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NIP, KEISLER MEASURES AND COMBINATORICS

[after S. Shelah, H.J. Keisler, E. Hrushovski,

Y. Peterzil, A. Pillay, P. Simon,...]

by Sergei STARCHENKO

INTRODUCTION

Keisler measures were introduced by H.J. Keisler in [19] as finitely additive probability

measures on Boolean algebras of definable sets. A deep insight of H.J. Keisler was that

many ideas and tools of stability theory can be extended to so-called NIP theories by

replacing types (i.e. 0-1 valued measures) by arbitrary probability measures.

Almost 20 years later Keisler’s work was revisited, significantly improved and deep-

ened in a series of papers by E. Hrushovski, Y. Peterzil, A. Pillay, S. Shelah, P. Simon

and others (e.g. see [29, 30, 16, 17, 18]). Probability measures played an essential

role in a proof of Pillay’s conjecture for o-minimal groups ([16]), Hrushovski’s work

on approximate subgroups ([14, 36]) and understanding topological dynamics in NIP

structures ([5]).

Recently it was observed that Keisler measures in distal theories provide a natural

framework for certain problems in combinatorics and allow one to generalize some

Ramsey-type results from the semi-algebraic case to a wider class of fields (e.g. p-adics)

and also to so-called generically stable measures. (See Theorems 4.2 and 4.4 below.)

To illustrate the role of distality consider the following consequence of Theorem 4.2,

that we call the Points-Lines Property.

Points-Lines Property. There is a δ > 0 such that for a large enough finite set of

points P ⊆ R2 and a large enough finite set of lines L in R2 of the form y = ax+b there

are P0 ⊆ P , L0 ⊆ L with |P0| ≥ δ|P |, L0| ≥ δ|P | and p 6∈ l for any p ∈ P0, l ∈ L0.

Moreover there are semi-algebraic families F ⊆ R2 and G ⊆ R2, independent of P

and L, such that P0 = P ∩ F for some F ∈ F and L0 = L ∩ G for some G ∈ G (here

we identify (a, b) ∈ R2 with the line y = ax+ b).

In a sense, the field of real numbers is optimal for results like the Points-Lines Prop-

erty. Of course, identifying, as usual, the complex plane C2 with R4 and using Theorem

4.2, we obtain that the Points-Lines Property holds for points and lines in the complex

plane. However, first of all we don’t know of any proof for the field C that would not

involve, in one form or another, real algebraic geometry. Secondly, in the moreover part

we cannot replace “semi-algebraic” by “algebraic” (i.e. definable in the field of complex

numbers). Also, to some surprise, the Points-Lines Property fails in any algebraically
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closed field of positive characteristic, even without the moreover part, (see [7, Proposi-

tion 6.2]). Model theoretically, an explanation for why the field of real numbers is more

suited for the above type results is distality: the field R is distal, while no algebraically

closed field is distal (see Theorems 4.4 and 4.10 for a relation between Ramsey-type

results and distality).

In this paper we will present basics on NIP, Keisler measures, distality and also

demonstrate their use in combinatorics.

For an understanding of a basic theory of Keisler measures some knowledge of model

theory is needed. In Section 1 we will provide a very informal introduction to basic

model theoretic notions and explain them in more details in the cases of algebraically

closed and real closed fields that we will use throughout the paper. We refer to the

book [33] for more details on NIP and Keisler measures.

I thank Elisabeth Bouscaren, Artem Chernikov and Gabriel Conant for useful com-

ments on a preliminary version of this paper.

1. MODEL THEORETIC PRELIMINARIES

In this section we give a short informal introduction to some model theoretic notions

such as structures, formulas, definable sets, etc. that we will use in the paper. More

details can be found in any introductory model theory book (e.g. [24, 34]).

A first order structure (or just a structure)M is a non-empty set M (called the uni-

verse of M) together with a set of distinguished (also called basic) functions, relations

and constants. If f : Mn → M is a distinguished function then we refer to n as the

arity of f .

For example the field of complex numbers can be viewed as a structure with the

universe C equipped with addition, multiplication, the function z 7→ −z and two con-

stants 0 and 1.

To work with a class of structures we need that all structures in the class have

distinguished functions and relations of the same type. For this purpose we introduce

the notion of a signature or a language.

A language L is given by specifying the following data:

• a set of function symbols F and a positive integer nf for every f ∈ F ;

• a set of relation symbols R and a positive integer mR for every R ∈ R
• a set of constant symbols C.
We refer to the integers nf and mR as arities. Any of the sets F ,R, C may be empty.

Example 1.1. — A standard language for the class of fields is the language Lf =

〈+,−, ·, 0, 1〉, where +, · are binary function symbols, − is a unary function symbol,

and 0, 1 are constant symbols. The language Lf does not have relation symbols.

A standard language for ordered fields is Lof = 〈+,−, ·, <, 0, 1〉, where in addition to

the symbols of Lf we also have a binary relation symbol <.
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Let L be a language. An L -structure M consists of:

• a nonempty set M called the universe of M;

• a function fM : Mnf →M for every f ∈ F ;

• a relation RM ⊆MmR for every R ∈ R;

• an element cM ∈M for every c ∈ C.
We refer to fM, RM, cM as the interpretations of f,R, c in M.

Very often when we use a script letter to denote a structure, we use the same Roman

letter to denote its universe, e.g. we use M to denote the universe of a structure M.

Remark 1.2 (About relations.) — We define an m-ary relation RM as a subset of Mm.

Given a1, . . . , am,∈ M we say that a1, . . . , am satisfy RM (or RM holds on a1, . . . , am)

if (a1, . . . , am) ∈ RM. Often, instead of specifying this subset, we just describe the

property “RM holds on a1, . . . , am”. For example, we will view < as a binary relation

on R identifying it, if we need to be formal, with the set {(a, b) ∈ R2 : a < b}.

Often we describe a language by listing its symbols and specifying the arities. Then

we can describe a structure by indicating its universe and listing functions, relations

and constants in exactly the same order as in the language.

Example 1.3. — 1. Any field F can be viewed as the Lf -structure 〈F; +,−, ·, 0, 1〉,
where +, · are the usual field operations and − is the unary function z 7→ −z. We

will denote this structure by F.

2. If F is an ordered field then it can also be viewed as an Lof -structure

〈F; +,−, ·, <, 0, 1〉, and we will use the notation F for this structure.

For a language L all standard notions such as embeddings, substructures, and iso-

morphisms between L -structures are defined in an obvious way. IfM is a substructure

of N then, as usual, we also say that N is an extension of M.

Clearly the language L can be recovered from an L -structureM uniquely, and very

often we will omit L . For example, for a given structure M we talk freely about its

substructures and extensions without mentioning L .

We provide more examples of structures used frequently in applications of model

theory.

Example 1.4. — 1. Let V be an irreducible variety over a field k and f : V → V be a

rational dominant map also defined over k. The map f induces an automorphism σ

of the field of rational functions F = k(V ), and the structure 〈F ; +, ·,−, σ, 0, 1〉
plays an important role in applications of model theory to algebraic combinatorics

(e.g. see [4, 25]).

2. For a prime number p it is natural to view the field of p-adic numbers Qp as a

field with a valuation, and a suitable structure is 〈Qp; +, ·,−, |, 0, 1〉, where | is

the binary relation defined as: x|y if and only if v(x) ≤ v(y) (as usual we set

v(0) = +∞). We will denote this structure by Qp.
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3. In a recent proof of the André-Oort conjecture for Ag by Tsimerman ([35]) the

structure Ran,exp = 〈R; +, ·,−, exp(x), (f)f∈F , <, 0, 1〉 plays an important role.

There F is the set of all “restricted” analytic functions: a function f : Rn → R
is restricted analytic if f(x) = 0 for all x outside of the unit cube [0, 1]n, and

f�[0, 1]n = F �[0, 1]n for a function F analytic on some open set U containing

[0, 1]n.

1.1. Definable sets and formulas

We introduce definable sets, paying attention to parameters used.

Definition 1.5. — Let M be a structure and A ⊆M . A subset X ⊆Mm is called a

basic A-definable set if it can be defined using compositions of basic functions, elements

of A, constants, basic relations and equality.

Example 1.6. — 1. Let F be a field.

We first consider the case A = F. Composing basic functions (i.e. field opera-

tions) and using elements of F we obtain all polynomials over F. Since we don’t

have any relations in the field language, basic F-definable sets are exactly the sets

of the form {x̄ ∈ Fn : g1(x̄) = g2(x̄)}, where g1, g2 ∈ F[x̄], or equivalently the sets

{x̄ ∈ Fn : g(x̄) = 0}, where g(x̄) ∈ F[x̄]. We will call such sets basic algebraic sets.

Now consider the case A = ∅. We cannot use elements of F, but we are still

allowed to use the constants 0 and 1. Composing basic functions and using these

constants we obtain all polynomials over Z. Hence basic ∅-definable sets are the

sets of the form {x̄ ∈ Fn : g(x̄) = 0}, where g(x̄) ∈ Z[x̄].

2. Let F be an ordered field.

Since < is a basic relation, besides basic algebraic sets, we also have basic

F-definable sets of the form {x̄ ∈ Fn : h1(x̄) < h2(x̄)}, with h1(x̄), h2(x̄) ∈ F[x̄],

as basic F-definable sets. Again we can rewrite these sets as {x̄ ∈ Fn : 0 < h(x̄)}
with h(x̄) ∈ F[x̄].

