1.2. In [Man16b] he defined a version of Seiberg–Witten–
Floer (or Monopole Floer) homology groups of integral homology spheres, where a
further symmetry of the Seiberg–Witten equations have been taken into account. The
new homology groups (admitting an integral grading) then allowed him to define new
functions on the abelian group Θ3 formed by equivalence classes of integral homology
spheres (where the equivalence relation is given by integral homology cobordisms, see
Section 2). This approach not only allows us to understand the group Θ3 better, but
also provides ways of using further similar theories (as Heegaard Floer homology) to see
invariants from a new angle. Soon after the appearance of Manolescu’s work, Francesco
Lin found an extension of the invariants to any (spin) three-manifolds, opening the way
to further applications.

In this paper we will review the definitions of the main concepts listed above, outline
the arguments leading to the (dis)proof of the Triangulation Conjecture, and review
some of the further results and constructions originating from the groundbreaking ideas
of Manolescu. The papers of Ciprian Manolescu provide outstanding introductions to
the construction and the application of his invariants, see [Man13, Man14, Man16b,
Man16a].(1) For this reason, to avoid repetitions we will try to emphasize aspects which
appeared in less detail in the literature, and will try to draw attention to the aftermath
of Manolescu’s work in Heegaard Floer homology.

In this spirit, in Section 2 we collect some of the most fundamental infinite Abelian
groups appearing in low dimensional topology and devote a paragraph to infinite Abelian

(1)The paper [Man16b] was awarded by the Moore prize of the American Mathematical Society in 2019,
recognizing this paper as an outstanding research article.
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groups in general. In Section 3 we review the basic notions appearing in the Triangulation
Conjecture, while in Section 4 we discuss various obstruction classes. Section 5 gives a
short recollection of the reformulation of the conjecture in terms of the integral homology
cobordism group. Section 6 contains a (very sketchy) outline of the theory producing the
novel invariants of Manolescu, leading to the disproof of Conjecture 1.1 in Subsection 6.3.
We close our discussion with Section 7, where further directions and developments
inspired by Manolescu’s work is given (without the aim of providing a complete picture
of this dynamically changing field).

Acknowledgement: The author would like to thank Antonio Alfieri, Francesco
Lin, András Némethi, Péter Pál Pálfy and András Szűcs for helpful discussions. He
was partially supported by the Élvonal (Frontier) grant KKP126683 of the NKFIH
(Hungary) and by the Lendület (Momentum) grant “Low Dimensional Topology” of the
Hungarian Academy of Sciences.

2. ABELIAN GROUPS IN LOW DIMENSIONAL TOPOLOGY

Certain infinite groups play central role in low dimensional topology. Mapping
class groups (groups of isotopy classes of orientation preserving diffeomorphisms of
manifolds) are rather mysterious in most dimensions, and even for two-dimensional
compact manifolds there are fundamental open questions regarding these groups —
although in these cases various presentations of the groups are known. Surprisingly,
there are even Abelian groups in low dimensional topology which capture important
information, but we do not have a good grasp on their structure. We list some of these
below.

2.1. Homology cobordism groups

The three-dimensional (oriented) cobordism group Ω3 is trivial (which is just another
way to say that any closed, oriented three-dimensional manifold is the boundary of a
compact, smooth, oriented four-manifold). In a similar manner, Ωspin

3 (the spin cobordism
classes of spin three-manifolds) is also trivial.

The homology cobordism group Θ3, however, is highly nontrivial. Indeed, consider
those (oriented, closed) three-manifolds for which the first homology group (with integer
coefficient) vanishes. These three-manifolds are traditionally called integral homology
spheres, and the condition is obviously equivalent to the requirement that for such a
three-manifold Y we have H∗(Y ;Z) = H∗(S3;Z). The most notable non-trivial example
of such a manifold is the Poincaré homology sphere P , given as

P = {(z1, z2, z3) ∈ C3 | z2
1 + z3

2 + z5
3 = 0, ‖(z1, z2, z3)‖ = 1}.

This smooth three-manifold has fundamental group π1(P ) a perfect group of order 120,
implying H∗(P ;Z) = H∗(S3;Z).
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In defining the group Θ3, regard two integral homology three-spheres Y1, Y2 equivalent
if there is a smooth, oriented, compact four-manifold X with boundary ∂X = −Y1 ∪ Y2
and with H∗(X;Z) = H∗(S3 × [0, 1];Z), that is, we assume that the cobordism is (up to
homology) like the trivial cobordism. The group structure is given by the connected
sum (Y1, Y2) 7→ Y1#Y2 as addition, the map Y 7→ −Y as inverse (where −Y denotes the
same manifold as Y , with the opposite orientation) and S3 as the identity element. It is
not hard to see that the result is an Abelian group.

There are simple variants of this construction, for example the rational homology
cobordism group ΘQ

3 is defined in a similar manner, with the exception that all homologies
are required to be taken with rational coefficients. In particular, a rational homology
sphere Y is a closed, oriented three-manifold with H∗(Y ;Q) = H∗(S3;Q), which is
equivalent to request H1(Y ;Z) to be a finite group, or to ask the first Betti number b1(Y )
to vanish. A further common variant of this constrution is the spinc rational homology
cobordism group ΘQ, spinc

3 , where we consider pairs (Y, s) with the property that Y is a
rational homology sphere as above, s is a spinc structure on Y , and two such pairs (Y1, s1)
and (Y2, s2) are considered to be equivalent if there is a rational homology cobordism X

between Y1 and Y2, together with a spinc structure t on X with the property that
t restricts to s1 over −Y1 ⊂ ∂X and to s2 over Y2 ⊂ ∂X.

These groups come with maps between them: for example there is the forgetful map
ΘQ, spinc

3 → ΘQ
3 , and the natural map Θ3 → ΘQ

3 induced by the fact that every integral
homology sphere (and integral homology cobordism) is also a rational homology sphere
(and a rational homology cobordism).

As the groups introduced above are all Abelian, one can have the impression that
their structure is easy to understand (even if for some reason we might not be able to
compute them). At first glance is seems possible that Θ3 (similarly to Ω3 and Ωspin

3 ) is
indeed trivial. The Rokhlin homomorphism µ : Θ3 → Z/2Z, however shows that this
is not the case. For defining µ, recall that an integral homology sphere Y (carrying a
unique spin structure) is the boundary of a compact spin four-manifold X (as Ωspin

3 = 0).
Simple algebra (see for example [GS99, Lemma 1.2.20]) shows that the signature σ(X) of
such an X is divisible by 8. Rokhlin’s Theorem (stating that a closed spin four-manifold
has signature divisible by 16) implies that the mod 2 reduction of 1

8σ(X) is independent
of the chosen X, hence by defining µ(Y ) ∈ Z/2Z as the mod 2 reduction of 1

8σ(X) we
get an invariant of Y . This value is obviously a homology cobordism invariant and
provides a homomorphism µ : Θ3 → Z/2Z. Simple calculation shows that µ(P ) = 1
for the Poincaré homology sphere P (as it is the boundary of the negative definite
E8-plumbing), hence µ is onto, consequently |Θ3| ≥ 2. Indeed, for a while it seemed
plausible to expect that µ is an isomorphism between Θ3 and Z/2Z.

As one of the early applications of the gauge theoretic techniques introduced by
S. Donaldson in the study of four-dimensional manifolds, Furuta showed that

Theorem 2.1. — The Abelian groups Θ3,ΘQ
3 and ΘQ, spinc

3 defined above are not finitely
generated.
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Therefore, despite being Abelian, their structure might be rather intricate.

2.2. Concordance groups
Before going any further, we invoke a further similar important group, the group of

concordance classes of knots. Let us consider knots in the three-space, i.e., smoothly
embedded circles in S3. We say that two knots K1 and K2 are concordant, if there is a
smoothly and properly embedded annulus (∼= S1 × [0, 1]) in S3 × [0, 1] intersecting the
two ends in K1 and K2, respectively. The resulting Abelian group C (once again, with
connected sum as addition, the mirror image as inverse and the unknot representing the
identity element) is called the smooth concordance group.

As before, this group has a number of variants. The easiest one is when we define
the equivalence relation by considering concordances in integral homology cobordisms
between the two copies of S3; the resulting group will be a quotient of C. A slightly
larger group can be defined by considering knots in integral homology spheres (and
the concordances in integral homology cobordisms), or in rational homology spheres
(with rational homology cobordisms between them containing the concordances) and
even rational homology spheres (and rational homology cobordisms) together with
appropriate spinc structures. Once again, there are various natural maps between these
constructions.

