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INTRODUCTION

Monge-Ampère equations on compact Kähler manifolds can be solved by a variational

method that is independent of Yau’s theorem. The technique of [BBGZ13] is based on

the study of certain functionals (Ding-Tian, Mabuchi) on the space of Kähler metrics,

and their geodesic convexity due to [Chen00] and Berman-Berndtsson [BeBe14] in its full

generality. Recent applications include the existence and uniqueness of Kähler-Einstein

metrics on Q-Fano varieties with log terminal singularities, given in [BBEGZ15], and

a new proof by [BBJ15] of a uniform version of the Yau-Tian-Donaldson conjecture

[Tian97]. This provides a simpler route to the existence theorem for Kähler-Einstein

metrics due to Chen-Donaldson-Sun [CDS15], albeit with a stronger hypothesis. Our

goal is to present the main ideas involved in this approach (starting from the basics!)

0.A. Kähler metrics. A Kähler manifold (X,ω) is a complex manifold X of di-

mension n = dimCX endowed with a d-closed smooth positive (1, 1)-form ω. In local

holomorphic coordinates (z1, . . . , zn), one can write ω = i
∑

1≤j,k≤n ωjk(z) dzj ∧ dzk, i.e.

(ωjk(z)) is a positive definite hermitian matrix at every point, and dω = 0, so that

ω is also a (real) symplectic structure on X. The holomorphic tangent bundle TX is

then equipped with the associated hermitian structure hω =
∑

1≤j,k≤n ωjk(z) dzj ⊗ dzk.
There is a unique connection ∇h on TX , called the Chern connection, such that h is

∇h-parallel and ∇0,1
h coincides with the ∂ operator given by the complex structure.

The Chern curvature tensor, which coincides with the Riemann curvature tensor in the

Kähler case, is the (1, 1)-form form with values in the bundle of endomorphisms of TX ,

i.e. a section in C∞(X,Λ1,1T ∗X ⊗ End(TX)), given by

(0.1) ΘTX ,ω :=
i

2π
∇2
h = i

∑
j,k,λ,µ

cjkλµdzj ∧ dzk ⊗
∂

∂zλ

∗
⊗ ∂

∂zµ
.

Its trace Tr(ΘTX ,ω) = i
∑

j,k,λ cjkλλdzj ∧ dzk is also the curvature form of the anti-

canonical line bundle ΛnTX ( = −KX in additive notation), and is by definition the

Ricci curvature Ricci(ω). A standard calculation gives

(0.2) Ricci(ω) = ΘΛnTX ,Λnω = −ddc log det(ωjk) where dc = 1
4iπ

(∂ − ∂), ddc = i
2π
∂∂.
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By definition, Ricci(ω) is a closed real (1, 1)-form, and its De Rham cohomology class

is induced by the first Chern class c1(X) := c1(TX) = −c1(KX) ∈ H2(X,Z).

0.B. Kähler-Einstein metrics and the conjecture of Yau-Tian-Donaldson.

A Kähler metric ω is said to be Kähler-Einstein if

(0.3) Ricci(ω) = λω for some λ ∈ R.

This requires λω ∈ c1(X), hence (0.3) can be solved only when c1(X) is positive definite,

negative definite or zero, and after rescaling ω by a constant, one can always assume

that λ ∈ {0, 1,−1}. Let us fix some reference Kähler metric ω0. Under the cohomo-

logical assumption c1(X) = λ{ω0} ∈ H2(X,R), the ∂∂-lemma says that there is a

function f ∈ C∞(X,R) such that

(0.4) Ricci(ω0)− λω0 = ddcf.

The potential f is defined modulo an additive constant, and we will normalize f so that∫
X
efωn0 =

∫
X
ωn0 . If we look for a solution ω = ω0+ddcϕ of (0.3) in the same cohomology

class as ω0, Formula (0.2) yields Ricci(ω)− Ricci(ω0) = −ddc log(ω0 + ddcϕ)n/ωn0 , and

the Kähler-Einstein condition (0.3) is reduced to solving the Monge-Ampère equation

(0.5) (ω0 + ddcϕ)n = e−λϕ+fωn0 .

• When λ = −1 and c1(X) < 0, i.e. c1(KX) > 0, Aubin [Aub78] has shown that there

is always a unique solution, hence a unique Kähler metric ω ∈ c1(KX) such that

Ricci(ω) = −ω.

This is a very natural generalization of the existence of constant curvature metrics on

complex algebraic curves, implied by Poincaré’s uniformization theorem in dimension 1.