It should be clear what basic ∅-definable sets are in this case.

3. Similarly, for a prime p, in the valued field Qp the basic Qp-definable sets are

basic algebraic sets and also sets of the form {x̄ ∈ Qn
p : v(h1(x̄)) ≤ v(h2(x̄))}, with

h1(x̄), h2(x̄) ∈ Qp[x̄].

Definition 1.7. — Let M be a structure and A ⊆ M . An A-definable set is a

subset of Mn obtained from basic A-definable sets using finitely many Boolean operations

(intersections, unions, complements) and finitely many quantifiers “there is an element

x ...” and “for all elements x ...” (denoted as usual by ∃x and ∀x).

Remark 1.8. — We work only with what are called first-order definable sets, i.e. the

quantifiers “exists a subset ...” and “for all subsets” are not allowed in descriptions of

definable sets.



1114–05

Example 1.9. — Identifying a quadratic polynomial t2 + at + b with the pair (a, b), in

any field F the set S(F) of all monic quadratic polynomials over F having two distinct

roots in F can be viewed as the following ∅-definable set:

S(Q) = {(x1, x2) ∈ Q2 : ∃y1∃y2((y1 6= y2)∧ (y2
1 +x1y1 +x2 = 0)∧ (y2

2 +x1y2 +x2 = 0))}.

Definition 1.10. — For a structure M we say that a subset X ⊆Mn is definable if

it is M-definable.

Example 1.11. — Using the standard ε-δ definition it is easy to see that in the struc-

ture R the topological closure of any definable set X ⊆ Rn is definable as well.

In general definable sets can be very complicated. For example, in the structure

〈R,+,−, ·, sin(x), <, 0, 1〉 every Borel subset of R is definable. However, some important

classes of structures admit quantifier elimination, i.e. every definable set is a finite

Boolean combination of basic definable sets, and definable sets are more accessible.

Theorem 1.12 (Tarski–Chevalley). — Let F be an algebraically closed field. Then

every definable subset of Fn is a constructible set, i.e. a finite Boolean combination of

basic algebraic sets.

Recall that an ordered field F is called real closed if every positive element is a square

and every polynomial of odd degree has a root. Alternatively, an ordered field F is real

closed if every polynomial in one variable p(x) ∈ F[x] satisfies the intermediate value

property: if a < b ∈ F and p(a) < p(b) then for any u with f(a) < u < f(b) there is c

with a < c < b and f(c) = u.

Theorem 1.13 (Tarski–Seidenberg). — Let F be an ordered real closed field. Then

every definable subset of Fm is semi-algebraic, i.e. a finite Boolean combination of sets

of the form p(x̄) = 0 and q(x̄) > 0 with p, q ∈ F[x̄].

Theorem 1.14 (Macintyre). — For a prime p let Qp be the valued field of p-adic

numbers. Then every definable subset of Qm
p is a finite Boolean combination of sets of

the form p(x̄) = 0, v(q1(x̄)) ≤ v(q2(x̄)) and ∃ y(r(x̄) = yn), where p, q1, q2, r ∈ Qp[x̄]

and n ∈ N.

Example 1.15. — In the real closed field R the set of all monic quadratic polynomials

over R with two distinct roots can be identified, as in Example 1.9, with a definable

subset S(R) of R2. By the Tarski–Seidenberg Theorem S(R) is semi-algebraic, i.e. can

be also defined without using quantifiers. Indeed,

S(R) = {(x1, x2) ∈ R3 : x2
1 − 4x2 > 0}.

It also follows from the Tarski–Seidenberg Theorem (and Example 1.11) that the

topological closure of a semi-algebraic subset of Rn is semi-algebraic.
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We now turn to the notion of L -formulas.

For us the main purpose of formulas will be the ability to match definable sets in

different L -structures. The idea is quite simple. Let M and N be L -structures and

X ⊆Mm be a set ∅-definable in the structureM. For this set X we have an expression

that defines X. This expression, besides Boolean operations and quantifiers, uses only

relations, functions and constants from the language L . Since all symbols from L have

interpretations in N we can use the same expression to define a corresponding subset

of Nm. This formal expression is called a formula.

For example, the formula ϕ(x1, x2) that we used in Example 1.9 to define the set

S(F) ⊆ F2 is

∃y1y2((y1 6= y2) ∧ (y2
1 + x1y1 + x2 = 0) ∧ (y2

2 + x1y2 + x2 = 0)).

Definition 1.16 (A very informal definition of formulas). — Let L be a language

and m an integer. An Lm-formula ϕ is a formal expression built from symbols in L ,

equality and variables, along with finitely many Boolean connectives “and”, “or”,

“negation” (denoted by ∧,∨,¬ respectively), and quantifiers ∃ and ∀, such that in

any L -structure M the formula ϕ unambiguously defines, according to standard

mathematical conventions, a subset X ⊆Mm.

By an L -formula, or just a formula when L is clear from the context, we mean an

Lm-formula for some m.

For a convenience we extend the notion of L -formulas to formulas with parameters.

LetM be a structure, L its language and A ⊆M . An Lm(A)-formula ϕ is a formal

expression as above, which may additionally contain elements of A, such that for any

L -structure N extending M the formula ϕ defines a subset X ⊆ Nm.

For an L -formula ϕ we use the notation ϕ(x1, . . . , xm) to indicate that it is an

Lm-formula, i.e. it defines a subset of Mm in any L -structure M. If ϕ is an Lm-

formula and M is an L -structure then the set X ⊆ Mm defined by ϕ is denoted by

ϕ(M). Also for a tuple ā = (a1, . . . , am) we write M |= ϕ(ā) if ā ∈ ϕ(M). Thus,

tautologically, ϕ(M) = {ā ∈Mm : M |= ϕ(ā)}. We extend these conventions to L (A)-

formulas in the obvious way.

Remark 1.17 (∅-definable vs definable). — Let M be an L -structure and X ⊆Mm

a definable set. Since definable means M -definable, there is an L (M)-formula

ϕ(x1, . . . , xm) such that X = ϕ(M). Let c1, . . . , cn be all elements of M appearing in ϕ.

Replacing each ci with a new variable yi we obtain an L -formula ψ(x1, . . . , xm, y1, . . . , yn)

such that for any ā ∈Mm we have M |= ϕ(ā) if and only if M |= ψ(ā, c1, . . . , cn). Let

Y ⊆Mm+n be the set defined by ψ, i.e. Y = ψ(M). Then

X = {(a1, . . . , am) ∈Mm : (a1, . . . , am, c1, . . . , cn) ∈ Y },

i.e. X is the fiber Yc̄ of Y , where c̄ = (c1, . . . , cn). Thus every M -definable set can be

viewed as a fiber of an ∅-definable set.
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1.2. Elementary substructures and extensions

In general the notion of a substructure is too weak to preserve formulas. For example,

let ϕ(x1, x1) be the following formula in the language of fields:

∃y(y2 + x1y + x2) = 0.

Considering the field Q as a substructure of the field R we have ϕ(Q) 6= ϕ(R) ∩ Q2.

Indeed, the set ϕ(Q) is a subset of Q2 corresponding to rational monic quadratic poly-

nomials having a rational root, while ϕ(R)∩Q2 corresponds to rational monic quadratic

polynomials having a real root, and these sets are different. Elementary substructures

(extensions) are defined as substructures (extensions) preserving formulas.

Definition 1.18. — LetM be a substructure of a structure N . We say thatM is an

elementary substructure if for every L (M)-formula ϕ(x̄) we have ϕ(M) = ϕ(N)∩M .

If M is an elementary substructure of N then we also say that N is an elementary

extension of M and use the notation M� N .

Remark 1.19. — 1. Since every M -definable set is a fiber of a ∅-definable set (see

Remark 1.17), in the above definitions it is sufficient to require that ϕ(M) =

ϕ(N) ∩ M holds only for every L -formula ϕ, i.e. for every formula without

parameters.

2. If M � N and ϕ(x1, . . . , xm) is an L (M)-formula then ϕ(M) = ∅ ⇔ ϕ(N) = ∅.
Right to left follows from the definition. For left to right we use a new dummy

variable u and let ψ(u) be the formula (u = u) ∧ ∃x1 . . . ∃xmϕ(x1, . . . , xm). Then

ϕ(N) 6= ∅ ⇐⇒ ψ(N) = N =⇒ ψ(M) = M =⇒ ϕ(M) 6= ∅.

Let M be a structure and X ⊆ Mm a set defined by an L (M)-formula ϕ(x̄). If

N is an elementary extension of M then we will denote by X(N) the N -definable set

ϕ(N) ⊆ Nm. Using Remark 1.19(2) it is not hard to see that the set X(N) depends

on X only and does not depend on the formula ϕ defining X, i.e. if ψ(x̄) is another

L (M)-formula with X = ψ(M) then ψ(N) = ϕ(N). Thus for elementary extensions

of M the set X(N) is well defined.

In general determining when an extension is elementary is a nontrivial task. However

in cases when one has a quantifier elimination every extension is elementary. Using

Theorems 1.12 and 1.13 we obtain the following proposition.

Proposition 1.20. — 1. Let F < K be algebraically closed fields. Then K is an

elementary extension of F.

2. Let F < K be ordered real closed fields. Then K is an elementary extension of F.

1.3. Definable families and partitioned formulas

If M is a structure and F ⊆ Mm×Mn is a definable set then for c̄ ∈ Mn, as usual,

by Fc̄ we will denote the fiber Fc̄ = {ā ∈ Mm : (ā, c̄) ∈ F}. Obviously every fiber Fc̄ is

a definable subset of Mm.