A further variant of C is provided by the fact that in dimension four the application
of smooth or merely continuous maps provide drastically different theories. Here, when
we use the term ‘continuous’, we really mean ‘locally flat’, that is, the embedding
f : C → S3 × [0, 1] can be presented as the restriction of a continuous embedding
F : C × D2 → S3 × [0, 1] to C × {0} ⊂ C × D2. Then we define Ctop by considering
smoothly embedded knots in S3, with the equivalence relation provided by locally flat
concordances. Since a smooth embedding is easily seen to be locally flat, we get a
natural map φ : C → Ctop. The kernel ker(φ) of this map (those knots which do bound
a locally flat disk, but potentially no smooth disk) consists of topologically slice knots;
their subgroup is denoted by CTS. Indeed, a nontrivial element in the kernel of φ can be
used to construct an exotic smooth structure on the Euclidean four-space R4, see for
example [GS99].

As in the case of homology cobordism groups, we have

Theorem 2.2. — The Abelian groups C and Ctop (as well as their further variants),
and even CTS above, are infinitely generated groups.

There are connections between these concordance groups and the homology cobordism
groups; for example we can define a map

C → ΘQ
3

by sending the knot K ⊂ S3 to the three-manifold Σ(K) we get by considering the
double branched cover of S3 branched along K. (For more on the double branched cover
construction, see Subsection 7.3.) It is not hard to see that concordant knots map to
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homology cobordant three-manifolds: the double branched cover of S3× [0, 1] (branched
along the concordance C) provides a rational homology cobordism between the two
double branched covers. This map even admits a lift

C → ΘQ, spinc
3 ,

since the double branched cover (having first homology H1(Σ(K);Z) of odd order)
admits a unique spin, hence a distinguished spinc structure. For more on questions
regarding knot concordance, the interested reader is advised to turn to [Liv05].

2.3. Infinitely generated Abelian groups
To put the above groups into perspective, and motivate the most important questions

regarding them, we invoke the very basic notions and constructions of infinitely generated
Abelian groups.

An Abelian group A is divisible if for any element a ∈ A and any natural number
n ∈ N there is an element x ∈ A satisfying nx = a. A simple example of a divisible
group is the (additive) group Q of rational numbers. A further such group can be defined
by fixing a prime p and considering

Zp∞ = {ζ ∈ S1 ⊂ C | ζpn = 1 for some n ∈ N}.

It is not hard to see that divisible groups are exactly the injective modules over the
ring Z. (Recall that a module I over a commutative ring R is injective, if for any two
R-modules M1 ⊂M2 a homomorphism M1 → I extends to a homomorphism M2 → I.)
In particular, a divisible subgroup of an Abelian group is necessarily a direct summand.
We say that the Abelian group is reduced if it contains no nontrivial divisible subgroup.

Remark 2.1. — Divisible groups can be classified: any such group is the direct sum of
copies of Q and of Zp∞ for various primes.

Another important subgroup of an Abelian group A is the subgroup T (A) of torsion
elements:

T (A) = {a ∈ A | there is n ∈ N∗ with na = 0}.
It is not hard to see that T (A) is a subgroup and A/T (A) is torsion free. Notice that
T (Zp∞) = Zp∞ and T (Q) = 0.

Therefore the first two properties we would like to understand for an infinitely
generated Abelian group A is

– Does A contain torsion elements?
– Does Q or Zp∞ embed into A?
We do know that the smooth concordance group C contains torsion elements. Indeed,

any amphichiral knot (i.e. a knot which is isotopic to its mirror image) has order
at most 2 in C. The figure-8 knot is an example of such a knot, which, by a simple
application of the Fox–Milnor condition (claiming that a knot trivial in C must have
Alexander polynomial ∆(t) of the form f(t) · f(t−1)) is non-trivial in C. In fact, there is
an infinite family of amphichiral knots which are linearly independent in C, and hence
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span a subgroup isomorphic to (Z/2Z)∞ in C. No torsion besides 2-torsion is known
in C, and no information regarding subgroups isomorphic to Q is available either.

In the homology cobordism groups we do not have any knowledge about torsion
elements — indeed, the Triangulation Conjecture turns out to be equivalent to the
existence of some special 2-torsion elements, and this existence problem is the question
which has been successfully resolved by Manolescu.

Let us return to the possible structures of infinitely generated Abelian groups: assum-
ing that A is reduced and torsion free, we still have plenty of possibilities, and there is
very little knowledge about the structures of these groups in general. A simple example
of a reduced, torsion free, infinitely generated countable Abelian group is Z∞ = ⊕∞i=1Z,
but as the next example shows, things can be much more complicated.

Consider the subgroup A ⊂ Q generated by the elements {p−1 ∈ Q | p prime}. A is
obviously not finitely generated: if { si

ti
}ni=1 is a finite set, the subgroup they generate

will not include 1
p
for those primes p which are relatively prime to all t1, . . . , tn. An

element a ∈ A is a rational number s
t
with (s, t) = 1 and t square free. For this reason,

A is reduced: for any s
t
∈ A and n ∈ N∗ at least |s| the equation n2x = s

t
admits no

solution x in A. Since Q is torsion free, so is A, and since already Z2 does not embed
into Q, we have that A is distinct from Z∞.

A simple modification of the above idea leads to (uncountably many) further examples
of torsion free, reduced subgroups of Q: let (an) be a sequence of positive integers, and
define A(an) as the subgroup of Q generated by the elements p−ann , where pn is the nth
prime. (Our first example is A(1n), where (1n) is the constant 1 sequence.) It is not
hard to see that two such groups are isomorphic if and only if there is an automorphism
of the Abelian group Q mapping one into the other, which happens if and only if the
two sequences differ at most at finitely many places. For this reason, above we have
constructed uncountably many different examples.

The rank of an Abelian group A is by definition the dimension of A⊗ZQ as a Q-vector
space. All the above examples A(an) are of rank 1, and indeed, rank 1 reduced, torsion
free Abelian groups are classified, and the complete list is only slightly larger than
the list of examples provided above (see [Suz82] for the complete argument). On the
other hand, very little is known about classification of higher rank groups. It follows
from earlier results (stating that Z∞ is a subgroup of all the groups encountered in
Subsections 2.1 and 2.2) that our geometric/topological examples are all of infinite rank.

Another peculiar behaviour of infinitely generated Abelian groups is the following
example: there exists a rank-3 group G which decomposes as G = A ⊕ B and as
G = C ⊕D with A,B,C,D indecomposable, A ∼= C but B /∼=D. (This phenomenon is
reminiscent to the four-dimensional diffeomorphism between the blow-up of S2×S2 and
the double blow-up of the complex projective space CP 2.) The details of this example
can be found in [Suz82, Section 3.1].

To show that a reduced, torsion free countable Abelian group is free (so in the
countable case is isomorphic to Z∞), it is sufficient to verify that every finite rank
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subgroup of it is free. Alternatively, a reduced, torsion free countable group A is free if
for every element 0 6= x ∈ A there is a homomorphism ϕ : A→ Z with ϕ(x) 6= 0.

To conclude this section we would like to point out that the first two questions
(whether a group A contains torsion elements or subgroups isomorphic to Q) cannot
be studied by homomorphisms into Z, since all such elements will be in the kernel.
Therefore it is most desirable to

– either find homomorphisms to finite fields (or groups) and to Q —naturally with
the property that these homomorphisms do not factor through Z—, or

– find maps on the infinitely generated Abelian groups at hand mapping to Z but
which are not homomorphisms, or

– find maps with very different range (such as groups, or modules) which can be
used ot detect (or exclude) the presence of torsion and a copy of Q in the Abelian
group at hand.

The significance of Manolescu’s work (besides the disproof of the Triangulation
Conjecture) is the discovery of maps Θ3 → Z which fail to be homomorphisms, so allow
us to study phenomena we could not study before.

3. TRIANGULATIONS, SIMPLICIAL COMPLEXES AND
MANIFOLDS

In this section we recall the basic notions and concepts playing fundamental roles in
the Triangulation Conjecture, starting with simplicial complexes and manifolds.

3.1. Simplicial complexes

Suppose that V is a finite, nonempty set. Let 2V denote the power set, i.e., the set of
all subsets of V . A nonempty set S ⊂ 2V is a simplicial complex on V if A ∈ S and
B ⊂ A(⊂ V ) implies that B ∈ S, that is, S is closed under containment. Also, it is
customary to assume that ∪A∈SA = V , meaning that each point of V is actually used.

