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1. MAIN RESULTS

Throughout this paper, we work over the field of complex numbers.

1.1. Boundedness of singular Fano varieties

A normal, projective variety X is called Fano if a negative multiple of its canonical

divisor class is Cartier and if the associated line bundle is ample. Fano varieties appear

throughout geometry and have been studied intensely, in many contexts. For the purposes

of this talk, we remark that Fanos with sufficiently mild singularities constitute one of

the fundamental variety classes in birational geometry. In fact, given any projective

manifold X, the Minimal Model Programme (MMP) predicts the existence of a sequence

of rather special birational transformations, known as “divisorial contractions” and

“flips”, as follows,

X = X(0) α(1)

birational
// X(1) α(2)

birational
// · · · α(n)

birational
// X(n).

Stefan Kebekus gratefully acknowledges support through a fellowship of the Freiburg Institute of

Advanced Studies (FRIAS).
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The resulting variety X(n) is either canonically polarised (which is to say that a suitable

power of its canonical sheaf is ample), or it has the structure of a fibre space whose

general fibres are either Fano or have numerically trivial canonical class. The study of

(families of) Fano varieties is thus one of the most fundamental problems in birational

geometry.

Remark 1.1 (Singularities). — Even though the starting variety X is a manifold by

assumption, it is well understood that we cannot expect the varieties X(•) to be smooth.

Instead, they exhibit mild singularities, known as “terminal” or “canonical” — we refer

the reader to [KM98, Sect. 2.3] or [Kol13, Sect. 2] for a discussion and for references. If

X(n) admits the structure of a fibre space, its general fibres will also have terminal or

canonical singularities. Even if one is primarily interested in the geometry of manifolds,

it is therefore necessary to include families of singular Fanos in the discussion.

In a series of two fundamental papers, [Bir16a, Bir16b], Birkar confirmed a long-

standing conjecture of Alexeev and Borisov–Borisov, [Ale94, BB92], asserting that for

every d ∈ N, the family of d-dimensional Fano varieties with terminal singularities is

bounded: there exists a proper morphism of quasi-projective schemes over the complex

numbers, u : X→ Y , and for every d-dimensional Fano X with terminal singularities

a closed point y ∈ Y such that X is isomorphic to the fibre Xy. In fact, a much more

general statement holds true.

Theorem 1.2 (Boundedness of ε-lc Fanos, [Bir16b, Thm. 1.1])

Given d ∈ N and ε ∈ R+, let Xd,ε be the family of projective varieties X with

dimension dimCX = d that admit an R-divisor B ∈ RDiv(X) such that the following

holds true.

(1.2.1) The tuple (X,B) forms a pair. In other words: X is normal, the coefficients

of B are contained in the interval [0, 1] and KX +B is R-Cartier.

(1.2.2) The pair (X,B) is ε-lc. In other words, the total log discrepancy of (X,B) is

greater than or equal to ε.

(1.2.3) The R-Cartier divisor −(KX +B) is nef and big.

Then, the family Xd,ε is bounded.

Remark 1.3 (Terminal singularities). — If X has terminal singularities, then (X, 0) is

1-lc. We refer to Section 2.3, to Birkar’s original papers, or to [HMX14, Sect. 3.1] for

the relevant definitions concerning more general classes of singularities.

For his proof of the boundedness of Fano varieties and for his contributions to the

Minimal Model Programme, Caucher Birkar was awarded with the Fields Medal at the

ICM 2018 in Rio de Janeiro.
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1.1.1. Where does boundedness come from? — The brief answer is: “From boundedness

of volumes!” In fact, if (Xt, At)t∈T is a family of tuples where the Xt are normal,

projective varieties of fixed dimension d and At ∈ Div(Xt) are very ample, and if there

exists a number v ∈ N such that

vol(At) := lim sup
n→∞

d! · h0
(
Xt, OXt(n · At)

)
nd

< v

for all t ∈ T , then elementary arguments using Hilbert schemes show that the family

(Xt, At)t∈T is bounded.

For the application that we have in mind, the varieties Xt are the Fano varieties whose

boundedness we would like to show and the divisors At will be chosen as fixed multiples

of their anticanonical classes. To obtain boundedness results in this setting, Birkar needs

to show that there exists one number m that makes all At := −m ·KXt very ample,

or (more modestly) ensures that the linear systems |−m ·KXt | define birational maps.

Volume bounds for these divisors need to be established, and the singularities of the

linear systems need to be controlled.

1.1.2. Earlier results, related results. — Boundedness results have a long history, which

we cannot cover with any pretence of completeness. Boundedness of smooth Fano

surfaces and threefolds follows from their classification. Boundedness of Fano manifolds

of arbitrary dimension was shown in the early 1990s, in an influential paper of Kollár,

Miyaoka and Mori, [KMM92], by studying their geometry as rationally connected

manifolds. Around the same time, Borisov–Borisov were able to handle the toric case

using combinatorial methods, [BB92]. For (singular) surfaces, Theorem 1.2 is due to

Alexeev, [Ale94].

Among the newer results, we will only mention the work of Hacon–McKernan–Xu.

Using methods that are similar to those discussed here, but without the results on

“boundedness of complements” (→ Section 4), they are able to bound the volumes of klt

pairs (X,∆), where X is projective of fixed dimension, KX + ∆ is numerically trivial

and the coefficients of ∆ come from a fixed DCC set, [HMX14, Thm. B]. Boundedness

of Fanos with klt singularities and fixed Cartier index follows, [HMX14, Cor. 1.8]. In a

subsequent paper [HX15] these results are extended to give the boundedness result that

we quote in Theorem 4.6, and that Birkar builds on. We conclude with a reference to

[Jia17, Che18] for current results involving K-stability and α-invariants. The surveys

[HM10, HMX18] give a more complete overview.

1.2. Applications

As we will see in Section 8 below, boundedness of Fanos can be used to prove the

existence of fixed points for actions of finite groups on Fanos, or more generally rationally

connected varieties. Recall that a variety X is rationally connected if every two points

are connected by an irreducible, rational curve contained in X. This allows us to apply

Theorem 1.2 in the study of finite subgroups of birational automorphism groups.
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1.2.1. The Jordan property of Cremona groups. — Even before Theorem 1.2 was known,

it had been realised by Prokhorov and Shramov, [PS16], that boundedness of Fano

varieties with terminal singularities would imply that the birational automorphism

groups of projective spaces (= Cremona groups, Bir(Pd)) satisfy the Jordan property.

Recall that a group Γ is said to have the Jordan property if there exists a number j ∈ N
such that every finite subgroup G ⊂ Γ contains a normal, Abelian subgroup A ⊂ G of

index |G : A| ≤ j. In fact, a stronger result holds.

Theorem 1.4 (Jordan property of Cremona groups, [Bir16b, Cor. 1.3], [PS16, Thm. 1.8])

Given any number d ∈ N, there exists j ∈ N such that for every complex, projective,

rationally connected variety X of dimension dimCX = d, every finite subgroup G ⊂
Bir(X) contains a normal, Abelian subgroup A ⊆ G of index |G : A| ≤ j.

Remark 1.5. — Theorem 1.4 answers a question of Serre [Ser09, 6.1] in the positive. A

more detailed analysis establishes the Jordan property more generally for all varieties of

vanishing irregularity, [PS14, Thm. 1.8].

Theorem 1.4 ties in with the general philosophy that finite subgroups of Bir(Pd) should

in many ways be similar to finite linear groups, where the property has been established

by Jordan more then a century ago.

Theorem 1.6 (Jordan property of linear groups, [Jor77]). — Given any number d ∈ N,

there exists jJordan
d ∈ N such that every finite subgroup G ⊂ GLd(C) contains a normal,

Abelian subgroup A ⊆ G of index |G : A| ≤ jJordan
d .

Remark 1.7 (Related results). — For further information on Cremona groups and their

subgroups, we refer the reader to the surveys [Pop14, Can18] and to the recent research

paper [Pop18b]. For the maximally connected components of automorphism groups of

projective varieties (rather than the full group of birational automorphisms), the Jordan

property has recently been established by Meng and Zhang without any assumption on

the nature of the varieties, [MZ18, Thm. 1.4]; their proof uses group-theoretic methods

rather than birational geometry. For related results (also in positive characteristic), see

[Hu18, Pop18a, SV18] and references there.

1.2.2. Boundedness of finite subgroups in birational transformation groups. — Following

similar lines of thought, Prokhorov and Shramov also deduce boundedness of finite

subgroups in birational transformation groups, for arbitrary varieties defined over a

finite field extension of Q.

Theorem 1.8 (Bounds for finite groups of birational transformation, [PS14, Thm. 1.4])

Let k be a finitely generated field over Q. Let X be a variety over k, and let Bir(X)

denote the group of birational automorphisms of X over Spec k. Then, there exists b ∈ N
such that any finite subgroup G ⊂ Bir(X) has order |G| ≤ b.
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As an immediate corollary, they answer another question of Serre(1), pertaining to

finite subgroups in the automorphism group of a field.

Corollary 1.9 (Boundedness for finite groups of field automorphisms, [PS14, Cor. 1.5])

Let k be a finitely generated field over Q. Then, there exists b ∈ N such that any

finite subgroup G ⊂ Aut(k) has order |G| ≤ b.

1.2.3. Boundedness of links. — Birkar’s result has further applications within birational

geometry. Combined with work of Choi–Shokurov, it implies the boundedness of Sarkisov

links in any given dimension, cf. [CS11, Cor. 7.1].

1.3. Outline of this paper

Paraphrasing [Bir16a, p. 6], the main tools used in Birkar’s work include the Minimal

Model Programme [KM98, BCHM10], the theory of complements [PS01, PS09, Sho00],

the technique of creating families of non-klt centres using volumes [HMX14, HMX13]

and [Kol97, Sect. 6], and the theory of generalised polarised pairs [BZ16]. In fact,

given the scope and difficulty of Birkar’s work, and given the large number of technical

concepts involved, it does not seem realistic to give more than a panoramic presentation

of Birkar’s proof here. Largely ignoring all technicalities, Sections 4–7 highlight four

core results, each of independent interest. We explain the statements in brief, sketch

some ideas of proof and indicate how the results might fit together to give the desired

boundedness result. Finally, Section 8 discusses the application to the Jordan property

in some detail.