• When λ = 0 and c1(X) = 0, the celebrated result of [Yau78] states that there

exists a unique metric ω = ω0 + ddcϕ in the given cohomology class {ω0} such that

Ricci(ω) = 0 (solution of the Calabi conjecture [Cal54], [Cal57]). More generally,

without any assumption on c1(X), [Yau78] showed that the Monge-Ampère equation

(ω0 + ddcϕ)n = efωn0 has a unique solution whenever
∫
X
efωn0 =

∫
X
ωn0 , in other words,

one can prescribe the volume form ωn = (ω0 + ddcϕ)n to be any given volume form

efωn0 > 0 under the unique constraint that the volume is preserved. Equivalently, the

Ricci curvature form can be prescribed to be equal any given smooth closed (1, 1)-form

Ricci(ω) = ρ,

provided that ρ ∈ c1(X). A synthetic exposition is given in [Bour79], cf. also [Siu87].

Among the numerous posterior geometric applications, let us mention the Bogomolov-

Beauville theorem [Beau83] on the structure of Ricci flat manifolds, and the more recent

result of [CDP14] on the structure of compact Kähler manifolds with semipositive Ricci

class c1(X).

• A much more difficult problem is to analyze solutions of (0.5) when λ = +1 and

c1(X) > 0, i.e. when −KX is ample; such manifolds are called Fano manifolds. In
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general, there is neither existence nor uniqueness. However, whenever solutions exist,

it is known since [BM87] that they are unique up to the action of the identity com-

ponent Aut0(X) in the complex Lie group of biholomorphisms of X. A necessary and

sufficient condition for the existence of Kähler-Einstein metrics had been conjectured

by Yau [Yau86], Tian and Donaldson. The necessity was known since [Tian97] (see

also [Don02] and the Bourbaki lecture [Bour97]), but the sufficiency, and a solution

of the conjecture, has been given only recently, as reported in last year’s Bourbaki

seminar [Eys15]:

Theorem 0.6 (Chen-Donaldson-Sun [CDS15]; see also [DS15, CSW15] and [Tian15])

Let X be a Fano manifold. Then X admits a Kähler-Einstein metric if and only if it

is K-stable.

The definition of the K-stability condition will be given in Section 4: the concept is

based on a positivity assumption for certain Donaldson-Futaki invariants attached to

one parameter degenerations (Xt) of X. In the present paper, we will briefly sketch

an alternative variational approach derived from [BBGZ13, BBEGZ15] and [BBJ15].

Together with the usual Kähler geometry functionals which we will describe at some

length in Section 1, it also involves non-Archimedean counterparts. The following

consequence is obtained among many other results:

Theorem 0.7 (Berman-Boucksom-Jonsson [BBJ15]). — Let X be a Fano manifold

with finite automorphism group. Then X admits a Kähler-Einstein metric if and only

if it is uniformly K-stable.

Theorem 0.6 is stronger than Theorem 0.7 since it allows X to have nontrivial vec-

tor fields. It also uses K-(poly)stability instead of uniform K-stability. However, the

variational proof of 0.7 avoids several of the subtle points in the previous approaches.

For example, it uses neither the continuity method, nor partial C0-estimates, Cheeger-

Colding-Tian’s theory, or the Kähler-Ricci flow. Moreover, a variant of the proof of

Theorem 0.7 gives “directly” the semistable version of the YTD conjecture that was

previously deduced from [CDS15] in [Li13]:

Theorem 0.8. — Let X be a Fano manifold. Then X is K-semistable if and only if

its greatest Ricci lower bound β(X) is equal to 1.

Here the value β(X) is defined to be the supremum of lower bounds b such that c1(X)

contains a Kähler metric ωb with Ricci(ωb) ≥ b ωb (this is always possible for 0 < b� 1

by Yau’s theorem). By [Szé11], this amounts to the solvability of Aubin’s continuity

method up to any time t < β(X).

0.C. Log Fano manifolds. By definition, a pair (X,∆) is formed by a connected

normal compact complex variety X and an effective Q-divisor ∆ such that KX + ∆

is Q-Cartier. One then considers the ddc-cohomology class of −(KX + ∆), denoted

by c1(X,∆). It is well known, thanks to the Hironaka desingularization theorem, that
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there exists a log resolution π : X̃ → X of (X,∆), namely a modification of X over the

complement of the singular loci of X and ∆, such that the pull-back of ∆ and of Xsing

consists of simple normal crossing (snc) divisors in X̃ and

(0.9) π∗(KX + ∆) = KX̃ + E, E =
∑

j ajEj

for some Q-divisor E whose push-forward to X is ∆ (since Xsing has codimension 2, the

components Ej that lie over Xsing yield π∗Ej = 0). The coefficient −aj ∈ Q is known

as the discrepancy of (X,∆) along Ej. Let r be a positive integer such that r(KX + ∆)

is Cartier, and σ a local generator of O(r(KX + ∆)) on some open set U ⊂ X. Then

the (n, n) form

(0.10) |σ|2/r := in
2

σ1/r ∧ σ1/r

is a volume form with poles along S = Supp ∆ ∪ Xsing. By the change of variable

formula, its local integrability can be checked by pulling back σ to X̃, in which case it

is easily seen that the integrability occurs if and only if aj < 1 for all j, independently

of the log resolution π that has been selected. One then says that the pair (X,∆) is klt

(a short-hand for Kawamata log terminal). In the special case ∆ = 0, one says that X

is log terminal when the pair (X, 0) is klt (so that KX is in particular Q-Cartier, i.e.

by definition, X is Q-Gorenstein).