The connection between the above combinatorial concept and topology is given by the
following construction. Order V as V = {v1, . . . , vn}, consider the vector space R|V | and
associate to vi ∈ V the ith basis vector ei in R|V | (which is represented by the |V |-tuple
with 0’s except at the ith slot, where it is 1). For a subset U ⊂ V we can associate
the convex hull of those ei’s in R|V | for which the corresponding vi is in U . Then the
body B(S) of the simplicial complex S is the union of the simplices in R|V | associated to
elements of S in the above way.

Definition 3.1. — Suppose that X is a compact topological space. A triangulation
of X is a pair of a (finite) simplicial complex (V,S), together with a homeomorphism
ϕ : B(S)→ X.
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Simplicial homology (with Z/2Z coefficients) can be easily phrased in terms of S;
consider the vector space Ci over Z/2Z generated by all elements A ∈ S with |A| = i+ 1
and define the boundary map

∂i : Ci → Ci−1

on A ∈ S with |A| = i+ 1 by the formula
∂i(A) =

∑
a∈A

A \ {a} ∈ Ci−1.

Then the simplicial homology of X is defined as Hi(X;Z/2Z) = ker(∂i)/im (∂i+1). This
simple and conceptually clear definition then provides an invariant which is easy to
calculate. Of course, in order this definition to make sense for a general topological
space X we need an existence and a uniqueness result:

1. (Existence) every compact topological space is homeomorphic to the body of a
finite simplicial complex, and

2. (Uniqueness) any compact space X admits essentially a unique triangulation.
Counterexamples for the first statement (the Triangulability Question) have been found
shortly after the above formalism has been found, hence this way of defining homology
groups does not apply to all topological spaces. The Triangulation Conjecture asserts
that maybe for topological manifolds the answer for the existence question is yes. As
Manolescu’s recent results shows, this is not the case.

Regarding the second question, it is immediately clear that we cannot expect strict
uniqueness, since any simplex can be refined by the baricentric subdivision into further
simplices. The meaningful question is called the Hauptvermutung (Main Conjecture in
German), and is the following: do any two triangulations of a topological space X admit
common refinement? Then the proof of homology groups being well-defined would hinge
on the fact that the simplicial homology of a simplicial complex and of its refinement
are isomorphic. While this second step is a simple exercise, the Hauptvermutung was
open for quite some time, finally disproved by Milnor.

In conclusion, the approach for defining homologies through triangulations does not
always work. This led to the development of singular chains and singular homology,
where no extra structure on the topological space is needed, and therefore one does not
need to prove independence from choices. Nevertheless, the simplicity of the definition
of singular homology comes with a price: direct computations can be performed only
for very simple topological spaces.

Despite the shortcomings of simplicial complexes, these structures stayed of central
importance in topology, leaving the Triangulation Conjecture as one of the most intriguing
open questions in manifold topology.

3.2. Smooth, PL and topological manifolds
A topological space X is a topological manifold if it is
– Hausdorff (also called T2, requiring that for any two points x, y ∈ X there are
disjoint open sets Ux, Uy ⊂ X such that x ∈ Ux and y ∈ Uy),
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– second countable (also called M2, meaning that there is a countable set of open
sets {Ui}∞i=1 in X such that every open set can be written as a union of some of
the Ui’s) and

– every point x ∈ X admits a neighborhood U which is homeomorphic to Rn through
a map φU : U → Rn for some n. (If X is connected, then the invariance of
dimension of Euclidean spaces implies that n is the same for all points of X.) Such
a neighbourhood U is called a chart around x ∈ X.

Notice that if U and V are two charts, then on their intersection we have the
restrictions of φU and φV , hence we get an identification of two open sets in Rn through
φU ◦ φ−1

V |φV (U∩V ). These functions are usually called the transition functions, and we
will denote them by ψUV . A collection of charts A = {Ui}i∈I is called an atlas of X if
∪i∈IUi = X.

Definition 3.2. — The atlas A on X is a smooth atlas if for any U, V ∈ A the
transition function ψUV is a smooth (i.e., infinitely many times differentiable, C∞)
function. The atlas A is PL if the transition functions ψUV (for any pair U, V ∈ A) are
piecewise linear maps.

The pair (X,A) of a topological manifold X and an atlas A is a smooth (respectively
PL) manifold if the atlas A is smooth (respectively PL).

It was expected that topological manifolds admit smooth structures, hence in topo-
logical investigations tools of multivariable calculus can be applied. In addition, an
optimistic approach would suggest that the smooth structure (up to some natural equiv-
alence relation, diffeomorphism) is unique. These expectations are fulfilled in dimensions
at most three — and indeed, smooth techniques of differential geometry played a central
role in the verification of the purely topological statement of the Poincaré conjecture
in dimension three by Perelman [MT07, Per02, Per03b, Per03a]. In higher dimensions,
however, topological manifolds behave quite differently: there are topological manifolds
with no smooth structure and there are topological manifolds with many different
smooth structures. Dimension four is extremely complicated in this respect; for example,
the four-dimensional Euclidean space R4 admits uncountably many distinct smooth
structures, while in all other dimensions Rn (as a topological manifold) admits a unique
smooth structure.

It is not hard to see that the existence of a smooth atlas implies the existence of
a PL atlas (and in dimension at most four the converse also holds). In addition, the
existence of a PL atlas on a topological manifold X provides a special triangulation:
a combinatorial triangulation. Its definition requires the introduction of a notion: the
link `k(A) of a simplex A in a simplicial complex S. Indeed, `k(A) is the union of those
simplices in S which are disjoint from A, but their union with A is in S. More formally,
`k(A) is the body of the sub-simplicial complex

{B ∈ S | A ∩B = ∅, A ∪B ∈ S}.
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(In a similar manner, one can define the star of a simplex A ∈ S as the union of simplices
associated to St(A) = {B ∈ S | A ⊂ B}.)

Definition 3.3. — A simplicial complex S is combinatorial if the link `k(A) of every
simplex A ∈ S is a PL sphere. A triangulation is combinatorial, if it is associated to a
combinatorial simplicial complex.

Remark 3.1. — It is not easy to find a triangulation of a manifold which is not com-
binatorial. The standard example for a non-combinatorial triangulation is given as
follows. Consider the Poincaré homology sphere P (described in Subsection 2.1), fix a
triangulation on this smooth manifold, and consider the double suspension of it. Since
the suspension S(P ) is simply the quotient of P × [−1, 1] with the top and bottom
faces (P ×{1} and P ×{−1}) pinched each to a point, the triangulation on P naturally
provides a triangulation on S(P ) and so on the double suspension S2(P ). Neither of
these triangulations are combinatorial; S(P ) is not even a manifold. By a deep theorem
of Edwards and Cannon, however, the double suspension is a manifold, hence we get an
example of a triangulation of a manifold which is not combinatorial.

The existence of combinatorial triangulations on X is equivalent to the existence of
PL structures on X. The existence of a PL structure on a topological manifold can be
put in the framework of homotopy theory using the following construction.

Recall that for a compact group G one can construct a principal G-bundle EG→ BG
with the property that any principal G-bundle P → B over a (paracompact) base
space B can be pulled back from EG → BG. The total space EG of the universal
G-bundle EG→ BG is contractible and admits a free G-action. A similar construction
works for groups defined by other means. For example, we can define TOP(n),PL(n)
and Diff(n) as the self-homeomorphisms, self-PL-maps and self-diffeomorphisms of Rn

which preserve the origin. Obviously TOP(n) includes to TOP(n + 1) (and similar
inclusions hold for the other flavours), and taking the limits as n → ∞ we get the
groups TOP,PL and Diff with obvious inclusions Diff → PL → TOP. The previous
construction then provides spaces BTOP,BPL,BDiff, and the inclusions define the maps
BDiff → BPL → BTOP. Indeed, if H ⊂ G is a subgroup, then EG is a contracible
space with a free H-action, hence the natural map ψ : EG/H → EG/G is a model for
BH → BG; this shows that the fiber of ψ is equal to G/H. With this principle we
can identify the fibers of BDiff → BPL and BPL→ BTOP as PL/Diff and TOP/PL,
respectively.

A topological manifold X comes with a map f : X → BTOP, and the existence of a
PL-structure on X can be translated to a lifting problem of f to a map F : X → BPL,
while the existence of a further lift to G : X → BDiff determines whether X admits
a smooth structure. The existence question for such lifts can be conveniently studied
through obstruction theory, leading us to cohomological obstructions, which we discuss
in the next section. In these studies the homotopy types of the fibers of the fibrations
BDiff → BPL and BPL→ BTOP are of central importance.
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4. THE KIRBY–SIEBENMANN INVARIANT

Cohomology classes associated to manifolds can measure various properties of the
underlying manifold. We start with two well-known and classical examples: orientability
and spin.