1.4. Acknowledgements

The author would like to thank Florin Ambro, Serge Cantat, Enrica Floris, Christo-

pher Hacon, Vladimir Lazić, Benjamin McDonnell, Vladimir Popov, Thomas Preu,

Yuri Prokhorov, Vyacheslav Shokurov, Chenyang Xu and one anonymous reader, who

answered my questions and/or suggested improvements. Yanning Xu was kind enough

to visit Freiburg and patiently explain large parts of the material to me. He helped

me out more than just once. His paper [Xu18], which summarises Birkar’s results, has

been helpful in preparing these notes. Even though our point of view is perhaps a little

different, it goes without saying that this paper has substantial overlap with Birkar’s

own survey [Bir18].

(1)Unpublished problem list from the workshop “Subgroups of Cremona groups: classification”, 29–30

March 2010, ICMS, Edinburgh. Available at http://www.mi.ras.ru/~prokhoro/preprints/edi.pdf.

Serre’s question is found on page 7.

http://www.mi.ras.ru/~prokhoro/preprints/edi.pdf
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2. NOTATION, STANDARD FACTS AND KNOWN RESULTS

2.1. Varieties, divisors and pairs

We follow standard conventions concerning varieties, divisors and pairs. In particular,

the following notation will be used.

Definition 2.1 (Round-up, round-down and fractional part)

If X is a normal, quasi-projective variety and B ∈ RDiv(X) an R-divisor on X,

we write bBc, dBe for the round-down and round-up of B, respectively. The divisor

{B} := B − bBc is called fractional part of B.

Definition 2.2 (Pair). — A pair is a tuple (X,B) consisting of a normal, quasi-

projective variety X and an effective R-divisor B such that KX +B is R-Cartier.

Definition 2.3 (Couple). — A couple is a tuple (X,B) consisting of a normal, pro-

jective variety X and a divisor B ∈ Div(X) whose coefficients are all equal to one. The

couple is called log-smooth if X is smooth and if B has simple normal crossings support.

2.2. R-divisors

While divisors with real coefficients had sporadically appeared in birational geometry

for a long time, the importance of allowing real (rather than rational) coefficients

was highlighted in the seminal paper [BCHM10], where continuity- and compactness

arguments for spaces of divisors were used in an essential manner. Almost all standard

definitions for divisors have analogues for R-divisors, but the generalised definitions are

perhaps not always obvious. For the reader’s convenience, we recall a few of the more

important notions here.

Definition 2.4 (Big R-divisors). — Let X be a normal, projective variety. A divisor

B ∈ RDiv(X), which need not be R-Cartier, is called big if there exists an an ample

H ∈ RDiv(X), and effective D ∈ RDiv(X) and an R-linear equivalence B ∼R H +D.

Definition 2.5 (Volume of an R-divisor). — Let X be a normal, projective variety of

dimension d. The volume of an R-divisor D ∈ RDiv(X) is defined as

vol(D) := lim sup
m→∞

d! · h0
(
X, OX(bmDc)

)
md

.

Definition 2.6 (Linear system). — Let X be a normal, quasi-projective variety and

let M ∈ RDiv(X). The R-linear system |M | is defined as

|M |R := {D ∈ RDiv(X) |D is effective and D ∼R M}.
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2.3. Invariants of varieties and pairs

We briefly recall a number of standard definitions concerning singularities. In brief, if

X is smooth, and if π : X̃ → X is any birational morphism, where X̃ it smooth, then any

top-form σ ∈ H0
(
X, ωX

)
pulls back to a holomorphic differential form τ ∈ H0

(
X̃, ωX̃

)
,

with zeros along the positive-dimensional fibres of π. However, if X is singular, if

π : X̃ → X is a resolution of singularities and if σ ∈ H0
(
X, ωX

)
is any section in

the (pre-)dualising sheaf, then the pull-back of σ will only be a rational differential

form on X̃ which might well have poles along the positive-dimensional fibres of π. The

idea in the definition of “log discrepancy” is to use this pole order to measure the

“badness” of the singularities on X. We refer the reader to one of the standard references

[KM98, Sect. 2.3] and [Kol13, Sect. 2] for an-depth discussion of these ideas and of

the singularities of the Minimal Model Programme. Since the notation is not uniform

across the literature(2), we spend a few lines to fix notation and briefly recall the central

definitions of the field.

Definition 2.7 (Log discrepancy). — Let (X,B) a pair and let π : X̃ → X be a

log resolution of singularities, with exceptional divisors (Ei)1≤i≤n. Since KX + B is

R-Cartier by assumptions, there exists a well-defined notion of pull-back, and a unique

divisor BX̃ ∈ RDiv(X̃) such that KX̃ + BX̃ = π∗(KX + B) in RDiv(X̃). If D is any

prime divisor on X̃, we consider the log discrepancy

alog(D,X,B) := 1−multD BX̃ .

The infimum over all such numbers,

alog(X,B) := inf{alog(D,X,B) | π : X̃ → X a log resolution and D ∈ Div(X̃) prime}

is called the total log discrepancy of the pair (X,B).

The total log discrepancy measures how bad the singularities are: the smaller alog(X,B)

is, the worse the singularities are. Table 1 on the following page lists the classes

of singularities will be relevant in the sequel. In addition, (X,B) is called plt if

alog(D,X,B) > 0 for every resolution π : X̃ → X and every exceptional divisor D on X̃.

The class of ε-lc singularities, which is perhaps the most relevant for our purposes, was

introduced by Alexeev.

2.3.1. Places and centres. — The divisors D that appear in the definition log discrep-

ancy deserve special attention, in particular if alog(D,X,B) ≤ 0.

Definition 2.8 (Non-klt places and centres). — Let (X,B) a pair. A non-klt place of

(X,B) is a prime divisor D on birational models of X such that alog(D,X,B) ≤ 0. A

non-klt centre is the image on X of a non-klt place. When (X,B) is lc, a non-klt centre

is also called an lc centre.

(2)The papers [Bir16a, Bir16b, BCHM10] denote the log discrepancy by a(D,X,B), while the standard

reference books [KM98, Kol13] write a(D,X,B) for the standard (= “non-log”) discrepancies.
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If . . . , then (X,B) is called “. . . ”

alog(X,B) ≥ 0 . . . log canonical (or “lc”)

alog(X,B) > 0 . . . Kawamata log terminal (or “klt”)

alog(X,B) ≥ ε . . . ε-log canonical (or “ε-lc”)

alog(X,B) ≥ 1 . . . canonical

alog(X,B) > 1 . . . terminal

Table 1. Singularities of the Minimal Model Programme

2.3.2. Thresholds. — Suppose that (X,B) is a klt pair, and that D is an effective

divisor on X. The pair (X,B + t ·D) will then be log-canonical for sufficiently small

numbers t, but cannot be klt when t is large. The critical value of t is called the

log-canonical threshold.

Definition 2.9 (LC threshold, compare [Laz04, Sect. 9.3.B])

Let (X,B) be a klt pair. If D ∈ RDiv(X) is effective, one defines the lc threshold of

D with respect to (X,B) as

lct
(
X, B, D

)
:= sup

{
t ∈ R

∣∣ (X,B + t ·D) is lc
}
.

If ∆ ∈ RDiv(X) is R-Cartier with non-empty R-linear system (but not necessarily

effective itself), one defines lc threshold of |∆|R with respect to (X,B) as

lct
(
X, B, |∆|R

)
:= inf

{
lct(X,B,D)

∣∣D ∈ |∆|R}.
Remark 2.10. — In the setting of Definition 2.9, it is a standard fact that

lct
(
X, B, |∆|R

)
= sup

{
t ∈ R

∣∣ (X,B + t ·D) is lc for every D ∈ |∆|R
}
.

In particular, if (X,B) is klt, then (X,B + t′ ·D) is lc for every D ∈ |∆|R and every

0 < t′ < t.

Notation 2.11. — If B = 0, we omit it from the notation and write lct
(
X, |∆|R

)
and

lct
(
X, D

)
in short.

2.4. Fano varieties and pairs

Fano varieties come in many variants. For the purposes of this overview, the following

classes of varieties will be the most relevant.

Definition 2.12 (Fano and weak log Fano pairs, [Bir16a, Sect. 2.10])

– A projective pair (X,B) is called log Fano if (X,B) is lc and if −(KX + B) is

ample. If B = 0, we just say that X is Fano.

– A projective pair (X,B) is called is called weak log Fano if (X,B) is lc and

−(KX +B) is nef and big. If B = 0, we just say that X is weak Fano.



1157–09

Remark 2.13 (Relative notions). — There exist relative versions of the notions discussed

above. If (X,B) is any quasi-projective pair, if Z is normal and if X → Z is surjective,

projective and with connected fibres, we say (X,B) is log Fano over Z if it is lc and if

−(KX +B) is relatively ample over Z. Ditto with “weak log Fano”.

2.5. Varieties of Fano type

Varieties X that admit a boundary B that makes (X,B) a Fano pair are said to be

of Fano type. This notion was introduced by Prokhorov and Shokurov in [PS09]. We

refer to that paper for basic properties of varieties of Fano type.

Definition 2.14 (Varieties of Fano type, [PS09, Lem. and Def. 2.6])

A normal, projective variety X is said to be of Fano type if there exists an effective,

Q-divisor B such that (X,B) is klt and weak log Fano pair. Equivalently: there exists a

big Q-divisor B such that KX +B ∼Q 0 and such that (X,B) is a klt pair.

Remark 2.15 (Varieties of Fano type are Mori dream spaces)

If X is of Fano type, recall from [BCHM10, Sect. 1.3] that X is a “Mori dream

space”. Given any R-Cartier divisor D ∈ RDiv(X), we can then run the D-Minimal

Model Programme and obtain a sequence of extremal contractions and flips, X 99K Y .

If the push-forward of DY of Y is nef over, we call Y a minimal model for D. Otherwise,

there exists a DY -negative extremal contraction Y → T with dimY > dimT , and we

call Y a Mori fibre space for D.

Remark 2.16 (Relative notions). — As before, there exists an obvious relative version

of the notion “Fano type”. Remark 2.15 generalises to this relative setting.

Varieties of Fano type come in two flavours that often need to be treated differently.