1114–08

Definition 1.21. — For a structureM a family of subsets F of Mm is called definable

if there is a definable F ⊆Mm×Mn such that F = {Fc̄ : c̄ ∈Mn}.

Also for an L -formula ϕ sometimes we would like to view the set it defines in a struc-

tureM as a subset of Mm×Mn. In this case we write ϕ as ϕ(x̄; ȳ) with |x̄| = m, |ȳ| = n

and call it an Lm+n-formula. If ϕ(x̄; ȳ) is an Lm+n-formula and M is an L -structure

then for c̄ ∈ Mn we will denote by ϕ(M ; c̄) the set {ā ∈Mm : M |= ϕ(ā; c̄)}, i.e. the

fiber Fc̄ for F = ϕ(M). In this case we also say that the definable family {Fc̄ : c̄ ∈Mn}
is defined by the formula ϕ(x̄; ȳ).

Proposition 1.22. — 1. Let K be an algebraically closed field and F be a definable

family of subsets of K. There is k ∈ N such that for every F ∈ F either |F | ≤ k

or |K \ F | ≤ k.

2. Let K be an ordered real closed field and F be a definable family of subsets of K.

There is k ∈ N such that every F ∈ F is a union of at most k points and intervals

with endpoints in K ∪ {±∞}

Proof. — 1) Let ϕ(x; ȳ) be an L1+n-formula in the language of fields defining F . By

Theorem 1.12, we may assume that ϕ(x, ȳ) is a finite Boolean combination of formulas

f(x; ȳ) = 0 with f(x; ȳ) ∈ Q[x; ȳ]. The required k can be computed from degrees (in x)

of all polynomials appearing in ϕ.

2) Similar to 1, by using Theorem 1.13.

Definition 1.23. — 1. A structure M satisfying (1) in the above proposition is

called strongly minimal.

2. An ordered structureM satisfying (2) in the above proposition is called o-minimal.

Remark 1.24. — An important example of an o-minimal structure is the structure

Ran,exp from Example 1.4 (e.g. see [26] for its applications to Diophantine geometry).

1.4. Ultrapowers

The ultraproducts construction is a powerful tool allowing one to obtain a new

L -structure from a given family. In this paper we will consider only ultrapowers.

Let I be a non-empty set and B ⊆ P(I) a Boolean subalgebra (as usual by P(I)

we denote the family of all subsets of I). Recall that an ultrafilter on B is a subset

U ⊆ P(B) closed under finite intersections such that ∅ 6∈ U and for every Y ∈ B
either Y or its complement is in U .

An ultrafilter U on B is called principal if it contains an atom of B. It is easy to

see that an ultrafilter U on P(I) is principal if and only if it contains a finite set.

If U is an ultrafilter on P(I) and C is a compact topological space then by properties

of the Stone-Čech compactification, for any function f : I → C there is a unique c0 ∈ C
such that f−1(O) ∈ U for any open neighborhood O of c0. We call this c0 the limit of

f along U and use the notation U - lim f = c0. Obviously if the set C is finite then

U - lim f = c0 if and only if f−1(c0) ∈ U .
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Let M be an L -structure, I a set and U an ultrafilter on P(I).

Viewing the power set M I as the set of all functions α : I →M , for any Lm-formula

ϕ(x̄) and ᾱ ∈ (Mm)I the truth value of ϕ(ᾱ(i)) inM can be viewed as a function from

I to {0, 1}, and the following restatement of the  Loś Theorem ([22]) says that for any

ultrafilter U on P(I) there is an L -structure N such that for any L -formula ϕ and

ᾱ ∈ (Mn)I , the truth value of ϕ(ᾱ) in N is the limit of the truth values of ϕ(ᾱ(i))

along U .

Theorem 1.25 ( Loś). — Let M be an L -structure, I a non-empty set and U an

ultrafilter on P(I). There is an L -structure N and a surjective map π : M I → N

such that for any L -formula ϕ(x1, . . . , xn) and α1, . . . , αn ∈M I we have

N |= ϕ(π(α1), . . . , π(αn)) ⇐⇒ {i : M |= ϕ(α1(i), . . . , αn(i))} ∈ U .

It is not hard to see that for a given M, I and U the structure N in the above

theorem is unique up to an isomorphism. We will call it the ultrapower of M with

respect to U and denote it by N = MU . Also for α ∈ M I we will write [α] instead

of π(α).

It follows from the  Loś Theorem that the map h : M→MU defined as h(a) = [â],

where â(i) = a for all i ∈ I, is injective and the image of M under h is an elementary

substructure of MU isomorphic to M. Thus we may and will consider M as an

elementary substructure of MU for any ultrafilter U .

Example 1.26. — Let U be a non-principal ultrafilter on P(N) and F = RU
. The

structure F is an elementary extension of R, hence an ordered real closed field. Let

a ∈ F be the element [α] where α : N → R is the function α(n) = n. For any r ∈ R
the set {n ∈ N : α(n) < r} is finite, hence not in U , and by the  Loś Theorem we have

F |= a ≥ r for every r ∈ R. Taking b = a−1 we obtain an infinitesimally small element

in F, i.e. 0 < b < 1/n for any n ∈ N>0. In other words F is a non-standard model of

the ordered field of real numbers.

1.5. Types

Types play a major role in contemporary model theory. In this paper we will consider

only complete types.

There are many different ways to describe types. First of all they can be viewed as

ultrafilters on Boolean algebras of definable sets.

For a structure M, a subset A ⊆M and an integer m we will denote by DefA(Mm)

the collection of all A-definable subsets of Mm. It easy to see that DefA(Mm) is a

Boolean subalgebra of P(Mm). An ultrafilter on the Boolean algebra DefA(Mm) is

called an m-type over A, and the set of all m-types over A is exactly the Stone space

of DefA(Mm).

Secondly, using the correspondence between formulas and definable sets we can define

types as maximal consistent sets of formulas.
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Definition 1.27. — Let M be a structure, A ⊆M and m ∈ N.

1. A set Σ of Lm(A)-formulas is called consistent if for all ϕ1, . . . , ϕk ∈ Σ we have

ϕ1(M) ∩ · · · ∩ ϕk(M) 6= ∅.
2. An m-type in M over A is a consistent set p of Lm(A)-formulas such that for

every Lm(A)-formula ϕ either ϕ ∈ p or ¬ϕ ∈ p.

3. We will denote by SMm (A), or just Sm(A), the set of all m-types in M over A.

Remark 1.28. — It follows from the definition of elementary extensions that ifM� N
and A ⊆M then SMm (A) = SNm (A).

Example 1.29. — Let M be a structure, A ⊆M and ā ∈Mm. Then the set

{ϕ(x̄) ∈ Lm(A) : M |= ϕ(ā)}

is a type over A. We will denote it by tp(ā/A).

If M is a structure, A ⊆ B ⊆ M and q ∈ Sm(B) then it is easy to see that the set

p = {ϕ ∈ Lm(A) : ϕ ∈ q} is a type over A. We will denote it by p = q�A and also call

q an extension of p.

Definition 1.30. — Let M be a structure, A ⊆M and p ∈ Sm(A).

1. We say that ā ∈Mm realizes p if M |= ϕ(ā) for every ϕ ∈ p.

2. We say that M realizes p if some ā ∈Mm realizes p.

3. We say that p is a principal type if some ā ∈ Am realizes p.

The fundamental fact about types is that they can be realized in elementary exten-

sions.

Fact 1.31. — Let M be a structure, A ⊆ M and Σ ⊆ Lm(A) a consistent set of

formulas. There is an elementary extension N of M and ā ∈ Nm such that N |= ϕ(ā)

for every ϕ ∈ Σ.

Remark 1.32. — Let M be a structure and A ⊆M .

1. It follows from the above fact that every consistent set of formulas Σ ⊆ Lm(A)

is contained in a type p ∈ Sm(A), e.g. we can take p = tp(ā/A) where ā is as in

Fact 1.31.

2. If p ∈ Sm(A) and A ⊆ B ⊆ M then viewing p as a consistent set of Lm(B)-

formulas we obtain that p can be extended to a type over B.

3. Every p ∈ Sm(A) can be extended to a principal type g ∈ Sm(N) for some ele-

mentary extension N of M (take q = tp(ā/N) for ā and N as in Fact 1.31).

4. Also if p ∈ Sm(M) is a non-principal type and N is an elementary extension ofM
then there is a non-principal q ∈ Sm(N) extending p. To see it consider the set of

Lm(N)-formulas Σ = p∪{¬(x̄ = ā) : ā ∈ Nm}, where, for ā = (a1, . . . , am), x̄ = ā

denotes the formula
∧m
i=1 xi = ai. It can be shown, using properties of elementary

extensions, that the set Σ is consistent. Clearly every complete type extending Σ

is non-principal.
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Example 1.33. — It is not very difficult to describe all types in algebraically closed

fields.

Let F be an algebraically closed field and V ⊆ Fm an irreducible algebraic variety

defined over F. Let I(V ) ⊆ F[x̄] be the ideal of V , i.e. I(V ) = {f(x̄) ∈ F[x̄] : f(v̄) = 0

for all v̄ ∈ V }. Since V is irreducible, the ideal I(V ) is prime, and it is not hard

to see that the set of Lm(F)-formulas ΣV = {f(x̄) = 0: f(x̄) ∈ I(V )} ∪ {¬(f(x̄) = 0) :

f(x̄) ∈ F[x̄] \ I(V )} is consistent. By quantifier elimination (Theorem 1.12) there is a

unique p ∈ Sm(F) containing ΣV . We will denote this type by pV .