Suppose that X is a closed, smooth n-dimensional manifold with tangent bundle TX.
Orientability of X can be phrased in many different ways. In terms of transition
functions, X is orientable if it admits an atlas such that the transition functions in the
atlas have Jacobians with positive determinants. Alternatively, we can require that the
determinant line bundle det(TX) = ΛnTX is trivial. Both conditions mean that the
structure group of TX (which, TX being an n-plane bundle, is GLn(R)) can be reduced
to the group GL+

n (R) ⊂ GLn(R) of matrices with positive determinant.
Both these properties can be phrased in the language of characteristic classes as

being equivalent to the vanishing of the first Stiefel–Whitney class: X is orientable if
and only if w1(X) = w1(TX) = 0 in H1(X;Z2). Furthermore, in case the manifold is
orientable, the different orientations can be parametrized with H0(X;Z2) — which for
a k-component manifold has 2k elements.

For a connected manifold X this cohomology class admits a fairly simple description:
consider an embedded loop in X based at a point x0 ∈ X. Traveling around the
loop we can decide if this loop reverses orientation or not (said differently, whether
the restriction of the determinant line bundle det(TX) is trivial over the loop, or
it is the Möbius band). Assign 0 ∈ Z/2Z to the loop if this bundle is trivial and
1 ∈ Z/2Z if not. In a similar fashion this concept can be extended to loops which
are not necessarily embedded, and one can easily show that homotopic loops get the
same value assigned to them, ultimately providing a map π1(X, x0)→ Z/2Z, which is
obviously a homomorphism. The manifold is orientable if this map is the zero map.
A homomorphism π1(X, x0) → Z/2Z, however, factors through the quotient by the
commutator, giving a homomorphism H1(X;Z)→ Z/2Z, which then can be regarded
as an element in Hom(H1(X;Z),Z/2Z) = H1(X;Z/2Z), and this is exactly the first
Stiefel–Whitney class w1(TX).

In a similar manner, consider a smooth, oriented n-manifold X. By these assumptions
the structure group of its tangent bundle can be reduced GL+

n (R), which contracts
to SO(n), hence the structure group can be further reduced to this group by fixing a
Riemannian metric. Now we can ask if the cocycles admit a lift to Spin(n), the universal
cover of SO(n) once n ≥ 3. As before, the existence of such a lift is obstructured by a
characteristic class; this time it is the second Stiefel–Whitney class w2(X) = w2(TX) ∈
H2(X;Z2). The manifold admits a spin structure if and only if w2(X) = 0, and in this
case the different spin structures (under an appropriately defined equivalence relation)
are parametrized by H1(X;Z2).

A representative of w2(X) can be conveniently described in Čech cohomology in terms
of the cocycle structure of the bundle: take arbitrary lifts of the cocyles of the tangent
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bundle TX into Spin(n) and associate 0 to a triple intersection if the lifted functions
satisfy the cocyle condition and 1 if they do not. The resulting Čech 2-cocycle (with
values in Z/2Z) will represent w2(X) ∈ H2(X;Z/2Z).

Remark 4.1. — The Lie group Spin(n) is less well-known than SO(n) — its definition (as
the connected double cover of SO(n)) reveals very little about its structure. Nevertheless
in some small dimensions the group Spin(n) can be described rather explicitely: for n = 3
we have that Spin(3) = SU(2) (the group of 2× 2 unitary matrices with determinant 1),
and since SU(2) is isomorphic to the group of unit quaternions, topologically Spin(3) is
the sphere S3. The double cover map SU(2)→ SO(3) can be conveniently phrased in
terms of quaternions: let H denote the space of quaternions, and for a unit quaternion
q ∈ H let us associate the map mq : ImH→ ImH defined on the imaginary quaternion
h ∈ ImH as

h 7→ mq(h) = qhq−1.

(Since q is a unit quaternion, q−1 = q.) It is a simple exercise to show that mq acts on
R3 = ImH as an element of SO(3), and furthermore the map q 7→ mq has Z/2Z as its
kernel (consisting of q = ±1 ∈ H). In a similar manner, Spin(4) can be identified with
SU(2)×SU(2) (so topologically Spin(4) is simply S3×S3). The map (q+, q−) 7→ mq+,q− ,
with mq+,q− acting on H by the formula

h 7→ mq+,q−(h) = q+hq
−1
−

for all h ∈ H, provides the covering map SU(2) × SU(2) → SO(4), having (1, 1) and
(−1,−1) in the kernel.

The questions of orientability and spinness can be also put in the homotopy theoretic
framework outlined in the end of Section 3: for a smooth n-dimensional manifold X there
is a map f : X → BGLn(R) and if GL+

n (R) ⊂ GLn(R) denotes the group of matrices with
positive determinant, then orientability is equivalent to the question whether the above
map lifts to a map F : X → BGL+

n (R) (where we use the map BGL+
n (R)→ BGLn(R)

induced by the incusion i : GL+
n (R) ⊂ GLn(R)). Since GL+

n (R) is just a component of
the 2-component group GLn(R), we get that GLn(R)/GL+

n (R) = Z/2Z and therefore the
fiber of BGL+

n (R)→ BGLn(R) is a K(Z/2Z, 0)-space, hence (by standard obstruction
theory) the obstruction will be in H1(X;Z/2Z). (Recall that a K(π, n)-space is defined
by the property that its nth homotopy group πn(K(π, n)) is isomorphic to π, while all the
other homotopy groups vanish.) In a similar manner, the double cover Spin(n)→ SO(n)
provides a map BSpin(n)→ BSO(n) with fiber B(Z/2Z), which is a K(Z/2Z, 1)-space
(which can be chosen to be RP∞), and the existence of a spin structure on X depends
on whether the natural map f : X → BSO(n) (coming from fixing a Riemannian metric
and an orientation on X) lifts to BSpin(n). Once again, since the fiber is a K(Z/2Z, 1)-
space, there is a unique obstruction, which now is in the second cohomology with
Z/2Z-coefficients (and the same obstruction theoretic argument shows that the number
of different choices is parametrized by H1(X;Z/2Z)).
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Work of Kirby and Siebenmann from the 60’s puts the question of existence of
PL structures on a topological manifold in a very similar context. In [KS69, KS77]
a cohomology class ∆(X) ∈ H4(X;Z2) (later called the Kirby–Siebenmann class) is
defined with the following property:

Theorem 4.1. — Suppose that X is a topological manifold of dimension n ≥ 5. The
manifold X admits a PL structure if and only if ∆(X) = 0 in H4(X;Z/2Z). In addition,
once ∆(X) = 0, the inequivalent PL structures on X are parametrized by H3(X;Z/2Z).

In the language of classifying maps, the question now reduces to whether the map
f : X → BTOP(n) admits a lift to a map F : X → BPL(n). For this reason, one
needs to understand the fiber of the map BPL(n) → BTOP(n). It has been realized
that the key to understand this lifting problem is the understanding of the fiber of
the fibration BPL → BTOP, which is TOP/PL. In [KS77] it has been shown that
TOP/PL is a K(Z/2Z, 3)-space. Consequently standard obstruction theory implies that
there is a single obstruction for lifting the map X → BTOP to X → BPL, and this
obstruction lives in the group H4(X;Z/2Z). (As before, the same theory also provides
the identification of the space of different lifts with H3(X;Z/2Z).)

The description of ∆ (at least in a rather special case, when the topological manifold
admits a triangulation) requires a little bit of preparation. Consider a closed, oriented
topological manifold Xn of dimension n with a triangulation T = ((V,S), ϕ). The
obstruction for this triangulation to be PL can be described as follows. For an (n− 4)-
simplex σ in the triangulation take its link `k(σ), which can be shown to be a PL
integral homology three-sphere, and then consider the (n− 4)-chain

c(T ) =
∑
σ

[`k(σ)] · σ ∈ Cn−4(X; Θ3),

where [`k(σ)] ∈ Θ3 is the equivalence class represented by the integral homology sphere
`k(σ) in Θ3. It can be shown that c(T ) is a cocycle, and the Poincaré dual of its
homology class will be denoted by d(T ) ∈ H4(X; Θ3).

The Rokhlin homomorphism µ : Θ3 → Z/2Z is surjective, hence fits into the short
exact sequence

(1) 0 −→ ker(µ) −→ Θ3
µ−→ Z2 −→ 0

of abelian groups. This short exact sequence induces a long exact sequence on coho-
mologies (by changing coefficients), providing

(2) · · · −→ H4(X; Θ3) µ−→ H4(X;Z/2Z) δ−→ H5(X; ker(µ)) −→ · · ·

where the map H4(X; Θ3)→ H4(X;Z/2Z) is induced by the Rokhlin homomorphism
µ : Θ3 → Z/2Z, and is also denoted by µ.