The following notion, which we recall for later use, has been introduced by Shokurov.

Definition 2.17 (Exceptional and non-exceptional pairs)

Let (X,B) be a projective pair, and assume that there exists an effective P ∈ RDiv(X)

such that KX +B + P ∼R 0. We say (X,B) is non-exceptional if we can choose P so

that (X,B + P ) is not klt. We say that (X,B) is exceptional if (X,B + P ) is klt for

every choice of P .

3. B-DIVISORS AND GENERALISED PAIRS

In addition to the classical notions for singularities of pairs that we recalled in

Section 2.3 above, much of Birkar’s work uses the notion of generalised polarised pairs.

The additional flexibility of this notion allows for inductive proofs, but adds substantial

technical difficulties. Generalised pairs were introduced by Birkar and Zhang in [BZ16].
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Disclaimer. — The notion of generalised polarised pairs features prominently in Birkar’s

work, and should be presented in an adequate manner. The technical complications

arising from this notion are however substantial and cannot be explained within a few

pages. As a compromise, this section briefly explains what generalised pairs are, and

how they come about in relevant settings. Section 4.4 pinpoints one place in Birkar’s

inductive scheme of proof where generalised pairs appear naturally, and explains why

most (if not all) of the material presented in this survey should in fact be formulated

and proven for generalised pairs. For the purpose of exposition, we will however ignore

this difficulty and discuss the classical case only.

3.1. Definition of generalised pairs

To begin, we only recall a minimal subset of the relevant definitions, and refer to

[Bir16a, Sect. 2] and to [BZ16, Sect. 4] for more details. We start with the notion of

b-divisors, as introduced by Shokurov in [Sho96], in the simplest case.

Definition 3.1 (b-divisor). — Let X be a variety. We consider projective, birational

morphisms Y → X from normal varieties Y , and for each Y a divisor MY ∈ RDiv(Y ).

The collection M := (MY )Y is called b-divisor if for any morphism f : Y ′ → Y of

birational models over X, we have MY = f∗(MY ′).

Definition 3.2 (b-R-Cartier and b-Cartier b-divisors). — Setting as in Definition 3.1.

A b-divisor M is called b-R-Cartier if there exists one Y such that MY is R-Cartier

and such that for any morphism f : Y ′ → Y of birational models over X, we have

MY ′ = f ∗(MY ). Ditto for b-Cartier b-divisors.

Definition 3.3 (Generalised polarised pair, [Bir16a, Sect. 2.13], [BZ16, Def. 1.4])

Let Z be a variety. A generalised polarised pair over Z is a tuple consisting of the

following data:

(3.3.1) a normal variety X equipped with a projective morphism X → Z,

(3.3.2) an effective R-divisor B ∈ RDiv(X), and

(3.3.3) a b-R-Cartier b-divisor over X represented as (ϕ : X ′ → X,M ′), where

M ′ ∈ RDiv(X ′) is nef over Z, and where KX +B + ϕ∗M
′ is R-Cartier.

Notation 3.4 (Generalised polarised pair). — In the setup of Definition 3.3, we usually

write M := ϕ∗M
′ and say that (X,B+M) is a generalised pair with data X ′

ϕ→ X → Z

and M ′. In contexts where Z is not relevant, we usually drop it from the notation: in

this case one can just assume X → Z is the identity. When Z is a point we also drop it

but say the pair is projective.

Observation 3.5. — Following [BZ16, p. 286] we remark that Definition 3.3 is flexible

with respect to X ′ and M ′. To be more precise, if g : X ′′ → X ′ is a projective birational

morphism from a normal variety, then there is no harm in replacing X ′ with X ′′ and

replacing M ′ with g∗M ′.
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3.2. Singularities of generalised pairs

All notions introduced in Section 2.3 have analogues in the setting of generalised pairs.

Again, we cover only the most basic definition here.

Definition 3.6 (Generalised log discrepancy, singularity classes)

Consider a generalised polarised pair (X,B +M) with data X ′
ϕ→ X → Z and M ′,

where ϕ is a log resolution of (X,B). Then, there exists a uniquely determined divisor

B′ on X ′ such that

KX′ +B′ +M ′ = ϕ∗(KX +B +M)

If D ∈ Div(X ′) is any prime divisor, the generalised log discrepancy is defined to be

alog(D,X,B +M) := 1−multD B
′.

As before, we define the generalised total log discrepancy alog(X,B +M) by taking the

infimum over all D and all resolutions. In analogy to the definitions of Table 1, we say

that the generalised polarised pair is generalised lc if alog(X,B +M) ≥ 0. Ditto for all

the other definitions.

3.3. Example: Fibrations and the canonical bundle formula

We discuss a setting where generalised pairs appear naturally. Let Y be a normal

pair variety, and let f : Y → X be a fibration: the space X is projective, normal and of

positive dimension, the morphism f is surjective with connected fibres. Also, assume

that KY is Q-linearly equivalent to zero over X, so that there exists LX ∈ QDiv(X) with

KY ∼Q f
∗LX . Ideally, one might hope that it would be possible to choose LX = KX ,

but this is almost always wrong — compare Kodaira’s formula for the canonical bundle

of an elliptic fibration, [BHPVdV04, Sect. V.12]. To fix this issue, we define a first

correction term B ∈ QDiv(X) as

B :=
∑

D∈Div(X)
prime

(1− tD) ·D where tD := lct◦
(
Y, ∆Y , f

∗D
)

The symbol lct◦ denotes a variant of the lc threshold introduced in Definition 2.9, which

measures the singularities of
(
Y, f ∗D

)
only over the generic point of D. Since X is

smooth in codimension one, this also solves the problem of defining f ∗D. Finally, one

chooses M ∈ QDiv(X) such that KX +B +M is Q-Cartier and such that the desired

Q-linear equivalence holds,

KY ∼Q f
∗(KX +B +M).

The divisor B is usually called the “discriminant part” of the correction term. It

detects singularities of the fibration, such as multiple or otherwise singular fibres, over

codimension one points of X. The divisor M is called the “moduli part”. It is harder

to describe. While we have defined it only up to Q-linear equivalence, a more involved

construction can be used to define it as an honest divisor.
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Commentary. — Conjecturally, the moduli part carries information on the birational

variation of the fibres of f , [Kaw98]. We refer to [Kol07] and to the introduction of the

recent research paper [FL18] for an overview, but see also [FG14].

3.3.1. Behaviour under birational modifications. — We ask how the moduli part of

the correction term behaves under birational modification. To this end, let ϕ : X ′ → X

be a birational morphism of normal, projective varieties. Choosing a resolution Y ′ of

Y ×X X ′, we find a diagram as follows,

Y ′
Φ, birational //

f ′

��

Y

f
��

X ′
ϕ, birational

// X.

Set ∆Y ′ := Φ∗KY −KY ′ . Generalising the definition of lct◦ a little to allow for negative

coefficients in ∆Y ′ , one can then define B′ similarly to the construction above,

B′ :=
∑

D∈Div(X′)
prime

(1− t′D) ·D where t′D := lct◦
(
Y ′, ∆Y ′ , (f ′)∗D

)
.

Finally, one may then choose M ′ ∈ QDiv(X ′) such that

KY ′ + ∆Y ′ ∼Q (f ′)∗(KX′ +B′ +M ′),

KX′ +B′ +M ′ = ϕ∗(KX +B +M)

and B = ϕ∗B
′ as well as M = ϕ∗M

′.

3.3.2. Relation to generalised pairs. — Now assume that Y is lc. The divisor B will

then be effective. However, much more is true: after passing to a certain birational

model X ′ of X, the divisor MX′ is nef and for any higher birational model X ′′ → X ′, the

induced MX′′ on X ′′ is the pullback of MX′′ , [Kaw98, Amb04, Kol07] and summarised

in [Bir16a, Thm. 3.6]. In other words, going to a sufficiently high birational model of X ′

of X, the moduli parts M ′ define an b-R-Cartier b-divisor. Moreover, this b-divisor is

b-nef. We obtain a generalised polarised pair (X,B +M) with data X ′
ϕ→ X → SpecC

and M ′. This generalised pair is generalised lc by definition.

Commentary. — A famous conjecture of Prokhorov and Shokurov [PS09, Conj. 7.13]

asserts that the moduli divisor MX′′ is semiample, on any sufficiently high birational

model X ′′ of X. More precisely, it is expected that a number m exists that depends

only on the general fibre of f such that all divisors m ·MX′′ are basepoint free. If this

conjecture was solved, it is conceivable that Birkar’s work could perhaps be rewritten in

a manner that avoids the notion of generalised pairs.

Remark 3.7 (Outlook). — The construction outlined in this section is used in the proof

of “Boundedness of complements”, as sketched in Section 4.4 below. It generalises

fairly directly to pairs (Y,∆Y ), and even to tuples where ∆Y is not necessarily effective,

[Bir16a, Sect. 3.4].
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4. BOUNDEDNESS OF COMPLEMENTS

4.1. Statement of result

One of the central concepts in Birkar’s papers [Bir16a, Bir16b] is that of a complement.

The notion of a “complement” is an ingenious concept of Shokurov that was introduced

in his investigation of threefold flips, [Sho92, Sect. 5]. We recall the definition in brief.

Definition 4.1 (Complement, [Bir16a, Sect. 2.18]). — Let (X,B) be a projective

pair and m ∈ N. An m-complement of KX + B is a Q-divisor B+ with the following

properties.

(4.1.1) The tuple (X,B+) is an lc pair.

(4.1.2) The divisor m · (KX +B+) is linearly equivalent to 0. In particular, m ·B+ is

integral.

(4.1.3) We have m ·B+ ≥ m · bBc+ b(m+ 1) · {B}c.

Remark 4.2 (Complements give sections). — Setting as in Definition 4.1. If m can be

chosen such that m · bBc+ b(m+ 1) · {B}c ≥ m ·B, then Item (4.1.2) guarantees that

−m · (KX +B) is linearly equivalent to the effective divisor m · (B+−B). In particular,

the sheaf OX

(
−m · (KX +B)

)
admits a global section.

Remark 4.3. — In view of Item (4.1.2), Shokurov considers complements as divisors

that make the lc pair (X,B+) “Calabi–Yau”, hence “flat”.