It is not hard to see that the converse is also true. Given any type p ∈ Sm(F) there is

an irreducible variety V ⊆ Fm with p = pV . Thus types in Sn(F) correspond to “generic

points” on affine varieties.

In particular there is a unique non-principal 1-type, namely the type pA1 ∈ S1(F).

Example 1.34. — It is much more difficult to describe all types over ordered real closed

fields. We will present here only some special 1-types. Let F be an ordered real closed

field. We will view 1-types over F as ultrafilters on the Boolean algebra of definable

subsets of F.

If X ⊆ F is an F-definable set then, by o-minimality, X is a finite union of points

and open intervals, hence every ultrafilter on DefF(F) is completely determined by the

points and intervals it contains.

Let p ∈ S1(F). If p contains a singleton {a} for some a ∈ F then p is the principal

type tp(a/F). Besides principal types, we also have the following types:

There is a unique p ∈ S1(F) such that a definable set X ⊆ F is in p if and only if

X is unbounded from above. We will denote this type by tp(+∞/F) (and similarly we

define tp(−∞/F)).

For every a ∈ F there is unique p ∈ S1(F) such that a definable set X ⊆ F is in p if

and only if X contains an interval (a, a + ε) for some ε > 0. We will denote this type

by tp(a+/F) (and similarly we define tp(a−/F)).

In the case of the real closed field R, due to Dedekind completeness, the above types

are exactly all 1-types over R, and it is not hard to see, using Example 1.26, that every

p ∈ S1(R) is realized in RU
, where U is a non-principal ultrafilter on N.

2. NIP STRUCTURES

NIP formulas (formulas with No Independence Property) were introduced by Shelah

in [27] (see also [28]) in his work on the classification program. Around the same time

Vapnik and Chervonenkis introduced their dimension for entirely different purposes.

A connection between NIP formulas and classes with finite VC-dimensions was observed

by Laskowski in [20]. However a systematic study of NIP theories started only around

2000.
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First we recall the notion of Vapnik–Chervonenkis dimension, or VC-dimension for

short. Let S be a set and F a family of subsets of S. Given A ⊆ S, we say that A is

shattered by F if for every A′ ⊆ A there is F ∈ F with A∩F = A′. A family F is said

to be a VC-class if there is some d < ω such that no subset of S of size d is shattered

by F . In this case the VC-dimension of F is the largest integer d such that a subset

of S of size d is shattered by F .

Definition 2.1. — Let M be a structure.

1. An Lm+n formula ϕ(x̄; ȳ) does not have the Independence Property ( is NIP for

short) if the family F(M) = {ϕ(M ; c̄) : c̄ ∈ Mn} is a VC-class. In this case we

define the VC-dimension of ϕ(x̄; ȳ) in M to be the VC-dimension of this family.

2. The structure M is NIP if every formula in M is NIP.

Thus a structure M is NIP if every definable family is a VC-class.

Remark 2.2. — It is not hard to see that if N is an elementary extension ofM then a

formula ϕ is NIP in M if and only if it is NIP in N .

The following theorem provides a very useful tool for determining when a given

structure is NIP.

Theorem 2.3 (Shelah [27], see also [20]). — A structureM is NIP if and only if every

L1+n- formula ϕ(x; ȳ) is NIP. (Equivalently every definable family of subsets of M is

a VC-class.)

Proposition 2.4. — 1. Every strongly minimal structure is NIP.

2. Every o-minimal structure is NIP.

Proof. — 1) LetM be a strongly minimal structure and F a definable family of subsets

of M . By strong minimality, there is k ∈ N such that for any F ∈ F either |F | ≤ k or

|M \ F | ≤ k. It is easy to see that F cannot shatter any set with 2k + 1 elements.

2) Similarly, if M is an o-minimal structure and F is a definable family of subsets

of M then, by o-minimality, there is k ∈ N such that every F ∈ F is a union of at most

k points and intervals. Again such family cannot shatter a set with 2k+1 elements.

Corollary 2.5. — 1. Every algebraically closed field is NIP.

2. Every real closed field is NIP.

Remark 2.6. — 1. With more work, using Theorem 1.14, it is possible to show that

for each prime p the valued field Qp is NIP.

2. By a result of Gurevich and Schmitt [13], if A = 〈A; +, <, 0〉 is an ordered abelian

group then A is NIP

Example 2.7. — 1. In the random Rado graph G = 〈V,E〉 the formula xEy has the

independence property, hence G is not NIP.
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2. If F is a pseudo-finite field of characteristic different from 2 then the formula

ϕ(x; y) = ∃z(x+ y = z2) has the independence property (see [10]), hence F is not

NIP.

One of the key properties of VC-classes is the theorem of Vapnik and Chervonenkis

[37] that a uniform version of the weak law of large numbers holds for families of events

of finite VC-dimension.

For a set S and a probability measure µ on S we say that µ is concentrated on a finite

set if there are s1, . . . , sk ∈ S and r1, . . . , rk ∈ [0, 1] such that for any measurable X we

have µ(X) =
∑

si∈X ri.

For a set S, a subset X ⊆ S, and a sequence of points a1, . . . , an ∈ S (not necessarily

distinct) we define Av(a1, . . . , an;X) = 1
n
|{i : ai ∈ X}|.

Theorem 2.8 (VC-Theorem [37]). — For any d ∈ N and ε > 0 there is a constant Cd,ε
such that for any set S, a probability measure µ on S concentrated on a finite set, and

a family F of measurable sets with VC-dimension at most d there are a1, . . . , an ∈ S
with n ≤ Cd,ε and |µ(F )− Av(a1, . . . , an;F )| ≤ ε for any F ∈ F .

An importance of the above theorem is that the size of an ε-approximation depends

on d and ε only and does not depend on µ.

Remark 2.9. — The finiteness assumption on µ in the above theorem can be replaced by

a weaker measurability assumption of some auxiliary functions, and this extra assump-

tion is necessary. As the following example shows, the VC-Theorem fails for arbitrary

probability measures.

Example 2.10. — Let ω1 be the first uncountable ordinal. It is an uncountable well-

ordered set such that for any α ∈ ω1 the set {x ∈ ω1 : x < α} is countable. For α ∈ ω1

let Iα denote the unbounded interval Iα = {x ∈ ω1 : x > α}, and let F be the family

F = {Iα : α ∈ ω1}. Clearly F does not shatter any subset of ω1 of size greater than

one, hence the VC-dimension of F is one.

Let B ⊆ P(ω1) be the Boolean algebra generated by F , and µ : B → R be the

0-1-valued function with µ(X) = 1 if and only if X contains an unbounded interval Iα
for some α ∈ ω1. It is easy to see that µ is a pre-measure on B, hence by Carathéodory’s

extension theorem, can be extended to a probability measure on the σ-algebra generated

by B.

Clearly µ(Iα) = 1 for every α ∈ ω1, but for any a1, . . . , an ∈ ω1 and α > sup{ai : i ≤ n}
we have Av(a1, . . . , an; Iα) = 0.
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3. KEISLER MEASURES

Definition 3.1. — Let M be a structure.

A Keisler measure on Mm is a finitely additive probability measure on the Boolean

algebra DefM(Mm). (Recall that for a set S a finitely additive probability measure

on a Boolean algebra B ⊆ P(S) is a function µ : B → [0, 1] with µ(S) = 1 and

µ(A ∪B) = µ(A) + µ(B) for all disjoint A,B ∈ B.)

If µ is a Keisler measure on Mm then we will also say that µ is a Keisler measure

over M.

Example 3.2. — Let M be a structure.

Every type p ∈ Sm(M) can be identified with a 0-1-valued Keisler measure µ on Mm

by µ(X) = 1 if and only if X ∈ p. We will denote this measure by δp.

The converse is also true. For every 0-1-valued Keisler measure µ on Mm there is a

type p ∈ Sm(M) with µ = δp.

Thus Keisler measures can be viewed as generalizations of types, and it was a deep

insight of Keisler that in the NIP case many properties of types should also hold for

measures. Keisler measures were systematically studied in a series of papers [16, 17, 18].

In particular, important classes of measures (e.g. smooth, generically stable) admitting

canonical extensions were identified. It turns out that these special measures also have

very strong combinatorial properties.

Remark 3.3. — Let M be a structure and µ a Keisler measure on Mm. Let N be

an elementary extension of M. The map X 7→ X(N) is an isomorphism between

DefM(Mm) and DefM(Nm), and we may and will view µ also as a finitely additive

probability measure on DefM(Nm). Thus a Keisler measure on Mm should be viewed

as a finitely additive probability measure on M -definable subsets in every elementary

extension of M.

Also if M� N and µ is a Keisler measure on Nm then its restriction to DefM(Nm)

induces a Keisler measure on Mm that we will denote by µ�M.

We present more examples of Keisler measures.

Example 3.4. — 1. Let M be a structure. For a countable set of types pi ∈
Sm(M), i ∈ ω, and a countable set of weights ri ∈ [0, 1], i ∈ ω, with

∑
i∈ω ri = 1

the measure
∑

i∈ω riδpi is a Keisler measure on Mm.

2. Let Λm be the Lebesgue measure on Rm. It is not hard to see that every semi-

algebraic subset X ⊆ Rm is measurable, therefore the function λm : X → Λm(X ∩
[0, 1]m) is a Keisler measure on Rm in the real closed field R.