Now the Kirby–Siebenmann invariant ∆(X) can be presented as

∆(X) = µ(d(T )).
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Notice that this description of ∆(X) relies on a choice of a triangulation T on X, so
it is not convenient in the study of triangulability questions.

5. WORK OF GALEWSKI–STERN AND MATUMOTO

The existence of a triangulation on a topological manifold is a weaker condition
than the existence of a PL structure, although these two notions are closely related. It
follows then that the obstruction for the existence of a triangulation is related to the
Kirby–Siebenmann class ∆(X).

Consider a topological manifold X of dimension n ≥ 5, and take the long exact
sequence of cohomologies of X with the coefficients associated to the short exact
sequence of Equation (1). Let δ : H4(M ;Z/2Z) → H5(X, ker(µ)) denote the transfer
homomorphism in this long exact sequence, as it is shown in Equation (2).

The next result of Galewski and Stern [GS80] (and Matumoto [Mat78]) provides the
cohomological obstruction for triangulability. (By definition, two triangulations on X
are concordant if there is a triangulation on X × [0, 1] inducing the two given ones on
the two boundary components.)

Theorem 5.1 ([GS80, Mat78]). — A topological manifold X of dimension n ≥ 5
admits a triangulation if and only if δ(∆(X)) ∈ H5(X; ker(µ)) vanishes. If δ(∆(X)) = 0
then the different triangulations (up to concordance) are parametrized by the group
H4(X; ker(µ)).

The idea behind the proof of the result of Galewski–Stern is the following. They have
built a classifying space, which they called BTRI, together with maps BTRI→ BTOP
and BPL→ BTRI with the properties that triangulations on a manifoldX (of sufficiently
high) dimension n are (up to concordance) in bijection with lifts of the map X → BTOP
to BTRI. (Furthermore, the further potential lifts to BPL provide combinatorial
triangulations.) Hence the obstruction for the existence of a triangulation can be
determined by identiftying the homotopy type of the fiber TOP/TRI of the fibration
BTRI→ BTOP. In doing this, they identified the homotopy type of BTRI with a fourth
space HML = limn→∞HML(n), defined by Martin [Mar73]. Indeed, Martin considered
homology manifolds, i.e. simplicial complexes with the property that for any 0-simplex x
the link `k(x) satisfies H∗(`k(x);Z) ∼= H∗(Sn−1;Z). He defined the acyclic resolution of
such a homology manifold K to be a map f : X → K with X being a PL manifold and
all fibers of f acyclic. For a given K now we can try to build an acyclic resolution by
considering the various simplices and replacing their stars with an acyclic PL manifold
with the same boundary as the link of the simplex at hand. This leads us to consider the
group Θk of PL homology k-spheres up to PL homology cobordisms. Since by [Ker69]
these groups are known to vanish once k 6= 3, this procedure can be carried out in each
dimension k 6= 3 by replacing a star (with boundary defining an element of Θk) with
an acyclic PL (k + 1)-manifold with the same boundary. This process then naturally
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provides (as before) an obstruction c(K) in H4(K; Θ3). Using similar ideas, Martin
identified the homotopy type of HML/PL and showed that this homotopy fiber is a
K(Θ3, 3)-space.

Then in [GS80] it was shown that BTRI can be identified with HML, and furthermore
that TOP/TRI is a K(ker(µ), 4)-space. In this step one has to examine the exact
sequence

0→ π4(TOP/TRI)→ π3(TRI/PL) α−→ π3(TOP/PL)→ π3(TOP/TRI)→ 0,

and since π3(TRI/PL) = Θ3 and π3(TOP/PL) = Z/2Z, we only need to check that α is
equal to the Rokhlin homomorphism µ; the details of the argument are given in [GS80,
Theorem 6.2].

The actual obstruction classes are typically hard to compute, since for example the
coefficient group ker(µ) is unknow (but known to be rather complicated). Therefore the
following result of Galewski–Stern and Matumoto is of central importance.

Theorem 5.2 ([GS80, Mat78]). — All topological manifolds of dimension at least five
admit triangulations if and only if the short exact sequence of Equation (1) splits.

One direction of the equivalence is clear: if the short exact sequence of Equation (1)
splits, then an algebraic topological argument shows that the associated Bockstein
homomorphism δ : H4(X;Z/2Z)→ H5(X; ker(µ)) of Equation (2) vanishes. Therefore
δ(∆(X)) = 0 for every manifold X, which by Theorem 5.1 implies that every manifold
of dimension at least five admits a triangulation.

The converse argument requires a little longer discussion. In [GS79] Galewski and
Stern constructed a particular topological five-manifold M with the following property:
For the Kirby–Siebenmann class ∆(M) and the Steenrod squaring operation Sq1, defined
as the Bockstein homomorphism Sq1 : H i(M ;Z/2Z) → H i+1(M ;Z/2Z) coming from
the transfer homomorphism of the short exact sequence

0→ Z/2Z ×2−→ Z/4Z r−→ Z/2Z→ 0,

we have Sq1(∆(M)) 6= 0. Now our assumption is that every topological manifold of
dimension at least five admits a triangulation, hence this particularM is also triangulable;
let i : Θ ↪→ Θ3 be the inclusion of the subgroup Θ generated by the three-dimensional
links of a triangulation of M .

Suppose that the short exact sequence of Equation (1) does not split, that is, an
element [Y ] ∈ Θ with µ(Y ) = 1 is not of order 2. Using this assumption, in [GS80,
Theorem 7.1] a homomorphism γ : Θ → Z/4Z with the property that µ ◦ i = r ◦ γ is
constructed as follows. Since the subgroup Θ is generated by the finitely many links in
the chosen triangulation, it can be written as the sum Θ = 〈h1〉 ⊕ . . .⊕ 〈hk〉 of cyclic
groups, and one can assume that a summand is either a free cyclic, or finite of prime
power order. Now define γ : Θ→ Z/4Z on the generators {hi}ki=1 of the cyclic summands
as follows: if µ(hi) = 0, then define γ(hi) = 0. If µ(hi) = 1 and 〈hi〉 ∼= Z then define γ
on this summand as the mod 4 reduction map. If µ(hi) = 1 and 〈hi〉 is of order pm, then
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(since the order of µ(hi) ∈ Z/2Z is 2) we have that p = 2, but since by our assumption
Θ does not contain elements of order 2 with µ-value 1, we get that m ≥ 2. In conclusion
we can define γ on 〈hi〉 as mod 4 reduction again. Since r : Z/4Z→ Z/2Z is simply the
mod 2 reduction map, µ ◦ i = r ◦ γ follows from this definition at once.

The obstruction for PL resolving M to a PL manifold (discussed after Theorem 5.1)
will be denoted by c(M) ∈ H4(M ; Θ3); in fact, by its definition, there is an element
c′(M) ∈ H4(M ; Θ) with i(c′(M)) = c(M). This implies that

Sq1(µ(c(M))) = Sq1(µ(i(c′(M)))) = Sq1(r(γ(c′(M)))),

which vanishes since Sq1 ◦ r = 0. Since µ(c(M)) = ∆(M), we get that Sq1(∆(M)) = 0,
which obvioulsy contradicts Sq1(∆(M)) 6= 0, showing that the short exact sequence of
Equation (1) must split.

Considering the product Nn = M × T n−5 (with M being the five-manifold of [GS79]
used above) we get a manifold of any dimension n ≥ 5 with Sq1(∆(Nn)) 6= 0, hence the
above reasoning applies to those manifolds as well.

A simple corollary of the above proof is

Corollary 5.3 ([GS80]). — If the short exact sequence of Equation (1) does not split,
then in every dimension n ≥ 5 there is a topological manifold which does not admit a
triangulation.

Notice that the splitting of the exact sequence of Equation (1) is equivalent to the
existence of an integral homology sphere Y with µ(Y ) = 1 for which Y#Y bounds an
integral homology disk W 4 (i.e. 2[Y ] = 0 in Θ3).

6. SEIBERG–WITTEN THEORY AND SYMMETRIES

Monopole Floer homology grew out of the study of the Seiberg–Witten equations on
four-manifolds [Mor96, Wit94], which in turn was motivated by Donaldson’s ground-
breaking results resting on the analysis of anti-self-dual connections on SU(2)-bundles
over four-manifolds [DK90]. In the following we recall the basic notions and construc-
tions of Monopole Floer homology, and collect the formal properties of the resulting
homologies. Manolescu’s work constitutes a variant of this theory, taking a further
symmetry into account, which will be reviewed in Subsection 6.2. Our summary will be
rather short, since the discussion of this topic presented in [Man16a] is rather complete,
and we found very little we could add to that beautiful presentation.