The following result, which asserts the existence of complements with bounded m, is

one of the core results in Birkar’s paper [Bir16a]. A proof of Theorem 4.4 is sketched in

Section 4.4 on the next page.

Theorem 4.4 (Boundedness of complements, [Bir16a, Thm. 1.7])

Given d ∈ N and a finite set R ⊂ [0, 1] ∩Q, there exists m ∈ N with the following

property. If (X,B) is any log canonical, projective pair, where

(4.4.1) X is of Fano type and dimX = d,

(4.4.2) the coefficients of B are of the form `−r
`

, for r ∈ R and ` ∈ N,

(4.4.3) −(KX +B) is nef,

then there exists an m-complement B+ of KX +B that satisfies B+ ≥ B. The divisor B+

is also an (m · `)-complement, for every ` ∈ N.

Remark 4.5 (Complements give sections). — Given a pair (X,B) as in Theorem 4.4 and

a number ` ∈ N such that (m`) ·B is integral, then m` · bBc+ b(m`+ 1) · {B}c ≥ m` ·B,

and Remark 4.2 implies that h0
(
X, OX(−m` · (KX +B))

)
> 0.
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4.2. Idea of application

We aim to show Theorem 1.2: under suitable assumptions on the singularities the

family of Fano varieties is bounded. The proof relies on the following boundedness

criterion of Hacon and Xu that we quote without proof (but see Sections 1.1.1 and 1.1.2

for a brief discussion). Recall that a set of numbers is DCC if every strictly descending

sequence of elements eventually terminates.

Theorem 4.6 (Boundedness criterion, [HX15, Thm. 1.3]). — Given d ∈ N and a DCC

set I ⊂ [0, 1] ∩ Q, let Yd,I be the family of pairs (X,B) such that the following holds

true.

(4.6.1) The pair (X,B) is projective, klt, and of dimension dimCX = d.

(4.6.2) The coefficients of B are contained in I. The divisor B is big and KX +B ∼Q 0.

Then, the family Yd,I is bounded.

With the boundedness criterion in place, the following observation relates “bounded-

ness of complements” to “boundedness of Fanos” and explains what pieces are missing

in order to obtain a full proof.

Observation 4.7. — Given d ∈ N and ε ∈ R+, Theorem 4.4 gives a number m ∈ N
such that every ε-lc Fano variety X with −KX nef admits an effective complement B+

of KX = KX + 0, with coefficients in the set { 1
m
, 2
m
, . . . , m

m
}. If one could in addition

always choose B+ so that (X,B+) was klt rather than merely lc, then Theorem 4.6

would immediately apply to show that the family of ε-lc Fano varieties with −KX nef is

bounded.

As an important step towards boundedness of ε-lc Fanos, we will see in Section 5 how

the theorem on “effective birationality” together with Theorem 4.6 and Observation 4.7

can be used to find a boundedness criterion (=Proposition 5.3 on page 17) that applies

to a relevant class of klt, weak Fano varieties.

4.3. Variants and generalisations

Theorem 4.4 is in fact part of a much larger package, including boundedness of

complements in the relative setting, [Bir16a, Thm. 1.8], and boundedness of complements

for generalised polarised pairs, [Bir16a, Thm. 1.10]. To keep this survey reasonably

short, we do not discuss these results here, even though they are of independent interest,

and play a role in the proofs of Theorems 4.4 and 1.2.

4.4. Idea of proof for Theorem 4.4

We sketch a proof of “boundedness of complements”, following [Bir16a, p. 6ff] in

broad strokes, and filling in some details now and then. In essence, the proof works by

induction over the dimension, so assume that d is given and that everything was already

shown for varieties of lower dimension.
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Simplification. — Theorem 4.4 considers a finite set R ⊂ [0, 1] ∩Q, and log canonical

pairs (X,B), where the coefficients of B are contained in the set

Φ(R) :=
{
`−r
`
| r ∈ R and ` ∈ N

}
.

The set Φ(R) is infinite, and has 1 ∈ Q as its only accumulation point. Birkar shows that

it suffices to treat the case where the coefficient set is finite. To this end, he constructs

in [Bir16a, Prop. 2.49 and Constr. 6.13] a number ε′ � 1 and shows that it suffices to

consider pairs with coefficients in the finite set Φ(R)∩ [0, 1− ε′]∪{1}. In fact, given any

(X,B), he considers the divisor B′ obtained by replacing those coefficients on B that

lie in the range (1− ε′, 1) with 1. Next, he constructs a birational model (X ′′, B′′) of

(X,B′) that satisfies all assumptions Theorem 4.4. His construction guarantees that to

find an n-complement for (X,B) it is equivalent to find an n-complement for (X ′′, B′′).

Among other things, the proof involves carefully constructed runs of the Minimal Model

Programme, Hacon–McKernan–Xu’s local and global ACC for log canonical thresholds

[HMX14, Thms. 1.1 and 1.5], and the extension of these results to generalised pairs

[BZ16, Thm. 1.5 and 1.6].

Remark 4.8. — Recall from Remark 2.15 that Assumption (4.4.1) (“X is of Fano type”)

allows us to run Minimal Model Programmes on arbitrary divisors.

Along similar lines, Birkar is able to modify (X ′′, B′′) by further birational transfor-

mation, and eventually proves that it suffices to show boundedness of complements for

pairs that satisfy the following additional assumptions.

Assumption 4.9. — The coefficient set of (X,B) is contained in R rather than in Φ(R),

and one of the following holds true.

(4.9.1) The divisor −(KX + B) is nef and big, and B has a component S with

coefficient 1 that is of Fano type.

(4.9.2) There exists a fibration f : X → T and KX +B ≡ 0 along that fibration.

(4.9.3) The pair (X,B) is exceptional.

Commentary. — The main distinction is between Case (4.9.3) and Case (4.9.1). In fact,

if (X,B) is not exceptional, recall from Definition 2.17 that there exists an effective

P ∈ RDiv(X) such that KX +B + P ∼R 0 and such that (X,B + P ) is not klt. This

allows us to find a birational model whose boundary contains a divisor with multiplicity

one. Case (4.9.2) comes up if the runs of the Minimal Model Programmes used in the

construction of birational models terminates with a Kodaira fibre space.

The three cases (4.9.1)–(4.9.3) require very different inductive treatments.
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Case (4.9.1). — We consider only the simple case where S = bBc is a normal prime

divisor, where (X,B) is plt near S and where −(KX + B) is ample. Setting BS :=

(KX +B)|S−KS, the coefficients are contained in a finite set R′ of rational numbers that

depends only on R and on d. In summary, the pair (S,BS) reproduces the assumptions

of Theorem 4.4, and by induction we obtain a number n ∈ N that depends only on R
and d, such that

(4.9.4) the divisor n ·BS is integral, and

(4.9.5) there exists an n-complement B+
S of KS +BS.

Following [Bir16a, Prop. 6.7], we aim to extend B+
S from S to a complement B+ of

KX +B on X. As we saw in in Remark 4.5, Item (4.9.4) guarantees that n · (B+
S −BS)

is effective, so that the complement B+
S gives rise to a section in

H0
(
S, n · (B+

S −BS)
)

= H0
(
S, −n · (KS +BS)

)
But then, looking at the cohomology of the standard ideal sheaf sequence,

H0
(
X, −n · (KX +B)

)
→ H0

(
S, −n · (KX +B)|S

)︸ ︷︷ ︸
6=0 by Rem. 4.5

→ H1
(
X, −n · (KX +B)− S

)︸ ︷︷ ︸
=0 by Kawamata–Viehweg vanishing

we find that the section extends to X and defines an associated divisor B+ ∈
|−(KX +B)|Q. Using the connectedness principle for non-klt centres(3), one argues that

B+ is the desired complement.

Case (4.9.2). — Given a fibration f : X → T , we apply the construction of Section 3.3,

in order to equip the base variety T with the structure of a generalised polarised pair

(T,B +M), with data T ′
ϕ→ T → SpecC and M ′.

Adding to the results explained in Section 3.3, Birkar shows that the coefficients of B

and M are not arbitrary. The coefficients of B are in Φ(S) for some fixed finite set S
of rational numbers that depends only on R and d. Along similar lines, there exists a

bounded number p ∈ N such that p ·M is integral. The plan is now to use induction to

find a bounded complement for KT +B +M and pull it back to X. This plan works

out well, but requires us to formulate and prove all results pertaining to boundedness of

complements in the setting of generalised polarised pairs. All the arguments sketched

here continue to work, mutatis mutandis, but the level of technical difficulty increases

substantially.

Case (4.9.3). — There is little that we can say in brief about this case. Still, assume for

simplicity that B = 0 and that X is a Fano variety. If we could show that X belongs to

a bounded family, then we would be done. Actually we need something weaker: effective

birationality. Assume we have already proved Theorem 5.1. Then there is a bounded

number m ∈ N such that |−mKX | defines a birational map. Pick M ∈ |−mKX | and let

B+ := 1
m
·M . Since X is exceptional, (X,B+) is automatically klt, hence KX +B+ is

an m-complement.

(3)For generalised pairs, this is [Bir16a, Lem. 2.14]



1157–17

Although this gives some idea of how one may get a bounded complement but in

practice we cannot give a complete proof of Theorem 5.1 before proving Theorem 4.4.

Contrary to the exposition of this survey paper, where “boundedness of complements”

and “effective birationality” are treated as if they were separate, the proofs of the two

theorems are in fact much intertwined, and this is one of the main points where they

come together. Many of the results discussed in this overview (“Bound on anti-canonical

volumes”, “Bound on lc thresholds”) have separate proofs in the exceptional case.

5. EFFECTIVE BIRATIONALITY

5.1. Statement of result

The second main ingredient in Birkar’s proof of boundedness is the following result.

A proof is sketched in Section 4.4 on page 14.

Theorem 5.1 (Effective birationality, [Bir16a, Thm. 1.2]). — Given d ∈ N and ε ∈ R+,

there exists m ∈ N with the following property. If X is any ε-lc weak Fano variety of

dimension d, then |−m ·KX | defines a birational map.

Remark 5.2. — The divisors m ·KX in Theorem 5.1 need not be Cartier. The linear

system |−m ·KX | is the space of effective Weil divisors on X that are linearly equivalent

to −m ·KX .