3. Also every subset Xm definable in the structure Ran,exp is Lebesgue measurable

and Λm induces a Keisler measure λm as above.
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4. Similarly, for a prime p, in the valued field Qp for every definable X ⊆ Qm
p , the set

X ∩Zp is λm-measurable, where λm is the (normalized) Haar measure on (Zmp ,+),

hence λm induces a Keisler measure on Qm
p .

Let M be a NIP structure. If a Keisler measure µ is concentrated on a finite set

then the VC-Theorem holds for any definable family of subsets of Mm (although the

VC-Theorem still fails for arbitrary Keisler measures). However we have the following.

Proposition 3.5 ([17, Lemma 4.8]). — Let M be a NIP structure and F ⊆P(Mm)

a definable family of subsets. For every ε > 0 there is a constant C such that for any

Keisler measure µ on Mm there is a sequence of types p1, . . . , pk ∈ Sm(M) with k < C

and |µ(X)− µp̄(X)| < ε for each X ∈ F , where µp̄ = 1
k

∑
δpi.

A general way to get a new Keisler measure from existing ones is a Loeb-type con-

struction ([21]) using ultraproducts. For simplicity we will consider only ultrapowers.

3.0.1. Ultralimits of measures. — Let M be a structure, I a set, U an ultrafilter on

P(I) and N =MU (see Section 1.4).

Assume that for each i ∈ I we have a Keisler measure µi on Mm. We construct a

Keisler measure µ on Nm that can be viewed as the limit of µi along U , and we will

use the notation µ = U - limi∈I µi.

Let X ⊆ Nm be a definable set. Choose an Lm+n-formula ϕ(x̄; ȳ) and c̄ ∈ Nn with

X = ϕ(N, c̄). Choose ᾱ ∈ (Mn)I such that c̄ = [ᾱ]. For i ∈ I let Xi ⊆ Mm be the

definable set Xi = ϕ(M ; ᾱ(i)). Let f : I → [0, 1] be the function i 7→ µi(Xi). Since [0, 1]

is compact the limit of f(i) along U exists in [0, 1], and we set µ(X) = U - lim f(i). It

is not difficult to check that that µ is a Keisler measure on Nm.

Example 3.6. — LetM be a structure. For each n ∈ N choose a finite subset An ⊆M

and let µn be the Keisler measure on M given by X 7→ |An∩X|
|An| . Let U be a non-principal

ultrafilter on P(N), N = MU , and µ = U - limn∈N µn. Then µ is a Keisler measure

on N , but it is not concentrated on a finite set unless the sequence |An|, n ∈ N, is

bounded.

For example, let M = R. For n ∈ N let An = { 0
n+1

, . . . , n
n+1
}. Let µn and µ be as

above and ν = µ�R. Then ν is a Keisler measure on R coinciding with λ1 (the Keisler

measure induced by the Lebesgue measure on the interval [0, 1]).

3.1. Extensions of Keisler measures

Let M be a structure and µ a Keisler measure on Mm. Let N be an elementary

extension of M. Then µ is a finitely additive probability measure on DefM(Nm) and

one may ask to describe possible extensions of µ to Keisler measures on Nm.

Also let µ1 be a Keisler measure on Mm and µ2 be a Keisler measure on Mn.

Let DefM(Mm)⊗DefM(Mn) be the Boolean subalgebra of P(Mm+n) generated by

{X×Y : X∈DefM(Mm), Y ∈DefM(Mn)}. Obviously there is a unique finitely ad-

ditive probability measure µ on DefM(Mm)⊗DefM(Mn), denoted by µ1×µ2, with



1114–16

µ(X×Y ) = µ1(X)µ2(Y ) for all X∈DefM(Mm), Y ∈DefM(Mn). If M is infinite, then

DefM(Mm)⊗DefM(Mn) is a proper Boolean subalgebra of DefM(Mm+n) (e.g. consider

the diagonal in M2), and one can also ask to describe possible extensions of µ1×µ2 to

Keisler measures on Mm+n.

Of course in this generality both questions have been well studied and the following

theorem provides an exhaustive answer.

Theorem 3.7 ( Loś -Marczewski [23]). — Let S be a set and B0 ≤ B1 ≤ P(S) be

Boolean subalgebras. Let µ be a finitely additive probability measure on B0. Then

there is a finitely additive probability measure ν on B1 extending µ. Moreover, for any

X ∈ B1 we can choose ν with ν(X) = r for any r satisfying

sup{µ(L) : L ∈ B0, L ⊆ X} ≤ r ≤ inf{µ(U) : U ∈ B0, X ⊆ U}.

However the question of identifying special classes of Keisler measures having “canon-

ical” extensions is quite subtle. In [19, 16, 17, 18] some of these special classes are

identified, and these measures play an important role in various applications. Also it

turns out that both questions mentioned above are very related.

3.2. Smooth measures

Definition 3.8. — Let M be a structure. A Keisler measure µ on Mm is called

smooth if, for every elementary extension N of M, µ has a unique extension to a

Keisler measure on N . If µ is a smooth Keisler measure on Mm and N is an elemen-

tary extension of N then by µ|N we will denote the unique Keisler measure on Nm

extending µ. Clearly µ|N is smooth.

It is not hard to see that if M is any structure and A ⊂ Mm is a finite set then the

counting measure µ(X) = |A∩X|
|A| on Mm is smooth.

Lemma 3.9. — Let M be a structure and p ∈ Sm(M). Then the Keisler measure δp
on Mm is smooth if and only if p is principal, i.e. realized in M .

Proof. — Assume p is not principal. By Fact 1.31 there is an elementary extension N of

M and ā ∈ Nm realizing p. Let q = tp(ā/N). On the other hand (see Remark 1.32(4))

p also has a non-principal extension r ∈ Sm(N). Clearly δq and δr are two different

Keisler measures on Nm extending δp.

Remark 3.10. — If we use the analogy between types and measures then smooth mea-

sures should be viewed as “realized” measures, and the following proposition says that

in the NIP case every Keisler measure can be realized.

Proposition 3.11 ([19, Theorem 3.16]). — If M is a NIP structure and µ a Keisler

measure on Mm then there is an elementary extension N of M and a smooth Keisler

measure ν on Nm extending µ.
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The following proposition provides an important example of a smooth Keisler measure

that is not concentrated on a finite set.

Proposition 3.12 ([18]). — In the structure R the Keisler measure λ1 on R, induced

by the Lebesgue measure on [0, 1], is smooth.

Proof. — Let F be an elementary extension of R and µ1, µ2 be Keisler measures on F
extending λ1. By o-minimality it is sufficient to show that for any α ∈ F with 0 ≤ α ≤ 1,

for the set Iα = {x ∈ F : 0 ≤ x ≤ α} we have µ1(Iα) = µ2(Iα).

Argue that sup{r ∈ R : Ir ⊆ Iα} = inf{r ∈ R : Iα ⊆ Ir}, where both sup and

inf are taken in R. Then for all real numbers r1, r2 with r1 < α < r2, by finite

additivity, we get µk(Ir1) ≤ µk(Iα) ≤ µk(Ir2), where k = 1, 2. Since for r ∈ R we have

µ1(Ir) = µ2(Ir) = λ1(Ir) = r, we conclude µ1(Iα) = µ2(Iα).

Remark 3.13. — A similar argument shows that for any prime p in the structure Qp

the Keisler measure on Qp induced by the Haar measure on Zp is smooth.

We also have an intrinsic characterization of smooth measures.

Proposition 3.14 ([18, Lemma 2.3]). — Let M be a structure. A measure µ on

Mm is smooth if and only if for any Lm+n-formula ϕ(x̄, ȳ) and any ε > 0 there are

B1, . . . , Bk ∈ DefM(Mn) and for each i = 1, . . . , k, sets Li, Ui ∈ DefM(Mm) such that

(i) Mn ⊆
⋃k
i=1Bi;

(ii) for all i = 1, . . . , k, if b̄ ∈ Bi then Li ⊆ ϕ(M, b̄) ⊆ Ui;

(iii) for all i = 1, . . . , k we have µ(Ui)− µ(Li) < ε.

Proof. — Right to left: LetN be a an elementary extension ofM, ν a Keisler measure

on Nm extending µ and X ∈ DefN(Nm). Choose an Lm+n-formula ϕ(x̄, ȳ) and c̄ ∈ Nn

such that X = ϕ(N, b̄). For ε > 0 choose Bi, Li, Ui as in (i)-(iii). By (i), since N is

an elementary extension, we have Nn ⊆
⋃k
i=1 Bi(N), hence there is j with c̄ ∈ Bj(N).

Using (ii) we obtain Lj(N) ⊆ X ⊆ Uj(N), hence µ(Lj) ≤ ν(X) ≤ µ(Uj). Since

µ(Uj)− µ(Lj) < ε, uniqueness follows.

Left to right: Assume µ is smooth. Let ϕ(x̄; ȳ) and ε > 0 be given. Notice that for

any L,U ∈ DefM(Mm) the set {b ∈Mn : L ⊆ ϕ(M, b̄) ⊆ U} is definable. Let’s say that

an Ln(M)-formula θ(ȳ) is good if for some L,U ∈ DefM(Mm) we have µ(U)−µ(L) < ε

and L ⊆ ϕ(M ; c̄) ⊆ U for all c̄ ∈ θ(M). We need to show that finitely many good

formulas cover Mn. If not, then the set Σ = {¬θ(ȳ) : θ is good} is consistent. Let N be

an elementary extension ofM with some b̄ ∈ Nn realizing Σ, and let X = ϕ(N, b̄). For

any M -definable L,U ∈ DefM(Mm) with L(N) ⊆ X ⊆ U(N) we have µ(U)−µ(L) ≥ ε.