6.1. Monopole Floer homology

In the following we will focus on integral homology spheres only; these three-manifolds
will suffice for our present purposes, although the theory has been developed for arbitrary
closed, oriented three-manifold.
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Suppose therefore that Y is an integral homology sphere. Monopole Floer homology
associates to Y three finitely generated, graded F[U ]-modules (with degU = −2, and
F denoting the field Z/2Z of two elements), which are denoted by

̂

HM (Y ), ĤM (Y ) and
HM (Y ), and which fit into the exact triangle

(3)

̂

HM (Y ) ĤM (Y )

HM (Y )

j∗

p∗i∗

As these groups are presented as homologies of certain chain complexes, one can define
the corresponding cohomology groups, which are isomorphic to the homologies of the
three-manifold −Y , our original manifold Y with its orientation reversed.

The intuitive picture behind the exact sequence of Equation (3) is that Monopole
Floer homology can be viewed as the middle dimensional (Morse) homology of an infinite
dimensional manifold with boundary, and the three flavours

̂

HM , ĤM and HM are the
homology of the space, its relative homology (rel boundary) and the homology of the
boundary.

The infinite dimensional space mentioned above (and the function on it, giving rise to
the analogue of Morse homology) is defined as follows. Fix a Riemannian metric g on
Y , inducing the Levi-Civita connection and the corresponding covariant derivation ∇
on TY . Consider the trivial C2-bundle S → Y over the integral homology sphere Y ,
and define an action

ρ : TY → su(S) ⊂ End(S)
of the tangent bundle TY on S (with traceless, self-adjoint matrices) by sending an
orthonormal frame {e1, e2, e3} spanning the trivial bundle TY to the Pauli matrices

ρ(e1) =
(
i 0
0 −i

)
, ρ(e2) =

(
0 −1
1 0

)
, ρ(e3) =

(
0 i

i 0

)
.

Using the identification TY ∼= T ∗Y provided by the fixed metric, and by complex linearly
extending the above map ρ we get an associated map (also denoted by ρ)

ρ : T ∗Y ⊗ C→ sl(S) ⊂ End(S)

into the space of traceless endomorphisms sl(S).
A connection A on the bundle S → Y is a spin connection if the associated covariant

derivative ∇A satisfies
∇A(ρ(v)φ) = ρ(∇v)φ+ ρ(v)∇Aφ

for a vector field v and spinor φ ∈ Γ(S). The trivialization of TY provides the trivial
connection A0 and hence a spin connection A can be written as A = A0 + a with
a ∈ Ω(Y ; iR) a smooth 1-form.

The configuration space C(Y ) is the space of pairs (a, φ) ∈ Ω1(Y ;R)⊕ Γ(S), where
A0 + a is a spin connection on S and φ ∈ Γ(S) is a section of S — a spinor.
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The group G(Y ) = {f : Y → S1} (called the gauge group) admits a natural action on
C(Y ): for an element (a, φ) ∈ C(Y ) and f ∈ G(Y ) we define

f · (a, φ) = (a− f−1df, f · φ).

It is not hard to see that the action is free for elements with φ 6= 0, and have stabilizer
isomorphic to S1 (consisting of constant maps) for the elements (a, 0). (These elements
are usually called reducible.) Therefore, for a fixed point y0 ∈ Y the based gauge
group G0(Y ) = {f : Y → S1, f(y0) = 1} acts freely on C(Y ), providing the (infinite
dimensional) manifold

B0(Y ) = C(Y )/G0(Y ).
By construction, this space is equipped with an S1-action, which is free away from the
reducibles.

For a section φ ∈ Γ(S) of S → Y we define the Dirac operator /∂ : Γ(S)→ Γ(S) as

/∂(φ) =
3∑
i=1

ρ(ei)∂eiφ.

More generally, for a spin connection A we can define the twisted Dirac operator /∂A by
composing the covariant derivation ∇A with the Clifford multiplication ρ:

Γ(S) ∇A−→ Γ(T ∗Y × S) ρ−→ Γ(S).

Define the Chern–Simons–Dirac functional

CSD: C(Y )→ R

by
CSD(a, φ) = 1

2

∫
Y

(〈φ, /∂φ+ ρ(a)φ〉 − a ∧ da).

Since Y is an integral homology sphere, the Chern–Simons–Dirac functional is gauge
invariant, hence provides an S1-invariant functional on B0(Y ). As in finite dimensional
Morse homology [Sch93], one needs to identify the critical points of CSD (which will
provide the generators of Monopole Floer homology) and the gradient flow equation (the
solutions of which will define the boundary map). To describe the necessary equations,
let ∗ : Ω1(Y ;R)→ Ω2(Y ;R) denote the Hodge star operator, defined as follows. Recall
that a Riemannian metric g is fixed on Y , providing the Riemannian volume element dν,
and a scalar product (., .) on T ∗Y . For a 1-form α the 2-form ∗α is defined by

β ∧ ∗α = (β, α) dν.

Now the gradient of CSD is

grad CSD(a, φ) = (∗da− 2ρ−1((φ⊗ φ∗)0), /∂φ+ ρ(a)φ),

where φ∗ denotes the dual section, hence φ ⊗ φ∗ provides an endomorphism of the
bundle S, and (φ ⊗ φ∗)0 is its traceless part. This formula then leads to the Seiberg–
Witten equations for identifying the critical points:

∗da− 2ρ−1(φ⊗ φ∗)0 = 0, /∂φ+ ρ(a)φ = 0.
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Remark 6.1. — The above definition of the Hodge star operator provides a map
∗ : Ωi(M ;R)→ Ωn−i(M ;R) for any closed, oriented Riemannian n-manifold. In partic-
ular, for four-manifolds we get an endomorphism on Ω2(M ;R), which can be used to
write down a differential equation for curvature forms of connections. An appropriate
version of this operator then leads to the famous (anti)-self-duality equation, studied by
Donaldson in his groundbreaking work on smooth structures of four-manifolds [DK90].

There are several problems in viewing the above set-up as a simple Morse homology.
One might need to perturb the equations to have isolated critical points in B0/S

1;
the Hessians have infinite dimensional positive and negative definite parts (hence the
index cannot be defined as usual) and, more importantly, the quotient B0/S

1 is not
a manifold at the reducible elements. (There are further, relatively standard analytic
issues to overcome, which we do not even mention here.) The first two items can
be overcome with standard Floer theoretic considerations, while to fix the third, we
could choose from two options: (a) ignore the reducible critical points or (b) apply the
operation of ‘real blow-up’. The first option raises a number of concerns. For example,
the result will not be a diffeomorphism invariant; also, later results show that the most
important topological information (in particular the functions crucial for the disproof of
the Triangulation Conjecture) originate from reducible solutions.

The other path of applying the real blow-up process (pioneered by Kronheimer–
Mrowka in [KM07]) goes as follows. Consider the space Cσ(Y ) where we replace the
pairs (a, φ) ∈ Ω1(Y ;R) × Γ(S) with triples (a, ψ, s) ∈ Ω1(Y ;R) × Γ(S) × R≥0 with
‖ψ‖L2 = 1. The map π : Cσ(Y )→ C(Y ) defined by

(a, ψ, s) 7→ (a, s · ψ)
gives the blow-down map. (Note that the product s·ψ determines s and ψ with ‖ψ‖L2 = 1
uniquely once ψ 6= 0.) By factoring with the action of the based gauge group, we get a
space Bσ0 (an infinite dimensional manifold with boundary), and one can apply ideas
from Morse homology for the lifted gradient. This line of reasoning provides the three
versions of Monopole Floer homology, depending on how the reducible solutions, i.e. the
boundary of the blown-up configuration space is used. To properly take the S1-action
into account, we need to consider S1-equivariant homology. For a general compact Lie
group G and for its action on X this means that we take the Borel construction, by
considering HG

∗ (X;F) = H∗(X ×G EG;F) (where, as usual, EG→ BG is the universal
principal G-bundle and hence EG is a contractible space with a free G-action). It follows
that the resulting groups will be modules over H∗G(pt.;F) = H∗(BG;F), and in our case
(when G = S1) we have that BS1 = CP∞ (the classifying space for S1). It is well-known
that H∗(CP∞;F) is isomorphic to F[U ], , hence its action on Monopole Floer homology
(modelled by the cap product action of cohomology on homology) equips the Monopole
Floer homology groups by an F[U ]-module structure, with the U -action of degree −2.