5.2. Idea of application

In the framework of [Bir16a], effective birationality is used to improve the boundedness

criterion spelled out in Theorem 4.6 above.

Proposition 5.3 (Boundedness criterion, [Bir16a, Prop. 7.13])

Let d, v ∈ N and let (t`)`∈N be a sequence of positive real numbers. Let X be the

family of projective varieties X with the following properties.

(5.3.1) The variety X is a klt weak Fano variety of dimension d.

(5.3.2) The volume of the canonical class is bounded, vol(−KX) ≤ v.

(5.3.3) For every ` ∈ N and every L ∈ |−` ·KX |, the pair (X, t` · L) is klt.

Then, X is a bounded family.

Remark 5.4. — The formulation of Proposition 5.3 is meant to illustrate the application

of Theorem 5.1 to the boundedness problem. It is a simplified version of Birkar’s formu-

lation and defies the logic of his work. While we present Proposition 5.3 as a corollary

to Theorem 5.1, and to all the results mentioned in Section 4, Birkar uses [Bir16a,

Prop. 7.13] as one step in the inductive proof of “boundedness of complements” and

“effective birationality”. That requires him to explicitly list partial cases of “boundedness

of complements” and “effective birationality” as assumptions to the proposition, and

makes the formulation more involved.
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Remark 5.5. — Proposition 5.3 reduces the boundedness problem to solving the following

two problems.

– Boundedness of volumes, as required in (5.3.2). This is covered in the subsequent

Section 6.

– Existence of numbers t`, as required in (5.3.3). This amounts to bounding “lc

thresholds” and is covered in Section 7.

To prove Proposition 5.3, Birkar uses effective birationality in the following form, as

a log birational boundedness result.

Proposition 5.6 (Log birational boundedness of certain pairs, [Bir16a, Prop. 4.4])

Given d, v ∈ N and ε ∈ R+. Then, there exists c ∈ R+ and a bounded family P of

couples with the following property. If X is a normal projective variety of dimension d

and if B ∈ RDiv(X) and M ∈ QDiv(X) are divisors such that the following holds,

(5.6.1) the divisor B is effective, with coefficients in {0} ∪ [ε,∞),

(5.6.2) the divisor M is effective, nef and |M | defines a birational map,

(5.6.3) the difference M − (KX +B) is pseudo-effective,

(5.6.4) the volume of M is bounded, vol(M) < v,

(5.6.5) if D is any component of M , then multD(B +M) ≥ 1,

then there exists a log smooth couple (X ′,Σ) ∈ P, a rational map X 99K X and a

resolution of singularities r : X̃ → X, with the following properties.

(5.6.6) The divisor Σ contains the birational transform on M , as well as the exceptional

divisor of the birational map β.

(5.6.7) The movable part AX̃ of r∗M is basepoint free.

(5.6.8) If X̃ ′ is any resolution of X that factors via X ′ and X̃,

X̃ ′

s, resolution
��

β̃, birational // X̃

r, resolution
��

X ′
β, birational

// X

then the coefficients of the Q-divisor s∗(r ◦ β̃)∗M are at most c and β̃∗AX̃ is

linearly equivalent to zero relative to X ′.

Sketch of proof for Proposition 5.6, following [Bir16a, p. 42]. — Since |M | defines a bi-

rational map, there exists a resolution r : X̃ → X such that r∗M decomposes as the

sum of a base point free movable part AX̃ and fixed part RX̃ . The contraction X → X ′′

defined by AX̃ is birational. Since vol(M) is bounded, the varieties X ′′ obtained in

this way are all members of one bounded family P ′. The family P ′ is however not yet

the desired family P , and the varieties in P ′ are not yet equipped with an appropriate

boundary. To this end, one needs to invoke a criterion of Hacon–McKernan–Xu for “log

birationally boundedness”, [HMX13, Lem. 2.4.2(4)], and take an appropriate resolution

of the elements in P ′.
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Sketch of proof for Proposition 5.3, following [Bir16a, p. 80]. — Applying Theo-

rems 4.4 (“Boundedness of complements”) and 5.1 (“Effective birationality”), we

find a number m ∈ N such that every X ∈ X admits an m-complement for KX and

that |−m ·KX | defines a birational map. If m-complements B+ of KX could always

be chosen such that (X,B+) were klt, we have seen in Observation 4.7 that X is

bounded. However, Theorem 4.4 guarantees only the existence of an m-complement B+

of KX where (X,B+) is lc. Using the bounded family P obtained when applying

Proposition 5.6 with M = −m ·KX and B = 0, we aim to find a universal constant `

and a finite set R, and then perturb any given (X,B+) in order to find a boundary B++

with coefficients in R that is Q-linearly equivalent to −KX and makes (X,B++) klt.

Boundedness will then again follow from Theorem 4.6.

To spell out a few more details of the proof use boundedness of the family P to infer

the existence of a universal constant ` with the following property.

If (X ′,Σ) ∈ P and if AX′ ∈ Div(X ′) is contained in Σ with coefficients

bounded by c, and if |AX′ | is basepoint free and defines a birational morphism,

then there exists GX′ ∈ |` · AX′| whose support contains Σ.

Now assume that one X ∈ X is given. It suffices to consider the case where X

is Q-factorial and admits an m-complement of the form B+ = 1
m
· M , for general

M ∈ |−m ·KX |. To make use of `, consider a diagram as discussed in Item (5.6.8) of

Proposition 5.6 above and decompose r∗M = AX̃ + RX̃ into its moving and its fixed

part. Write A := r∗AX̃ and R := r∗RX̃ . Item (5.6.6) of Proposition 5.6 implies that

the divisor AX′ := s∗β̃
∗AX̃ is then contained in Σ, and Item (5.6.8) asserts that it is

basepoint free, defines a birational morphism. So, we find GX′ ∈ |` · AX′| as above.

Writing G := r∗β̃∗s
∗GX′ , we find that G+ ` ·R ∈ |−m` ·KX |, so that (X, tm`G) is klt

by assumption. We may assume that tm` is rational and tm` <
1
m`

. If (X, 1
m`

(G+ ` ·R))

is lc, then set B′ := 1
m`

(G+ ` ·R). Otherwise, one needs to use the lower-dimensional

versions of the variants and generalisations of boundedness of complements that we

discussed in Section 4.3 above. To be more precise, using

(5.6.9) boundedness of complements for generalised polarised pairs for varieties of

dimension ≤ d− 1, and

(5.6.10) boundedness of complements in the relative setting for varieties of dimension d,

one can always find a universal number n and B′ ≥ tm` · (G+ ` ·R) where (X,B′) is lc

and n · (KX +B′) ∼ 0. Finally, set

B++ :=
1

2
·B+ +

t

2m
· A− t

2m`
·G+

1

2
·B′

and then show by direct computation that all required properties hold.

5.3. Preparation for the proof of Theorem 5.1

We prepare for the proof with the following proposition. In essence, it asserts that

effective divisors with “degree” bounded from above cannot have too small lc thresholds,

under appropriate assumptions. Since this proposition may look plausible, we do not go
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into details of the proof. Further below, Proposition 7.3 gives a substantially stronger

result whose proof is sketched in some detail.

Proposition 5.7 (Singularities in bounded families, [Bir16a, Prop. 4.2])

Given ε′ ∈ R+ and given a bounded family P of couples, there exists a number

δ ∈ R>0 such that the following holds. Given the the following data,

(5.7.1) an ε′-lc, projective pair (Ĝ, B̂),

(5.7.2) a reduced divisor T ∈ Div(Ĝ) such that
(
Ĝ, supp(B̂ + T )

)
∈ P, and

(5.7.3) an R-divisor N̂ whose support is contained in T , and whose coefficients have

absolute values ≤ δ,

then (Ĝ, B̂ + L̂) is klt, for all L̂ ∈ |N̂ |R.

5.4. Sketch of proof of Theorem 5.1

Assume that numbers d and ε are given. Given an ε-lc Fano variety X of dimension d,

we will be interested in the following two main invariants,

mX := min{m′ ∈ N | the linear system |−m′ ·KX | defines a birational map }
nX := min{ n′ ∈ N | vol(−n′ ·KX) ≥ (2d)d }

Eventually, it will turn out that both numbers are bounded from above. Our aim here

is to bound the numbers mX by a constant that depends only on d and ε.

Bounding the quotient

Following [Bir16a], we will first find an upper bound for the quotients mX/nX by a

number that depends only on d and ε.

5.4.1. Construction of non-klt centres. — In the situation at hand, a standard method

(“tie breaking”) allows us to find dominating families of non-klt centres; we refer to

[Kol97, Sect. 6] for an elementary discussion, but see also [Bir16a, Sect. 2.31]. Given an

ε-lc Fano variety X of dimension d, and using the assumption that vol(−nX ·KX) ≥ (2d)d,

the following has been shown by Hacon, McKernan and Xu.

Claim 5.8 (Dominating family of non-klt centres, [HMX14, Lem. 7.1])

Given any ε-lc Fano variety X, there exists a dominating family GX of subvarieties

in X with the following property. If (x, y) ∈ X ×X is any general tuple of points, then

there exists a divisor ∆ ∈ |−(nX + 1) ·KX |R such that the following holds.

(5.8.1) The pair (X,∆) is not klt at y.

(5.8.2) The pair (X,∆) is lc near x with a unique non-klt place. The associated non-klt

centre is a subvariety of the family GX .

Given X, we may assume that the members of the families GX all have the same

dimension, and that this dimension is minimal among all families of subvarieties that

satisfy (5.8.1) and (5.8.2).
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5.4.2. The case of isolated centres. — If X is given such that the members of GX are

points, then the elements are isolated non-klt centres. Given G ∈ GX , standard vanishing

theorems for multiplier ideals will then show surjectivity of the restriction maps

H0
(
X, OX(KX + ∆)

)
→ H0

(
G, OX(KX + ∆)|G

)︸ ︷︷ ︸
∼=C

.

In particular, we find that OX(KX + ∆) ∼= OX(−nX · KX) has non-trivial sections.

Further investigation reveals that a bounded multiple of −nX ·KX will in fact give a

birational map.