By Theorem 3.7, µ has infinitely many extensions to Nm.

Remark 3.15. — In the above proposition taking the atoms in the Boolean algebra

generated by B1, . . . , Bk we may require in addition that the sets Bi are disjoint.

It turns out that smooth measures also satisfy uniqueness in terms of extensions to

products.
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Proposition 3.16. — For a structure M and a Keisler measure µ on Mm the

following conditions are equivalent.

(1) µ is smooth.

(2) For any Keisler measure ν on Mn, µ×ν has a unique extension to a Keisler

measure on Mm+n.

(3) For any type p ∈ Sn(M), µ×δp has a unique extension to a Keisler measure on

Mm+n.

Proof. — (1)=⇒(2). Let X ∈ DefM(Mm+n) and ε > 0. Using Proposition 3.14

we may find disjoint B1, . . . , Bk ∈ DefM(Mn) and L1, . . . , Lk, U1, . . . , Uk such that⋃k
i=1 Li×Bi ⊆ X ⊆

⋃k
i=1 Ui×Bi with

∑k
i=1 µ(Ui)ν(Bi)−

∑k
i=1 µ(Li)ν(Bi) < ε. Unique-

ness follows.

(2)=⇒(3) is obvious.

(3)=⇒(1). Let N be an elementary extension, and µ1, µ2 Keisler measures on Nm

extending µ. Assume µ1(X) 6= µ2(X) for someX ∈ DefN(Nm). Since everyN -definable

set is a fiber of a ∅-definable set, there is F ∈ DefM(Nm+n) and c̄ ∈ Nn such that

X = F (N)c̄. Let p = tp(c̄/M). Argue that for any Keisler measure ν onNm extending µ

the map Y 7→ ν(Y (N)c̄) is a Keisler measure on DefM(Mm+n) extending µ×δp. Derive

a contradiction.

If µ is a smooth Keisler measure on Mm and ν a Keisler measure on Mn then we will

denote by µ⊗ν the unique Keisler measure on Mm+n extending µ×ν.

Corollary 3.17. — Let M be a structure, µ a Keisler measure on Mm and ν a

Keisler measure on Mn. If both µ and ν are smooth then µ⊗ν is also smooth.

Corollary 3.18. — In the structure R, for every n ∈ N the Keisler measure λn
induced by Lebesgue measure on [0, 1]n is smooth.

Proof. — Argue by induction that λn+1 = λn⊗λ1.

3.3. Definable and generically stable measures

Definition 3.19. — Let M be a structure and µ a Keisler measure on Mm.

We say that µ is definable if for every Lm+n-formula ϕ(x̄; ȳ) and any ε > 0 there is

a partition Mn into definable sets B1, . . . , Bk such that for every i = 1, . . . , k and any

c̄, c̄′ ∈ Bi we have |µ(ϕ(M, c̄))− µ(ϕ(M, c̄′))| < ε.

For A ⊆M we say that µ is definable over A if in addition we can choose B1, . . . , Bk

as above to be A-definable.

Remark 3.20. — (a) By Proposition 3.14 every smooth measure is definable.

(b) Let M be a structure and µ a definable Keisler measure on Mm. Let N be an

elementary extension of M. It is not hard to see that there is a unique Keisler

measure on Nm extending µ, which is definable over M . We will denote this

measure by µ|N .
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(c) Let M be a structure and p ∈ Sm(M). By taking ε = 1/2 we see that the

Keisler measure δp is definable if and only if for any Lm+n-formula ϕ(x̄ : ȳ) the set

{c̄ ∈Mn : ϕ(x̄; c̄) ∈ p} is definable. Such type p is called a definable type.

Example 3.21. — 1. If F is an algebraically closed field then it can be shown that

every type p ∈ Sm(F) is definable. Let p ∈ Sm(F) and V ⊆ Fm an irreducible

variety defined over F with p = pV (see Example 1.33). If K is an algebraically

closed field extending F then it is not hard to see that δp|K = δq where q is the

generic type in V over K.

2. Let F be an ordered real closed field. Let p ∈ S1(F) be a definable type. Consider-

ing the formula x < y, we obtain that the set X = {c ∈ F : x < c ∈ p} is definable.

Since every definable subset of F is a finite union of points and intervals, the set

X has a least upper bound in F∪{±∞}. It follows then that p must be one of the

following types (see Example 1.34): tp(a/F), tp(a−/F), tp(a+/F) (for some a ∈ F),

tp(−∞/F), or tp(+∞/F). If K is an ordered real closed field extending F, a ∈ F
and p = tp(a+/F) then it is not hard to see that δp|K = δq, where q = tp(a+/K).

Definition 3.22. — 1. LetM be an elementary substructure of N and µ a Keisler

measure on Nm. We say that µ is finitely satisfiable in M if for every X ∈
DefN(Nm) with µ(X) > 0 we have X ∩Mm 6= ∅.

2. Let M be a structure. A Keisler measure µ on Mm is called generically stable if

it is definable and for every elementary extension N of M the Keisler measure

µ|N is finitely satisfiable in M.

If µ is a Keisler measure on Mm andM� N then, by Theorem 3.7, there is a Keisler

measure on Nm extending µ finitely realizable in M. Thus we have the following.

Proposition 3.23. — Every smooth Keisler measure is generically stable.

Example 3.24. — 1. If F is an algebraically closed field then for any type p ∈ Sn(F)

the Keisler measure δp is generically stable.

2. Let F be an ordered real closed field. Let p ∈ S1(F) be a definable type, say

p = tp(+∞/F). Let K be a real closed field extending F with an element γ ∈ K
greater than all elements of F. Then δp|K = δq, where q = tp(+∞/K). For the

definable set Iγ = {a ∈ K : γ < a} we have δq(Iγ) = 1 but Iγ ∩ F = ∅. Thus

the Keisler measure δp is not generically stable. In fact the only types p ∈ Sm(F)

whose Keisler measure δp is generically stable are principal types.

Remark 3.25. — Generically stable types in algebraically closed fields play the central

role in the work of Hrushovski and Loeser on Berkovich Spaces (see [15, 8]).

Before characterizing generically stable measures in terms of products, we briefly

review integration with respect to finitely additive probability measures. For more

details we refer to [9, Chapter III] and [3].
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3.3.1. Integration with respect to finitely additive probability measures. — We fix a set

Ω and a Boolean subalgebra B ⊆P(Ω).

As usual for a set X ⊆ Ω we denote by 1X the indicator function of X, namely

1X(a) = 1 if a ∈ X and 1X(a) = 0 if a 6∈ X.

By a B-simple function, or just a simple function we mean a function f : Ω → R
such that f =

∑n
i=1 ri1Bi

for some r1, . . . , rn ∈ R and B1, . . . , Bn ∈ B.

For a finitely additive probability measure µ on B and a simple function f =∑n
i=1 ri1Bi

we define ∫
Ω

f dµ =
n∑
i=1

riµ(Bi).

It is easy to see that the above integral does not depend on a representation of f as a

simple function.

We say that a function f : Ω → R is B-integrable or just integrable, if it is in the

closure of the set of simple functions with respect to the L∞-norm, i.e. for all ε > 0

there is a simple function g with |f(x) − g(x)| < ε for all x ∈ Ω. If f is B-integrable

and µ is a finitely additive probability measure on B then the integral of f with respect

to µ is defined as ∫
Ω

fdµ = lim
n→∞

∫
Ω

gndµ,

where (gn)n∈N is a sequence of simple functions convergent to f . It is very easy to see

that this integral does not depend on the choice of a convergent sequence.

Remark 3.26. — Let µ be a finitely additive probability measure on a Boolean algebra

B ⊆P(Ω). By Stone’s representation theorem B is isomorphic to the Boolean algebra

of clopen subsets of the Stone space S(B). (Recall that S(B) consists of all ultrafilters

on B and is a compact Hausdorff space.) It is well known that µ can be extended to a

unique σ-additive regular Borel probability measure on S(B).

Let M be a structure. Since the set of types Sm(M) can be identified with the

Stone space S(DefM(Mm)) every Keisler measure on Mm extends to a σ-additive reg-

ular probability measure on Sm(M). This observation combined with combinatorial

properties of NIP structures (such as Proposition 3.5) plays an important role in proofs

of many results presented below.

We now return to products of Keisler measures.

Let M be a structure, µ1 be a Keisler measure on Mm and µ2 a Keisler measure

on Mn. We would like to construct a “canonical” extension of µ1×µ2 to a Keisler

measure µ on Mm+n.

Let X ⊆ Mm+n be a definable set. Consider the function fX : Mn → R defined as

fX(c̄) = µ1(Xc̄), where, as usual, Xc̄ is the fiber of X over c̄. If µ1 is definable then it is

not hard to see that the function fX is DefM(Mn)-measurable and we can define µ(X) =∫
Mn fXdµ2. Let’s restate this definition of µ in terms of indicator functions. We can
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rewrite fX as fX : v̄ 7→
∫
Mm 1X(ū; v̄)dµ1 and then µ(X) =

∫
Mn

(∫
Mm 1X(ū; v̄)dµ1

)
dµ2,

that we will write, to avoid a confusion, as µ(X) =
∫
Mn

(∫
Mm 1X(ū; v̄) dµ1(ū)

)
dµ2(v̄).