The resulting homology groups come with integer gradings (once again, we always
assume that H1(Y ;Z) = 0) and cobordisms between these three-manifolds induce
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F[U ]-module homomorphisms (by considering the appropriate extensions of the Seiberg–
Witten equations to four-manifolds). The relative grading comes from considering the
dimension of the moduli spaces of Seiberg-Witten solutions on the tube connecting
the two critical points, while the absolute grading —which is of central importance
in most applications, and crucial for the definition of the functions on Θ3 eventually
providing the (dis)proof of the triangulation conjecture— is somewhat harder to define,
see [KM07].

Regarding the structure of

̂

HM (Y ), it has a single infinite chain (called a tower) of
the form F[U,U−1]/F[U ], which originates from the reducible solutions, together with a
finite dimensional F-vector space (originating from the irreducible solutions). The degree
of the element at the bottom of the tower is an invariant of the homology cobordism
class of Y , and it provides (after dividing by 2) an onto homomorphism δ : Θ3 → Z.

The grading on the tower of the chain complex (i.e. before taking homology) admits
a close connection to the Rokhlin invariant of the three-manifold: indeed, the grading
on the tower is an even integer, and the half of the grading of the bottom generator of
the tower is (mod 2) equal to µ(Y ). The chain complex, however, is not a topological
invariant; in its definition we had to make some choices, most notably we fixed a
Riemannian metric g on the three-manifold Y , and the grading of the bottom element
of the tower might depends on this choice. When taking the homology, however, it
is unclear whether the cycle representing the bottom of the tower will give rise to a
non-zero homology class: such an element can be the boundary of a combination of
non-reducible elements, hence the lowest grading in the tower of the homology module
might change by one-half the grading of U . Since degU = −2, the mod 2 reduction of
the lowest grading of a reducible element in the chain complex will not be visible in the
graded homology module

̂

HM (Y ). Indeed, the homomorphism δ above is not a lift of
the Rokhlin homomorphism.

Remark 6.2. — The approach sketched above is due to Kronheimer and Mrowka [KM07].
An alternative definition of the same homology groups have been given by Manolescu
[Man03] by adapting Furuta’s finite dimensional approximation method for the four-
dimensional Seiberg–Witten equations to the three-dimensional setting.

As we already mentioned, the construction of the Monopole Floer homology groups
actually works for any oriented, closed three-manifold [KM07]. In order to properly set
up the theory (for example, to define the twisted Dirac operators) one needs to fix a
spinc structure on the three-manifold at hand. Every three-manifold admits spin (and
in particular spinc) structures, and the latter are parametrized by H2(Y ;Z) ∼= H1(Y ;Z).
In particular, for an integral homology sphere there is a unique spinc structure (which is
therefore spin); and this was the case we restricted our attention to in this discussion.

6.2. The Pin(2)-equivariant theory
Under favourable circumstances the Seiberg–Witten equations come with a further

symmetry. Indeed, if the spinor bundle S → Y is spin (which is always the case for
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an integral homology sphere Y ), this C2-bundle can be viewed as a quaternionic line
bundle. So besides the unit complex multiplication we have a further action j : S → S

by sending (v1, v2) ∈ C2 to (−v2,−v1). With this extra map we have

j · (a, φ) = (−a, φj),

defining an action of the group Pin(2) = S1 ∪ jS1 ⊂ C ∪ jC ⊂ H on B0(Y ). Since the
CSD-functional is also invariant under this action, we can restart our previous approach,
now taking the above Pin(2)-action into account.

We will not give the details of the work here; the approach of finite dimensional
approximation was worked out by Manolescu in [Man16b], while the approach close to
what we outlined above for the S1-equivariant case has been developed by Lin (in his
thesis) [Lin16b], see also [Lin16a]. The homology groups constructed by this method
are denoted by

̂

HS(Y ), ĤS(Y ) and HS(Y ); they fit into an exact triangle similar to
Equation (3).

Let us rather highlight a few new features of the resulting theory. Note first that
Pin(2) is a subgroup of SU(2), the group of unit quaternions. Using the Hopf fibration
SU(2) → CP 1 (with fiber S1), and factoring further with the action of j ∈ Pin(2)
we get a fibration SU(2) → RP 2 with fiber Pin(2). This allows us to get a fibration
BPin(2)→ BSU(2), the fiber of which is RP 2. Since BSU(2) can be easily seen to be
HP∞, and its cohomology ring (with F coefficients) is isomorphic to F[v], the Leray
spectral sequence implies that

H∗Pin(2)(pt.;F) = H∗(BPin(2);F) ∼= F[v, q]/(q3),

where deg v = 4 and deg q = 1. Therefore the homologies

̂

HS , ĤS and HS are modules
over the above ring R = F[v, q]/(q3), and (as before) the action of v and q are of degree
−4 and −1, respectively. There is a Gysin type sequence connecting the new theory to
Monopole Floer homology:

. . .→

̂

HS(Y ) ·q−→

̂

HS(Y )→

̂

HM (Y )→

̂

HS(Y )→ . . .

where the R-action on

̂

HM (Y ) is defined by v acting as U2 and q acting as zero.
As an F[v]-module,

̂

HS(Y ) admits three infinite towers —which are connected by
multiplication of q—, and some further parts forming a finite dimensional F-vector space.
The gradings of the infinite chains (originating from the reducible solutions) now are
directly related to the Rokhlin invariant µ(Y ). Indeed, on the chain level our previous
discussion applies, and since the degree change coming from multiplication by v is −4,
even after dividing by two the mod 2 value is unchanged. In particular, if the bottom
degrees of the chains are denoted by A,B and C, then the quantities

α = A

2 , β = B − 1
2 , γ = C − 2

2
are invariants of Y satisfying α ≥ β ≥ γ and all congruent to µ(Y ) mod 2.
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Once again, maps induced by cobordisms can be used to show that these quantities
are invariant under homology cobordisms, hence provide maps

α, β, γ : Θ3 → Z.

Furthermore, relations between homologies and cohomologies can be used to show that

(4) α(−Y ) = −γ(Y ), β(−Y ) = −β(Y ), γ(−Y ) = −α(Y ).

In conclusion, we get three integer valued maps on Θ3, each lifting the Rokhlin
homomorphism, none of them actually being homomorphisms. Nevertheless, β satisfies
the weaker condition β(−Y ) = −β(Y ). As we will see, this is sufficient for disproving
the triangulation conjecture.

6.3. The Triangulation Conjecture

By work of Galewski–Stern and Matumoto (cf. Theorem 5.2 and Corollary 5.3), the
solution of the Triangulation Conjecture is equivalent to deciding if the short exact
sequence of Equation (1) splits. This property, in turn, is equivalent to decide if there is
an element [Y ] in the integral homology cobordism group Θ3 which is of order 2 and
has nontrivial Rokhlin invariant. We could exclude the existence of such an element by
finding a lift of the Rokhlin homomorphism

µ : Θ3 → Z/2Z

to a homomorphism M : Θ3 → Z; i.e. we need an invariant m(Y ) ∈ Z of an (oriented)
integral homology sphere Y which satisfies

1. m(Y ) is a homology cobordism invariant, hence decends to a map M : Θ3 → Z;
2. the mod 2 reduction of m(Y ) is the Rokhlin invariant µ(Y ); and
3. m satisfies m(Y1#Y2) = m(Y1) +m(Y2), hence M is a group homomorphism.

Then the proof would be rather simple, since the second property implies that if µ(Y ) = 1
then M(Y ) is an odd integer, hence M(Y#Y ) = 2M(Y ) is nonzero, implying that [Y ]
cannot be of order 2.

So far no invariant satisfying the above three properties have been found. The
Casson invariant λ(Y ) does lift µ(Y ), but it it not a homology cobordism invariant,
while Frøyshov’s invariant h(Y ) (and similarly, the map δ : Θ3 → Z introduced through
Monopole Floer homology, and the Ozsváth–Szabó correction term d(Y ) coming from
Heegaard Floer homology) provide homomorphisms from Θ3 to Z but fail to lift µ. The
invariants α, β, γ found by Manolescu in the Pin(2)-equivariant theory do not satisfy the
third property above, but β(−Y ) = −β(Y ) from Equation (4) turns out to be sufficient
to show:

Theorem 6.1. — The short exact sequence of Equation (1) does not split.
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Proof. — Suppose that the exact sequence splits, that is, there is an element [Y ] in Θ3
which is of order 2 and has µ(Y ) = 1 ∈ Z/2Z. Consider then the odd number β(Y ) ∈ Z.
By Equation (4) we have that β(−Y ) = −β(Y ), while from the fact that Y represents
an element of order 2 in Θ3 we get that Y and −Y are homology cobordant, hence
β(Y ) = β(−Y ). In conclusion, we have that β(Y ) = −β(Y ), implying β(Y ) = 0, a
contradiction.