5.4.3. Non-isolated centres. — It remains to consider varieties X where the members

of GX are positive-dimensional. Following [Bir16a, proofs of Prop. 4.6 and 4.8], we trace

the arguments for that case in very rough strokes, ignoring all of the (many) subtleties

along the way. The main observation to handle this case is the following volume bound.

Claim 5.9 (Volume bound, [Bir16a, Step 3 on p. 48]). — There exists a number v ∈ R+

that depends only on d and ε, such that for all X and all positive-dimensional G ∈ GX ,

we have vol(−mX ·KX |G) < v.

Idea of proof for Claim 5.9. — Going back and looking at the construction of non-klt

centres (that is, the detailed proof of Claim 5.8), one finds that the construction can

be improved to provide families of lower-dimension centres if only the volumes are big

enough. But this collides with our assumption that the varieties in GX were of minimal

dimension. (Claim 5.9)

To make use of Claim 5.9, look at one X where the members of GX are positive-

dimensional. Choose a general divisor(4) M ∈ |−mX ·KX |, and let (x, y) ∈ X ×X be a

general tuple of points with associated centre G ∈ GX . Since G is a non-klt centre that

has a unique place over it, adjunction (and inversion of adjunction) works rather well.

Together with the bound on volumes, this allows us to define a natural boundary B̂ on

a suitable birational modification Ĝ of the normalisation of G, such that the following

holds.

(5.10.1) The pair (Ĝ, B̂) is ε′-lc, for some controllable number ε′.

(5.10.2) Writing E for the exceptional divisor of Ĝ → G and T := (B̂ + E)red, the

couple
(
Ĝ, supp(B̂ + T )

)
belongs to a bounded family P that in turn depends

only on the numbers d and ε.

(5.10.3) The pull-back of M to Ĝ has support in supp(B̂ + T ).

(4)the divisor M should really be taken as the movable part, but we ignore this detail.
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5.4.4. End of proof. — The idea now is of course to apply Proposition 5.7, using the

family P . Arguing by contradiction, we assume that the numbers mX/nX are unbounded.

We can then find one X where nX/mX is really quite small when compared to the

number δ given by Proposition 5.7. In fact, taking N̂ as the pull-back of nX

mX
·M , it is

possible to guarantee that the coefficients of N̂ are smaller than δ.

Intertwining this proof with the proof of “boundedness of complements”, we may

use a partial result from that proof, and find L ∈ |−nX ·KX |Q, whose coefficients are

≥ 1. Since the points (x, y) ∈ X × X were chosen generically, the pull-back L̂ of L

to Ĝ has coefficients ≥ 1, and can therefore never appear in the boundary of a klt

pair. But then, L̂ ∈ |N̂ |R, which contradicts Proposition 5.7 and ends the proof. In

summary, we were able to bound the quotient mX/nX by a constant that depends only

on d and ε. (Boundedness of quotients)

Bounding the numbers mX

Finally, we still need to bound mX . This can be done by arguing that the volumes

vol(−mX ·KX) are bounded from above, and then use the same set of ideas discussed

above, using X instead of a birational model Ĝ of its subvariety G. Since some of the

core ideas that go into boundedness of volumes are discussed in more detail in the

following Section 6 below, we do not go into any details here.

6. BOUNDS FOR VOLUMES

6.1. Statement of result

Once Theorem 1.2 (“Boundedness of Fanos”) is shown, the volumes of anticanonical

divisors of ε-lc Fano varieties of any given dimension will clearly be bounded. Here,

we discuss a weaker result, proving boundedness of volumes for Fanos of dimension d,

assuming boundedness of Fanos in dimension d− 1.

Theorem 6.1 (Bound on volumes, [Bir16a, Thm. 1.6]). — Given d ∈ N and ε ∈ R+,

if the ε-lc Fano varieties of dimension d − 1 form a bounded family, then there is a

number v such that vol(−KX) ≤ v, for all ε-lc weak Fano varieties X of dimension d

6.2. Idea of application

We have seen in Section 5.2 how to obtain boundedness criteria for families of varieties

from boundedness of volumes. This makes Theorem 6.1 a key step in the inductive

proof of Theorem 1.2.
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6.3. Idea of proof for boundedness of volumes, following [Bir16a, Sect. 9]

To illustrate the core idea of proof, we consider only the simplest cases and make

numerous simplifying assumptions, no matter how unrealistic. The assumption that ε-lc

Fano varieties of dimension d− 1 form a bounded family will be used in the following

form.

Lemma 6.2 (Consequence of boundedness, [Bir16a, Lem. 2.22])

There exists a finite set I ⊂ R with the following property. If X is an ε-lc Fano

variety of dimension d− 1, if r ∈ R≥1 and if D is any non-zero integral divisor on X

such that KX + r ·D ≡ 0, then r ∈ I.

We argue by contradiction and assume that there exists a sequence (Xi)i∈N of ε-lc

weak Fanos of dimension d such that the sequence of volumes is strictly increasing, with

lim vol(Xi) =∞. For simplicity of the argument, assume that all Xi are Fanos rather

than weak Fanos, and that they are Q-factorial. For the general case, one needs to

consider the maps defined by multiples of −KX and take small Q-factorialisations.

Choose a rational ε′ in the interval (0, ε). Using explicit discrepancy computations of

boundaries of the form 1
N
·B′i, for B′i ∈ |−N ·KXi

| general, [KM98, Cor. 2.32], we find a

decreasing sequence (ai)i∈N of rationals, with lim ai = 0, and boundaries Bi ∈ QDiv(Xi)

with the following properties.

(6.2.1) For each i, the divisor Bi is Q-linearly equivalent to −ai ·KXi
.

(6.2.2) The volumes of the Bi are bounded from below, (2d)d < vol(Bi).

(6.2.3) The pair (Xi, Bi) has total log discrepancy equal to ε′.

Passing to a subsequence, we may assume that ai < 1 for every i. Again, discrepancy

computation show that this allows us to find sufficiently general, ample Hi ∈ QDiv(Xi)

that are Q-linearly equivalent to −(1− ai) ·KXi
and have the property that (X,Bi +Hi)

are still ε′-lc.

Given any index i, Item (6.2.3) implies that there exists a prime divisor D′i on a

birational model X ′i that realises the total log discrepancy. For simplicity, consider only

the case where one can choose Xi = X ′i for every i, and therefore find prime divisors Di

on Xi that appear in Bi with multiplicity 1− ε′. Without that simplifying assumption

one needs to invoke [BCHM10, Cor. 1.4.3], in order to replace the variety Xi by a model

that “extracts” the divisor D′i. In summary, we can write

(6.2.4) −KXi
∼Q

1

ai
·Bi =

1− ε′

ai
·Di + (effective).

As a next step, recall from Remark 2.15 that the Xi are Mori dream spaces. Given

any i, we can therefore run the −Di-MMP, which terminates with a Mori fibre space

on which the push-forward of Di is relatively ample. Again, we ignore all technical

difficulties and assume that Xi itself is the Mori fibre space, and therefore admits a

fibration Xi → Zi with relative Picard number ρ(Xi/Zi) = 1 such that Di is relatively

ample. Let Fi ⊆ Xi be a general fibre. Adjunction and standard inequalities for

discrepancies imply that Fi is again ε-lc and Fano. The statement about the relative
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Picard number implies that any effective divisor on Xi is either trivial or ample on Fi.

In particular, Equation 6.2.4 implies that −KFi
≡ si ·Di, where si ≥ 1−ε′

ai
goes to infinity.

If dimFi = d − 1, or more generally if dimFi < d for infinitely many indices i, this

contradicts Lemma 6.2 and therefore proves Theorem 6.1.

It remains to consider the case where the Zi are points. Birkar’s proof in this case is

similar in spirit to the argumentation above, but technically much more demanding. He

creates a covering family of non-klt centres, uses adjunction on these centres and the

assumption that ε-lc Fano varieties of dimension d− 1 form a bounded family to obtain

a contradiction.

7. BOUNDS FOR LC THRESHOLDS

The last of Birkar’s core results presented here pertains to log canonical thresholds

of anti-canonical systems; this is the main result of Birkar’s second paper [Bir16b]. It

gives a positive answer to a well-known conjecture of Ambro [Amb16, p. 4419]. With

the notation introduced in Section 2.3, the result is formulated as follows.

Theorem 7.1 (Lower bound for lc thresholds, [Bir16b, Thm. 1.4])

Given d ∈ N and ε ∈ R+, there exists t ∈ R+ with the following property. If (X,B)

is any projective ε-lc pair of dimension d and if ∆ := −(KX +B) is nef and big, then

lct
(
X, B, |∆|R

)
≥ t.

Though this is not exactly obvious, Theorem 7.1 can be derived from boundedness of

ε-lc Fanos, Theorem 1.2. One of the core ideas in Birkar’s paper [Bir16b] is to go the

other way and prove Theorem 7.1 using boundedness, but only for toric Fano varieties,

where the result has been established by Borisov–Borisov in [BB92].

7.1. Idea of application

As pointed out in Section 5.2, bounding lc thresholds from below immediately applies

to the boundedness problem. To illustration the application, consider the following

corollary, which proves Theorem 1.2 in part.

Corollary 7.2 (Boundedness of ε-lc Fanos). — Given d ∈ N and ε ∈ R+, the family

X Fano
d,ε of ε-lc Fanos of dimension d is bounded.

Proof. — We aim to apply Proposition 5.3 to the family X Fano
d,ε . With Theorem 6.1

(“Bound on volumes”) in place, it remains to satisfy Condition (5.3.3) of Proposition 5.3:

we need a sequence (t`)`∈N such that the following holds.

For every ` ∈ N, for every X ∈ X Fano
d,ε and every L ∈ |−` ·KX |, the pair

(X, t` · L) is klt.
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But this is not so hard anymore. Let t ∈ R+ be the number obtained by applying

Theorem 7.1. Given a number ` ∈ N, a variety X ∈ X Fano
d,ε and a divisor L ∈ |−` ·KX |,

observe that 1
`
· L ∈ |−KX |R and recall from Remark 2.10 on page 8 that (X, t

2`
· L) is

klt. We can thus set t` := t
2`

.

7.2. Preparation for the proof of Theorem 7.1: R-linear systems of bounded

degrees

To prepare for the proof of Theorem 7.1, we begin with a seemingly weaker result

that provides bounds for lc thresholds, but only for R-linear systems of bounded degrees.