Definition 3.27. — Let M be a structure, µ be a Keisler measure on Mm and ν a

Keisler measure on Mn.

If µ is definable then we define µnν : DefM(Mm+n)→ R as

(µnν)(X) =

∫
Mn

(∫
Mm

1X(ū; v̄) dµ(ū)

)
dν(v̄).

Similarly, if ν is definable then we define µoν : DefM(Mm+n)→ R as

(µoν)(X) =

∫
Mm

(∫
Mn

1X(ū; v̄) dν(v̄)

)
dµ(ū).

It is not hard to see that both µnν and µoν are Keisler measures on Mm+n extending

µ×ν.

Remark 3.28. — If both µ and ν are definable then it is not true in general that

µnν = µoν.

For example, in an ordered real closed field F consider µ=ν=δp, where p = tp(+∞/F).

Let X ⊆ F2 be the definable set X = {(u, v) ∈ F2 : u < v}.
For every a ∈ F the set {u ∈ F : (u, a) ∈ X} is bounded from above, hence it is not

in p, the function v 7→
∫
F 1X(u; v) dδp(u) equals 0 everywhere, and (δpnδp)(X) = 0.

On the other hand, the function u 7→
∫
F 1X(u; v) dδp(v) equals 1 everywhere, and

(δpoδp)(X) = 1.

For a proof of the following result we refer to [18].

Theorem 3.29. — Let M be a NIP structure. For a definable Keisler measure µ on

Mm the following conditions are equivalent.

1. µ is generically stable.

2. µ commutes with itself, i.e. µnµ = µoµ.

3. µ commutes with any definable Keisler measure, i.e. µnν = µoν for any definable

Keisler measure ν on Mn.

For generically stable measures µ and ν, by µ⊗ν we will denote the Keisler mea-

sure µnν.

There is also a characterization of generically stable measures that has a combinato-

rial flavor.

Definition 3.30. — Let M be a structure. A Keisler measure µ on Mm is called a

frequency interpretation measure or fim for short, if for every Lm+n-formula ϕ(x̄; ȳ)

and any ε > 0 there is a sequence ā1, . . . , āk ∈ Mm such that for any c̄ ∈ Mn, for the

set X = ϕ(M ; c̄) we have |µ(X)− Av(a1, . . . , ak;X)| < ε.
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Remark 3.31. — If a structure M is NIP, then by the VC-Theorem, in the above

definition we may choose ā1, . . . , āk with k < C, where C depends on ε and ϕ only, and

does not depend on µ.

Theorem 3.32. — Let µ be a Keisler measure in a NIP structure M. Then µ is

generically stable if and only if it is fim.

Proof. — We will prove only the easy direction: right to left, and refer to [18] for the

other direction.

Let µ be a Keisler measure onMm. Assume it is fim. First we show that it is definable.

Let ϕ(x̄; ȳ) be an Lm+n-formula. Since µ is fim, we can choose ā1, . . . , ās ∈ Mm such

that for any c̄ ∈Mn, for the set X = ϕ(M ; c̄) we have |µ(X)−Av(a1, . . . , ak;X)| < ε/2.

For a subset w of {1, . . . , s} let Bw be the subset of Mn defined by the formula

θw(ȳ) =
∧
i∈w

ϕ(āi; ȳ) ∧
∧
i 6∈w

¬ϕ(āi; ȳ).

It is easy to see that these sets Bw satisfy the conditions of Definition 3.19, hence µ is

definable.

Let N be an elementary extension of M and ν = µ|N . We need to show that ν

is finitely satisfiable in M. Let X ⊆ Nm be a definable set with ν(X) > 0. Choose

ε > 0 such that ν(X) > 2ε. Let ϕ(x̄; ȳ) be an Lm+n-formula with X = ϕ(N ; c̄) for

some c̄ ∈ Nn. Since ν is definable over M there is an M -definable set B ⊆ Mn such

that c̄ ∈ B(N) and ν(ϕ(N ; c̄′)) > ε for all c̄′ ∈ B(N). Since ν�M is fim there are

ā1, . . . , āk ∈Mm such thatM |=
∨k
i=1 ϕ(āi; c̄

′) for all c̄′ ∈ B. Since N is an elementary

extension of M, the same is true for all c̄′ ∈ B(N), hence X contains at least one of

the āi.

The above theorem implies that generically stable measures are closed under ultra-

products.

Proposition 3.33. — LetM be a NIP structure, and µi, i ∈ I, a family of generically

stable measures on Mm. For any ultrafilter U on P(I) the Keisler measure µ =

U - limi∈I µi is a generically stable Keisler measure over MU .

Proof. — We use the equivalence of generically stable and fim.

Let N =MU . We need to show that µ is fim.

Let ϕ(x̄; ȳ) be an Lm+n-formula and ε > 0.

For each i ∈ I we choose āi1, . . . , ā
i
k(i) ∈ Mm so that for each c̄ ∈ Mn we have

|µi(ϕ(M ; c̄))− Av(āi1, . . . , ā
i
k(i);ϕ(M ; c̄))| < ε/2.

By Remark 3.31 we may assume that all k(i) < C for some fixed C ∈ N. Since U
is an ultrafilter on P(I) there is a subset I0 ⊆ I with I0 ∈ U and k(i) = k(i′) for all

i, i′ ∈ I0. We will denote this common value by k.

Choose ᾱ1, . . . , ᾱk ∈ (Mm)I with ᾱs(i) = āis for all s = 1, . . . , k, and i ∈ I0, and

let β̄s = [ᾱs] be the corresponding elements of Nm. It is not hard to see that for any

γ̄ ∈ Nn we have |µ(ϕ(N ; γ̄))− Av(β̄1, . . . , β̄k;ϕ(N ; γ̄))| ≤ ε/2.
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3.4. Distality

As we have seen in Example 3.24 Keisler measures induced by types behave very

differently in algebraically closed fields and real closed fields: in algebraically closed

fields every Keisler measure induced by a type is generically stable, but in a real closed

field only realized types induce generically stable measures.

The notion of a distal structure (more precisely a distal theory) was introduced in

[31] as an attempt to capture some properties of real closed fields, by generalizing the

above properties of types to measures (recall that smooth measures can be viewed as

“realized” measures).

Definition 3.34. — A NIP structure M is called distal if for any elementary exten-

sion N of M every generically stable measure over N is smooth.

Below we will give a more combinatorial description of distal structures.

Definition 3.35. — Let M be a structure and ϕ(x̄; ȳ) an Lm+n-formula.

1. For a definable set D ⊆Mn and ā ∈Mm we say that ϕ(ā; ȳ) crosses D if ϕ(ā,M)∩
D 6= ∅ and ¬ϕ(ā;M) ∩D 6= ∅.

2. We say that the formula ϕ(x̄; ȳ) admits a weak cell decomposition if there is a

definable family F of subsets of Mn and f : N → N such that for any finite set

A ⊆Mm there are F1, . . . , Fs ∈ F with s ≤ f(|A|) satisfying the following

(a) Mn =
⋃s
i=1 Fi;

(b) for every ā ∈ A the formula ϕ(ā; ȳ) does not cross any Fi, i = 1, . . . , s.

Remark 3.36. — The existence of f : N→ N in the above definition guarantees that if

N is an elementary extension of M then ϕ(x̄; ȳ) has a weak cell decomposition in M
if and only if it has a cell weak decomposition in N .

Example 3.37. — 1. In an algebraically closed field K (or any strongly minimal struc-

ture) the formula x = y does not admit a weak cell decomposition.

Indeed, let ϕ be the formula x = y. Assume it admits a weak cell decomposition,

and let F be a definable family of subsets of F as in Definition 3.35. By strong

minimality, there is k ∈ N such that for each F ∈ F either |F ∩ K| < k or

|K \ F | < k.

Let A ⊆ K be any finite set of size k, and F1, . . . , Fs be as in Definition 3.35.

Since K is covered by Fi, i = 1, . . . , s, at least one Fi must be infinite. Assume F1

is infinite. Since the complement of F1 has size at most k − 1 there is a ∈ A ∩ F1.

But then a = y crosses F1.

2. In an ordered real closed field K (or any o-minimal structure) every formula admits

a weak cell decomposition.

We consider only an Lm+1-formula ϕ(x̄; y). By o-minimality, there is k ∈ N such

that for any ā ∈ Km the set ϕ(ā;K) consists of at most k points and intervals, and

the same is true for its complement K \ ϕ(ā;K).

We choose F to be the family of all points and intervals in K.
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Let A ⊆ Km be finite. Let B ⊆ P(K) be the Boolean algebra generated by

ϕ(ā;F), ā ∈ A. It is not hard to see that every atom in this Boolean algebra

consists of points and intervals, with the total number of points and intervals

appearing in the atoms bounded by 2k|A|. We choose F ′i ’s to be these points and

intervals.

3. A similar argument shows that for every prime p every formula admits a weak cell

decomposition in the valued field Qp.

Theorem 3.38 ([6]). — For a NIP structure M the following conditions are equiva-

lent.

1. M is distal.

2. Every formula admits a weak cell decomposition in M.

Proof. — We will prove only 2 =⇒ 1 and refer to [6, Theorem 21] for the opposite

direction.