By Corollary 5.3 this result shows that the manifolds M × T n−5 appearing in the
argument for Theorem 5.2 do not admit triangulations, leading to the disproof of the
Triangulation Conjecture:

Theorem 6.2 ([Man16b]). — For any dimension n at least five there is a closed
topological manifold Xn which does not admit a triangulation.

7. FURTHER DEVELOPMENTS

The ideas leading Manolescu to discover the Pin(2)-equivariant version of Seiberg–
Witten–Floer homology have further implications and adaptations in other theories of
low dimensional topology. The most notable examples of such results are in Heegaard
Floer homology, which we outline below.

Heegaard Floer homology (introduced by Ozsváth and Szabó in 2001 [OS04a, OS04b])
is a homology theory formally very reminiscent to Monopole Floer homology. Indeed, a
few years ago the isomorphisms of these groups (and a third, closely related group of
Embedded Contant Homology) have been verified by Kutluhan–Lee–Taubes [KLT19]
and Colin–Ghiggini–Honda [CGH11].

There is a version of Heegaard Floer homology, which takes (some part of) the Pin(2)-
action into account, but since the theory has been set up using a very different route,
the details are significantly different. Here we restrict ourselves merely to an indication
of the main ideas and a sample of some results and further research directions.

7.1. Heegaard Floer homology

A four-tuple H = (Σ, α, β, w) is a pointed Heegaard diagram if

– Σ is a genus-g closed, oriented two-manifold;
– α = {α1, . . . , αg} is a collection of g disjoint simple closed curves on Σ such that

Σ \ ∪gi=1αi is connected;
– similarly, β = {β1, . . . , βg} is a collection of g disjoint simple closed curves on Σ
such that Σ \ ∪gi=1βi is connected;

– the curves αi and βj intersect transversally;
– w ∈ Σ \ (∪gi=1αi

⋃∪gi=1βi) is a point disjoint from all the α- and β-curves.
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Such a four-tuple determines a closed, oriented three-manifold Y by attaching three-
dimensional 2-handles along αi × {−1} and along βj × {1} to Σ × [−1, 1] and then
closing the resulting manifold with two S2-boundaries by attaching two D3’s. Every
closed, oriented three-manifold arises in this way, and the Heegaard diagram repre-
senting a fixed three-manifold is unique up to isotopies, handle slides and stabiliza-
tions/destabilizations [OS04a].

Let us fix a pointed Heegaard diagram H and a complex structure j on Σ. These
data determine a further four-tuple

(Symg(Σ),Tα = ×gi=1αi,Tβ = ×gj=1βj, Vw = {w} × Symg−1(Σ))

of manifolds, where the tori Tα,Tβ and the divisor Vw are all submanifolds of the g-fold
symmetric power Symg(Σ) of Σ. In addition, there is a Kähler form ω on Symg(Σ) for
which Tα and Tβ are Lagrangian tori, hence we can consider (some version of) their
Lagrangian Floer homology: Fix a generic path of almost complex structures {Js} on
Symg(Σ) compatible with ω and consider the free F[U ]-module CF−(H) generated by
the (finite) intersection Tα ∩ Tβ together with the boundary map

∂−x =
∑

y∈Tα∩Tβ

∑
µ(φ)=1

#(M(φ)
R

)Unw(φ) · y,

where φ is a homotopy class of Whitney disks connecting x,y ∈ Tα ∩ Tβ, M(φ) is
the moduli space of {Js}-holomorphic disks representing φ, the space M(φ) is of
dimension µ(φ), and nw(φ) is the intersection number of the homotopy class φ with the
divisor Vw ⊂ Symg(Σ).

In case the three-manifold Y determined by H is an integral homology sphere, the
above construction gives a chain complex (that is, (∂−)2 = 0), and its homology

HF−(Y ) = H∗(CF−(H), ∂−)

is a three-manifold invariant. Indeed, HF−(Y ) is a finitely generated F[U ]-module of
rank one, admitting an absolute Z-grading (with U acting by degree −2).

A map f : (CF−(H1), ∂−1 )→ (CF−(H2), ∂−2 ) is a local equivalence if it induces isomor-
phism on the homology of the localized complex (i.e. on H∗(CF−(H)⊗F[U ] F[U,U−1]). It
follows from standard theory that every chain complex arising by the above construction
for an integral homology sphere Y is locally equivalent to a free cyclic one, for which the
only important information is the grading of the generator, usually called the correction
term d(Y ) of Y .

It is not hard to see that this correction term is a homology cobordism invariant, and
the resulting map d : Θ3 → Z is a homomorphism. This map is the Heegaard Floer
counterpart of the map δ introduced at the end of Subsection 6.1 using Monopole Floer
homology.
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7.2. Involutive Heegaard Floer homology
The above line of reasoning admits a variant when a natural symmetry of the theory

is taken into account. For the pointed Heegaard diagram H = (Σ, α, β, w) consider
the one we get by reversing both the orientation of Σ and the order of α and β:
Hc = (−Σ, β, α, w). A simple topological argument shows that these two Heegaard
diagrams determine diffeomorphic three-manifolds, hence they can be connected by a
sequence of isotopies, handle slides and stabilizations/destabilizations. By [JTZ12] the
resulting identification of CF−(H) and CF−(Hc) is unique up to homotopy.

The two chain complexes CF−(H) and CF−(Hc) can be canonically identified, since
the intersections of Tα and Tβ are the same for both cases. By composing the two
identifications, we get a chain map ι : CF−(H) → CF−(H), which is a homotopy
involution, that is, ι2 is homotopic to id. Using this map Hendricks and Manolescu
[HM17] defined the involutive Heegaard Floer homology HFI(Y ) of Y as the homology of
the mapping cone of the map ι+id (when it is viewed as a map CF−(H)→ Q ·CF−(H)),
resulting a module over the ring F[U,Q]/Q2.

Furthermore, we can adapt the concept of local equivalence by considering those chain
maps CF−(H)→ CF−(H) which induce isomorphism on the homology of the localized
chain complex (just as before), and also commute (up to homotopy) with ι. Taking
such a map fmax with maximal kernel, we get HF−conn(Y ) = H∗(Im fmax), the connected
Heegaard Floer homology group of Y , as defined by Hendricks–Hom–Lidman [HHL18].

While HFI(Y ) is a diffeomorphism invariant of the three-manifold Y , the isomorphism
type of the connected homology group (or more precisely F[U ]-module) is a homology
cobordism invariant. This invariant has been used to show

Theorem 7.1 ([DHST18]). — The integral homology group Θ3 of Subsection 2.1 admits
a direct summand isomorphic to Z∞.

7.3. Further variants
Very similar ideas can be used to study knot concordance problems and the structure

of C: for a knot K ⊂ S3 consider the double branched cover Σ(K), the three-manifold
admitting a map φ : Σ(K) → S3 which is generically 2-to-1, except along the branch
locus K̃ ⊂ Σ(K) along which it is 1-to-1 and K̃ maps under this map isomorphically
to K.

The double branched cover Σ(K) naturally admits an involution τ (interchanging
the points in the fibers of the above branch map φ, having K̃ as fixed point set),
and also a distinguished spinc structure s0 (induced by the unique spin structure
on Σ(K)). The above self-diffeomorphism τ then induces an endomorphism τ# of
(CF−(Σ(K)), s0), which is a homotopy involution. This allows us to define the version
of involutive Heegaard Floer homology and connected Heegaard Floer homology in the
present setting: we define HFB−(K) as the homology of the mapping cone of the map
τ# + id, while HFB−conn(K) to be the homology of the image of a local self-equivalence
of CF−(Σ(K), s0) which (homotopy) commutes with τ# and has maximal kernel. Then
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arguments similar to [HM17, HHL18] show that HFB−(K) is a knot invariant, while
HFB−conn(K) is a knot concordance invariant [AKS19]. These invariants can be used
to find further data regarding the algebraic structure of the group C and its further
variants. For example, a relatively simple calculation shows that C (and indeed also
CTS) admits a subgroup isomorphic to Z∞. By further investigations, the same applies
for the group we get by factoring C with the subgroup generated by all alternating and
torus knots.
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