This result will be used in Section 7.4 to prove Theorem 7.1 in an inductive manner.

Proposition 7.3 (LC thresholds for R-linear systems of bounded degrees, [Bir16b,

Thm. 1.6])

Given d, r ∈ N and ε ∈ R+, there exists t ∈ R+ with the following property. If

(X,B) is any projective, ε-lc pair of dimension d, if A ∈ Div(X) is very ample with

A−B ample and [A]d ≤ r, then lct
(
X, B, |A|R

)
≥ t.

Remark 7.4. — The condition on the intersection number, [A]d ≤ r implies that X

belongs to a bounded family of varieties. More generally, if we choose A general in its

linear system, then (X,A) belongs to a bounded family of pairs.

The proof of Proposition 7.3 is sketched below. It relies on two core ingredients.

Because of their independent interest, we formulate them separately.

Setting 7.5. — Given d, r ∈ N and ε ∈ R+, we consider projective, ε-lc pairs (X,B) of

dimension d where X is Q-factorial, equipped with the following additional data.

(7.5.1) A very ample divisor A ∈ Div(X), with A−B ample and [A]d ≤ r.

(7.5.2) An effective divisor L ∈ RDiv(X), with A− L ample.

(7.5.3) A birational morphism ν : Y → X of normal projective varieties, and a prime

divisor T ∈ Div(Y ) whose image is a point x ∈ X.

Lemma 7.6 (Existence of complements, [Bir16b, Prop. 5.9])

Given d, r ∈ N and ε ∈ R+, assume that Proposition 7.3 holds for varieties of

dimension d − 1. Then, there exist integers n, m ∈ N and a real number 0 < ε′ < ε,

with the following property. Whenever we are in Setting 7.5, and whenever there exists

a number t < r such that

(7.6.1) the pair (X,B + t · L) is ε′-lc, and

(7.6.2) the log discrepancy is realised by T , that is alog(T,X,B + t · L) = ε′,

Then there exists an effective divisor ∧ ∈ QDiv(X) such that

(7.6.3) the divisor n · ∧ is integral,

(7.6.4) the tuple (X,∧) is lc near x, and T is an lc place of (X,∧), and

(7.6.5) the divisor m · A− ∧ is ample.
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Commentary. — Lemma 7.6 is another existence-and-boundedness result for comple-

ments, very much in the spirit of what we have seen in Section 4. The relation to

complements is made precise in [Bir16b, Thm. 1.7], which is a core ingredient in Birkar’s

proof. In fact, after some birational modification of Y , Birkar finds a divisor ∧Y ∈ Div(Y )

such that (Y,∧Y ) is lc near T and such that n · (KY + ∧Y ) is linearly equivalent to 0,

relative to X and for some bounded number n ∈ N. As Birkar points out in [Bir18,

p. 16], one can think of KY +∧Y as a local-global type of complement. He then takes ∧
to be the push-forward of ∧Y and proves all required properties.

Lemma 7.7 (Bound on multiplicity at an lc place, [Bir16b, Prop. 5.7])

Given d, r and n ∈ N and ε ∈ R+, assume that Proposition 7.3 holds for varieties of

dimension ≤ d− 1. Then, there exists q ∈ R+, with the following property. Whenever

we are in Setting 7.5, whenever a(T,X,B) ≤ 1, and whenever a divisor ∧ ∈ QDiv(X)

is given that satisfies the following conditions,

(7.7.1) ∧ is effective and n · ∧ is integral,

(7.7.2) A− ∧ is ample,

(7.7.3) (X,∧) is lc near x, and T is an lc place of (X,∧),

then T appears in the divisor ν∗L with multiplicity multT ν
∗L ≤ q.

Commentary. — Lemma 7.7 is perhaps the core of Birkar’s paper [Bir16b]. To begin,

one needs to realise that the couples
(
X, supp(∧)

)
that appear in Lemma 7.7 come

from a bounded family. This allows us to consider common resolution, and eventually

to assume from the outset that (X,∧) is a log-smooth couple. In particular, (X,∧) is

toroidal, and T can be obtained by a sequence of blowing ups that are toroidal with

respect to (X,∧). Given that toroidal blow-ups are rather well understood, Birkar finds

that to bound the multiplicity multT ν
∗L, it suffices to bound the number of blowups

involved.

Bounding the number of blowups is hard, and the next few sentences simplify a very

complicated argument to the extreme(5). Birkar establishes a Noether-normalisation

theorem, showing that he may replace the couple (X,∧), which is log-smooth, by a

pair of the form (Pd, union of hyperplanes), which is toric rather than toroidal. Better

still, applying surgery coming from the Minimal Model Programme, he is then able

to replace Y by a toric, Fano, ε-lc variety. But the family of such Y is bounded by

the classic result of Borisov–Borisov, [BB92], and a bound for the number of blowups

follows.

Sketch of proof for Proposition 7.3. — The proof of Proposition 7.3 proceeds by induc-

tion, so assume that d, r, and ε are given and that everything was already shown in

lower dimensions. Now, given a d-dimensional pair (X,B) and a very ample A ∈ Div(X)

as in Proposition 7.3, we aim to apply Lemma 7.6 and 7.7. This is, however, not

immediately possible because X need not be Q-factorial. We know from minimal model

(5)see [Bir18, p. 16f] and [Xu18, Sect. 10] for a more realistic account of all that is involved.
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theory that there exists a small Q-factorialisation, say X ′ → X, but then we need to

compare lc thresholds of X ′ and X, and show that the difference is bounded. To this

end, recall from Remark 7.4 that the family of all possible X is bounded, which allows

us to construct simultaneous Q-factorialisations in stratified families, and hence gives

the desired bound for the differences. Bottom line: we may assume that X is Q-factorial.

Let ε′ be the number given by Lemma 7.6.

Next, given any divisor L ∈ |A|R, look at

s := sup{s′ ∈ R | (X,B + s′ · L) is ε′-lc}.

Following Remark 2.10, we would be done if we could bound s from below, independently

of X, B, A and L. To this end, choose a resolution of singularities, ν : Y → X and a

prime divisor T ∈ Div(Y ) such that alog(T,X,B + s · L) = ε′. For simplicity, we will

only consider the case where ν(T ) is a point, say x ∈ X — if ν(T ) is not a point, Birkar

cuts down with general hyperplanes from |A|, uses inversion of adjunction and invokes

the induction hypothesis in order to proceed.

In summary, we are now in a situation where we may apply Lemma 7.6 (“Existence

of complements”) to find a divisor ∧ and then Lemma 7.7 (“Bound on multiplicity at

an lc place”) to bound the multiplicity multT ν
∗L from above, independently of X, B,

A and L. But then, a look at Definition 2.7 (“log discrepancy”) shows that this already

gives the desired bound on s.

7.3. Preparation for the proof of Theorem 7.1: varieties of Picard-number

one

The second main ingredient in the proof of Theorem 7.1 is the following result, which

essentially proves Theorem 7.1 in one special case. Its proof, which we do not cover

in detail, combines all results discussed in the previous Sections 4–6: boundedness of

complements, effective birationality and bounds for volumes.

Proposition 7.8 (Theorem 7.1 in a special case, [Bir16b, Prop 3.1])

Given d ∈ N and ε ∈ R+, assume that Proposition 7.3 (“LC thresholds for R-

linear systems of bounded degrees”) holds in dimension ≤ d and that Theorem 1.2

(“Boundedness of ε-lc Fanos”) holds in dimension ≤ d− 1. Then, there exists v ∈ R+

such that the following holds. If X is any Q-factorial, ε-lc Fano variety of dimension d

of Picard number one, and if L ∈ RDiv(X) is effective with L ∼R −KX , then each

coefficient of L is less than or equal to v.

7.4. Sketch of proof of Theorem 7.1

Like other statements, Theorem 7.1 is shown using induction over the dimension. The

following key lemma provides the induction step.

Lemma 7.9 (Implication Proposition 7.3 ⇒ Theorem 7.1, [Bir16b, Lem. 3.2])

Given d ∈ N, assume that Proposition 7.3 (“LC thresholds for R-linear systems

of bounded degrees”) holds in dimension ≤ d and that Theorem 1.2 (“Boundedness of
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ε-lc Fanos”) holds in dimension ≤ d − 1. Then, Theorem 7.1 (“Lower bound for lc

thresholds”) holds in dimension d.

Sketch of proof following [Bir16b, p. 13f]. — The first steps in the proof are similar to

the proof of Proposition 7.3. Choose any number ε′ ∈ (0, ε). Given any projective,

d-dimension, ε-lc pair (X,B) be as in Theorem 7.1 in dimension d and any divisor

L ∈ |∆|R, let s be the largest number such that (X,B+ s ·L) is ε′-lc. We need to show s

is bounded from below away from zero. In particular, we may assume that s < 1. As in

the proof of Proposition 7.3, we may also assume X is Q-factorial. There is a birational

modification ϕ : Y → X and a prime divisor T ∈ Div(Y ) with log discrepancy

(7.9.1) alog(T,X,B + s · L) = ε′.

Techniques of [BCHM10] (“extracting a divisor”) allow us to assume that ϕ is either

the identity, or that the ϕ-exceptional set equals T precisely. The assumption that X is

Q-factorial allows us to pull back divisors. Let

BY := ϕ∗(KX +B)−KY and LY := ϕ∗L.

Using the definition of log discrepancy, Definition 2.7 on page 7, the assumption that

(X,B) is ε-lc and Equation (7.9.1) are formulated in terms of divisor multiplicities as

multT BY ≤ 1− ε and multT (BY + s · LY ) = 1− ε′,

hence multT (s · LY ) ≥ ε− ε′.
The pair (Y,BY + s ·LY ) is klt and weak log Fano, which implies that Y is Fano type.

Recalling from Remark 2.15 on page 9 that Y is thus a Mori dream space, we may run

a (−T )-Minimal Model Programme and obtain rational maps,

Y
α, extr. contractions and flips // Y ′

β, Mori fibre space // Z ′,

where −T is ample when restricted to general fibres of β. We write BY ′ := α∗BY and

LY ′ := α∗LY and note that

−(KY ′ +BY ′ + s · LY ′)
def. of L∼R (1− s)LY ′

s<1

≥ 0.