Let N be an elementary extension on M and µ a generically stable Keisler measure

on Nm. We need to show that µ is smooth. Let ϕ(x̄; ȳ) be an Lm+n-formula and

fix ε > 0. We will show the existence of Bi, Li, Ui satisfying the conditions (i)-(iii) of

Proposition 3.14.

By Remark 3.36, ϕ has a weak cell decomposition in N and we choose a definable

family F of subsets of Nn as in the definition of the weak cell decomposition. For every

F ∈ F let F# ⊆ Nm be the set of all ā ∈ Nm such that ϕ(ā;N) crosses F . It is easy

to see that the family {F# : F ∈ F} is definable.

Since µ is generically stable it is fim, hence there is a finite subset A ⊆ Nm such that

for every F ∈ F we have µ(F#) ≥ ε =⇒ F# ∩ A 6= ∅.
We choose non-empty B1, . . . , Bs in F covering Nn such that for each i = 1, . . . , s and

ā ∈ A the formula ϕ(ā; ȳ) does not cross Bi. In particular µ(B#
i ) < ε for i = 1, . . . , s.

For i = 1, . . . , s let Li = {ā ∈ Nm : ϕ(ā, N) ⊇ Bi}, and Ui = {ā ∈ Nm : ϕ(ā, N)∩
Bi 6= ∅}.

If b̄ ∈ Bi then clearly Li ⊆ ϕ(N ; b) ⊆ Ui. Also it is easy to see that Ui \ Li = B#
i ,

hence µ(Ui \ Li) < ε. Thus by Proposition 3.14 the measure µ is smooth.

Corollary 3.39. — 1. Every ordered real closed field (and any o-minimal struc-

ture) is distal.

2. For any prime p the valued field Qp is distal.

4. AN APPLICATION TO COMBINATORICS

Definition 4.1. — Let X, Y be sets and E ⊆ X×Y . A pair of subsets X0 ⊆ X,

Y0 ⊆ Y is called E-homogeneous if either X0×Y0 ⊆ E or (X0×Y0) ∩ E = ∅.

The following is a remarkable theorem by Alon et al. We refer to the introduction in

[1] for various applications of this result.
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Theorem 4.2 ([1, Theorem 1.1]). — Let E ⊆ Rm×Rn be a semi-algebraic subset.

There is a constant δ = δ(E) > 0 such that for any finite subsets A ⊆ Rm, B ⊆ Rn

there are A0 ⊆ A, B0 ⊆ B with |A0| ≥ δ|A|, |B0| ≥ δ|B|, and the pair A0, B0 is

E-homogeneous.

Moreover there are semi-algebraic families FE ⊆P(Rm) and GE ⊆P(Rn) depending

on E only such that A0 = A ∩ F and B0 = B ∩G for some F ∈ FE and G ∈ GE.

Remark 4.3. — (i) The moreover part is not stated explicitly in [1], but can be easily

derived from the proof.

(ii) The above theorem was generalized by Basu (see [2]) to (topologically closed) sets

definable in arbitrary o-minimal expansions of real closed fields.

(iii) In [11] the above theorem was extended to hyper-graphs, i.e. semi-algebraic subsets

E ⊆ Rn1× · · ·×Rnk .

Recently it was observed that a much more general version of the above result by

Alon et al. follows almost immediately from properties of generically stable measures

in distal structures.

Theorem 4.4 ([7, 32]). — Let M be a distal structure and E ⊆Mm×Mn a definable

set. For any ε > 0 there is δ = δ(ε, E) and definable families F ⊆ P(Mm) and

G ⊆ P(Mn) such that for any generically stable measures µ and ν on Mm and Mn,

respectively, with (µ⊗ν)(E) > ε there are F ∈ F and G ∈ G with µ(F ) > δ, µ(G) > δ

and F×G ⊆ E.

We will need a proposition.

Proposition 4.5. — Let M be a structure, E ⊆ Mm×Mn a definable set and µ, ν

smooth measures on Mm and Mn, respectively. If (µ⊗ν)(E) > 0 then there are definable

X ⊆Mm, Y ⊆Mn with µ(X) > 0, ν(Y ) > 0 and X×Y ⊆ E.

Proof. — If not then µ(X)ν(Y ) = 0 for all X ⊆ Mm, Y ⊆ Mn with X×Y ⊆ E. It

follows then that (µ×ν)(Z) = 0 for all Z ∈ DefM(Mm)⊗DefM(Mn) with Z ⊆ E.

By Theorem 3.7, there is a Keisler measure ξ on Mm+n with ξ(E) = 0. But, by

Proposition 3.16, µ⊗ν is the unique extension of µ×ν. A contradiction.

Proof of Theorem 4.4. — Let E ⊆ Mm×Mn be given. We will show that for every

ε > 0 there is δ > 0 such that for any generically stable measures µ and ν on Mm and

Mn, respectively, there are definable F ⊆ Mm and G ⊆ Mn with µ(F ) > δ, µ(G) > δ

and F×G ⊆ E.

Assume it fails and there is ε > 0 such that for any i ∈ N>0 there are generically stable

Keisler measures µi and νi on Mm and Mn, respectively, such that for any definable

F ⊆Mm and G ⊆Mn with µi(F ) > 1
i
, νi(G) > 1

i
we have F×G 6⊆ E.

Let U be a non-principal ultrafilter on P(N), N = MU , µ = U - limi∈N µi and

ν = U - limi∈N νi.
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We view N as an elementary extension ofM. By Proposition 3.33, both µ and ν are

generically stable, hence, since N is distal, they are both smooth. It is not hard to see

that µ⊗ ν = U - limi∈N µi ⊗ νi and (µ⊗ν)(E(N)) > ε.

Applying Proposition 4.5 to E(N), we obtain N -definable sets F ⊆ Nm, G ⊆ Nn

with F×G ⊆ E(N) and µ(F ) > δ, ν(G) > δ for some δ > 0. We choose an Lm+k-

formula θ1(x̄; ū), an Ln+s-formula θ1(ȳ, v̄), ā ∈ Nk, b̄ ∈ N s with F = θ1(N, ā) and

G = θ2(N, b̄).

Choose ᾱ ∈ (Mk)I , β̄ ∈ (M s)I with ā = [ᾱ] and b̄ = [β̄]. For i ∈ N let Fi =

θ1(M, ᾱ(i)) and Gi = θ1(M, β̄(i))

By  Loś Theorem (Theorem 1.25) and the construction of ultralimits of measures (see

Section 3.0.1) we have that the set

I = {i ∈ N : µi(Fi) ≥ δ, νi(Gi) ≥ δ and Fi×Gi ⊆ E}

is in U . Since U is non-principal it must be infinite, hence contains i with 1/i < δ

contradicting our assumption.

The existence of definable families F and G can be shown by a similar method. We

refer to [32, Theorem 2.2] for details.

Corollary 4.6. — Let M be a distal structure and E ⊆ Mm×Mn a definable set.

There is a constant δ = δ(E) and definable families F ⊆P(Mm) and G ⊆P(G) such

that for any generically stable measures µ and ν on Mm and Mn, respectively, there

are F ∈ F and G ∈ G with µ(F ) > δ, µ(G) > δ, and the pair F , G is E-homogeneous.

Proof. — Apply Theorem 4.4 to both E and its complement ¬E with ε = 1/3.

Remark 4.7. — Taking M to be the ordered field of reals, and considering measures

concentrated on finite sets, it is not hard to see that the above corollary implies Theo-

rem 4.2.

Remark 4.8. — 1. The above proof of Theorem 4.4 also works for definable hyper-

graphs, i.e. definable E ⊆Mm1×Mm2× · · ·×Mmk .

2. The proof of Theorem 4.4 presented here is due to Simon [32]. The original proof

of Chernikov and Starchenko [7] is more involved, but potentially provides a way

to compute δ from E and ε.

As in the case of finite graphs whose edge relations are given by a fixed semi-algebraic

relation (see [12, Theorem 1.3]), for graphs definable in distal structures we have a

strong Szemerédi-type regularity lemma with homogeneous sets in the partition, and

a polynomial bound of the size of the partition. For a proof and also a hyper-graph

version we refer to [7].
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Theorem 4.9 (Strong Szemerédi regularity). — Let M be a distal structure. For any

definable symmetric set E ⊆ Mm×Mm (i.e. (ā, b̄) ∈ E ↔ (b̄, ā) ∈ E) there is c > 0

satisfying the following. Given ε > 0 there is a definable family F ⊆P(Mm) such that

for any generically stable measure µ on Mm there are F1, . . . , Fk ∈ F partitioning Mm

and a set Σ ⊆ {1, . . . , k}×{1, . . . , k} such that

1. Bounded size of the partition: k ≤ (1/ε)c.

2. Few exceptions:
∑

(i,j)∈Σ µ(Fi)µ(Fj) < ε.

3. Homogeneity : for all (i, j) 6∈ Σ the pair Fi, Fj is E-homogeneous.

Thus distal structures provide a natural framework for a model theoretic approach to

Ramsey-type results in geometric combinatorics, and it turns out that these Ramsey-

style results characterize distality.

Theorem 4.10 ([7, Theorem 6.10]). — A NIP structure M0 is distal if and only if

the conclusion of Theorem 4.4 holds in any elementary extension M of M0.
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459–507.



1114–28

[9] Dunford, N., and Schwartz, J. T. Linear Operators: General theory. Linear

operators. Interscience Publ., 1957.

[10] Duret, J.-L. Les corps pseudo-finis ont la propriété d’indépendance. C. R. Acad.
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