Moreover, an explicit discrepancy computation along the lines of [KM98, Cor. 2.32]

shows that (Y ′, BY ′ + s · LY ′) is ε′-lc, because (Y,BY + s · LY ) is ε′-lc and because

−(KY +BY + s · LY ) is semiample. There are two cases now.

If dimZ ′ > 0, then restricting to a general fibre of Y ′ → Z ′ and applying Proposi-

tion 7.3 (“LC thresholds for R-linear systems of bounded degrees”) in lower dimension(6)

shows that the coefficients of those components of (1− s) · LY ′ that dominate Z ′ com-

ponents of are bounded from above. In particular, multT ′(1− s) · LY ′ is bounded from

above. Thus from the inequality

multT ′(1− s) · LY ′ ≥ (1− s) · (ε− ε′)
s

,

(6)or applying Theorem 1.2 (“Boundedness of ε-lc Fanos”)
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we deduce that s is bounded from below away from zero.

If Z ′ is a point, then Y ′ is a Fano variety with Picard number one. Now

−KY ′ ∼R (1− s) · LY ′ +BY ′ + s · LY ′ ≥ (1− s) · LY ′ ,

so by Proposition 7.8, multT ′(1− s) · LY ′ is bounded from above which again gives a

lower bound for s as before.

8. APPLICATION TO THE JORDAN PROPERTY

We explain in this section how the boundedness result for Fano varieties applies to the

study of birational automorphism groups, and how it can be used to prove the Jordan

property. Several of the core ideas presented here go back to work of Serre, who solved

the two dimensional case, [Ser09, Thm. 5.3] but see also [Ser10, Thm. 3.1]. If one is

only interested in the three-dimensional case, where birational geometry is particularly

well-understood, most arguments presented here can be simplified.

8.1. Existence of subgroups with fixed points

If X is any rationally connected variety, Theorem 1.4 (“Jordan property of Cremona

groups”) asks for the existence of finite Abelian groups in the Cremona groups Bir(X).

As we will see in the proof, this is almost equivalent to asking for finite groups of

automorphisms that admit fixed points, and boundedness of Fanos is the key tool used

to find such groups. The following lemma is the simplest result in this direction. Here,

boundedness enters in a particularly transparent way.

Lemma 8.1 (Fixed points on Fano varieties, [PS16, Lem. 4.6])

Given d ∈ N, there exists a number jFano
d ∈ N such that for any d-dimensional Fano

variety X with canonical singularities and any finite subgroup G ⊆ Aut(X), there exists

a subgroup F ⊆ G of index |G : F | ≤ jFano
d acting on X with a fixed point.

Remark 8.2. — To keep notation simple, Lemma 8.1 is formulated for Fanos with

canonical singularities, which is the relevant case for our application. In fact, it suffices

to consider Fanos that are ε-lc.

Proof of Lemma 8.1. — As before, write X Fano
d,0 for the d-dimensional Fano variety X

with canonical singularities. It follows from boundedness, Theorem 1.2 or Corollary 7.2,

that there exist numbers m, v ∈ N such that the following holds for every X ∈ X Fano
d,0 .

(8.2.1) The divisor −m ·KX is Cartier and very ample.

(8.2.2) The self-intersection number of −m ·KX is bounded by v. More precisely,

−[m ·KX ]d ≤ v.
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Given X, observe that the associated line bundles OX(−m ·KX) are Aut(X)-linearised.

Accordingly, there exists a number N ∈ N, and for every X ∈ X Fano
d,0 an Aut(X)-

equivariant embedding X ↪→ PN . Let jJordan
N+1 be the number obtained by applying the

classical result of Jordan, Theorem 1.6, to GLN+1(C), and set jFano
d := jJordan

N+1 · v.

Now, given any X ∈ X Fano
d,0 and any finite subgroup G ⊆ Aut(X), the G action extends

to PN . The action is thus induced by a representation of a finite linear group Γ, say

Γ �
� //

����

GLN+1(C)

����
G �
� // PGLN+1(C).

By Theorem 1.6, the classic result of Jordan, we find a finite Abelian subgroup Φ ⊆ Γ

of index |Φ : Γ| ≤ jJordan
N+1 . Since Φ is Abelian, the Φ-representation space CN+1 is a

direct sum of one-dimensional representations. Equivalently, we find N + 1 linearly

independent, Φ-invariant, linear hyperplanes Hi ⊂ PN+1. The intersection of suitably

chosen Hi with X is then a finite, Φ-invariant subset {x1, . . . , xr} ⊂ X, of cardinality

r ≤ v. The stabiliser of x1 ∈ X is a subgroup Φx1 ⊂ Φ of index |Φ : Φx1 | ≤ v. Taking F

as the image of Φx1 → G, we obtain the claim.

As a next step, we aim to generalise the results of Lemma 8.1 to varieties that are

rationally connected, but not necessarily Fano. The following result makes this possible.

Lemma 8.3 (Rationally connected subvarieties on different models, [PS16, Lem. 3.9])

Let X be a projective variety with an action of a finite group G. Suppose that X is

klt, with GQ-factorial singularities and let f : X 99K Y be a birational map obtained

by running a G-Minimal Model Programs. Suppose that there exists a subgroup F ⊂ G

and an F -invariant, rationally connected subvariety T ( Y . Then, there exists an

F -invariant rationally connected subvariety Z ( X.

Since we are mainly interested to see how boundedness applies to birational trans-

formation groups, we will not explain the proof of Lemma 8.3 in detail. Instead, we

merely list a few of the core ingredients, which all come from minimal model theory and

birational geometry.

– Hacon–McKernan’s solution [HM07] to Shokurov’s “rational connectedness conjec-

ture”, which guarantees in essence that the fibres of all morphisms appearing in

the MMP are rationally chain connected.

– A fundamental result of Graber–Harris–Starr, [GHS03], which implies that if

f : X → Y is any dominant morphism of proper varieties, where both the target Y

and a general fibre is rationally connected, then X is also rationally connected.

– Log-canonical centre techniques, in particular a relative version of Kawamata’s

subadjunction formula, [PS16, Lem. 2.5]. These results identify general fibres of

minimal log-canonical centres under contraction morphisms as rationally connected

varieties of Fano type.
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Proposition 8.4 (Fixed points on rationally connected varieties, [PS16, Lem. 4.7])

Given d ∈ N, there exists a number jrcd ∈ N such that for any d-dimensional,

rationally connected projective variety X and any finite subgroup G ⊆ Aut(X), there

exists a subgroup F ⊆ G of index |G : F | ≤ jrcd acting on X with a fixed point.

Sketch of proof. — We argue by induction on the dimension. Since the case d = 1 is

trivial, assume that d > 1 is given, and that numbers jrc1 , . . . , j
rc
d−1 have been found. Set

jd := max{jrc1 , . . . , j
rc
d−1, j

Fano
d } and jrcd := (jd)

2.

Assume that a d-dimensional, rationally connected projective variety X and a finite

subgroup G ⊆ Aut(X) are given. By induction hypothesis, it suffices to find a subgroup

G′ ⊆ G of index |G : G′| ≤ jd and a G′-invariant, rationally connected, proper subvariety

X ′ ( X.

If X̃ → X is the canonical resolution of singularities, as in [BM97], then X̃ is likewise

rationally connected, G acts on X̃ and the resolution morphism is equivariant. Since

images of rationally connected, invariant subvarieties are rationally connected and

invariant, we may assume from the outset that X is smooth. But then we can run a

G-equivariant Minimal Model Programme(7) terminating with a G-Mori fibre space,

X
G-equivariant MMP // X ′

G-Mori fibre space // Y.

In the situation at hand, Lemma 8.3 claims that to find proper, invariant, rationally

connected varieties on X, it is equivalent to find them on X ′. The fibre structure,

however, makes that feasible.

Indeed, if the base Y of the fibration happens to be a point, then X ′ is Fano with

terminal singularities, and Lemma 8.1 applies. Otherwise, let GY be the image of G

in Aut(Y ), let GX′/Y ⊆ G be the ineffectivity of the G-action on Y , and consider the

exact sequence

1→ GX′/Y → G→ GY → 1.

As the image of the rationally connected variety X ′, the base Y is itself rationally

connected. By induction hypothesis, using that dimY < dimX, there exists a subgroup

F ′Y ⊆ GY of index |GY : F ′Y | < jd that acts on Y with a fixed point, say y ∈ Y . Let

G′ ⊂ G be the preimage of G′Y . The fibre Xy is then invariant with respect to the

action of G′ and rationally chain connected by [HM07, Cor. 1.3]. Better still, Prokhorov

and Shramov show that it contains a rationally connected, G′-invariant subvariety. The

induction applies.

(7)The existence of an MMP terminating with a fibre space is [BCHM10, Cor. 1.3.3], which we have

quoted before. The fact that the MMP can be chosen in an equivariant manner is not explicitly stated

there, but follows without much pain.
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8.2. Proof of Theorem 1.4 (“Jordan property of Cremona groups”)

Given a number d ∈ N, we claim that the number j := jrcd · jJordan
d will work for

us, where jrcd is the number found in Proposition 8.4, and jJordan
d comes from Jordan’s

Theorem 1.6. To this end, let X be any rationally connected variety of dimension d, and

let G ⊆ Bir(X) be any finite group. Blowing up the indeterminacy loci of the birational

transformations g ∈ G in an appropriate manner, we find a birational, G-equivariant

morphism X̃ → X where the action of G in X̃ is regular rather than merely birational,

see [Sum74, Thm. 3]. Combining with the canonical resolution of singularities, we may

assume that X̃ is smooth. Proposition 8.4 will then guarantee the existence of a subgroup

G′ ⊆ G of index |G : G′| ≤ jrcd acting on X̃ with a fixed point x̃. Standard arguments

(“linearisation at a fixed point”) that go back to Cartan, cf. [FZ05, Lem. 2.7(b)] or

[HO84, p. 11ff], show that the induced action of G′ on the Zariski tangent space Tx̃(X̃)

is faithful, so that Jordan’s Theorem 1.6 applies.
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Astéisque, (332):Exp. No. 1000, vii, 75–100, 2010. Séminaire Bourbaki.
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