Definition 0.11. — A log Fano pair is a klt pair (X,∆) such that X is projective and

the Q-divisor A = −(KX + ∆) is ample.

This assumption implies that the cohomology class c1(X,∆) contains a Kähler

form ω0 (near a singular point, this means that ω0 can be extended locally as a Kähler

form in a smooth ambient space containing the germ of X). Every form ω = ω0 + ddcϕ

in the same cohomology class can be interpreted as the curvature form of a smooth

hermitian metric h on O(−(KX + ∆)), whose weight is φ = u0 + ϕ where u0 is a local

potential of ω0. In this setting, we denote

(0.12) ω = ω0 + ddcϕ = ddcφ

where φ is understood as the weight of a global metric formally denoted h = e−φ on

the Q-line bundle O(−(KX + ∆)). Its inverse eφ is a hermitian metric on O(KX + ∆),

and in our notation, if σ is a local generator of O(r(KX + ∆)) as above, the product

|σ|2/reφ = eϕ+u0 is (locally) a smooth positive function whenever ϕ is smooth. This

implies that

e−φ = |σ|2/re−(ϕ+u0)

should be seen as an integrable volume form on X with poles along Supp ∆. The

Kähler-Einstein condition (0.5) can now be rewritten in a much simpler way

(0.13) (ddcφ)n = c e−φ on X r S,
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where c > 0 is a constant such that c
∫
X
e−φ =

∫
X
ωn0 = An. The corresponding Ricci

identity for ω = ddcφ, taken in the sense of currents, is

(0.14) Ricci(ω) = ω + [∆],

where [∆] is the current of integration over ∆. Of course, it might be desirable to

work on a nonsingular variety, and for this, one can try instead to solve the analogous

equation (ddcφ̃)n = e−φ̃ on X̃ r SuppE, putting φ̃ = π∗φ = φ ◦ π for a suitable log

resolution π as in (0.9). The expected poles of e−φ̃ are then given by the snc Q-divisor

E =
∑
ajEj with aj < 1 (notice, however, that the pull-back class π∗c1(X,∆) is then

merely nef and big, and no longer ample as soon as π 6= IdX).

0.D. Kähler-Einstein metrics and coercivity of the Mabuchi K-energy.

Kähler-Einstein metrics can be shown to correspond to critical points of either the

Mabuchi K-energy functional M or the Ding functional D, both defined on the space P
of Kähler potentials (see Section 1 for definitions). They are related by an inequality

D ≤ M . Let us denote by J ≥ 0 the Aubin energy functional, a non-linear higher di-

mensional version of the classical Dirichlet functional. The results of [Tian97, PSSW08]

have established the following fundamental facts:

Theorem 0.15. — If X is a Fano manifold with finite automorphism group, the fol-

lowing properties are equivalent:

(i) X has a Kähler-Einstein metric ;

(ii) the Ding functional D is coercive, i.e. D ≥ δJ − C on P for some δ, C > 0 ;

(iii) the Mabuchi functional M is coercive on P.

The proof that (iii)=⇒(i) will be sketched here via the alternative variational

approach of [BBGZ13, BBEGZ15], which moreover also brings an affirmative answer in

the log Fano situation. The implication (i)=⇒(ii) has very recently been given a very

elegant proof in [DR15], based on new ideas that influenced the strategy of [BBJ15].

0.E. The role of singular potentials. One big issue is that the equations (0.13–

0.14) necessarily involve singularities along S, and one has to be able to deal with

Monge-Ampère operators of the form (ω0 + ddcϕ)n where the potentials ϕ may exhibit

some sort of singularities. At this point, it is not even clear that (0.13–0.14) will make

sense. Even in the smooth Fano case where ∆ = 0 and S = ∅, the space of smooth

potentials cannot be made compact in any reasonable sense. For this reason, considering

more general potentials is needed for proving existence results, even in the absence of

singularities in the equations. It is shown here, following [BBGZ13, BBEGZ15], that

one appropriate such class is the class E1 of “finite energy” potentials. In the local

context, i.e. on hyperconvex domains of Cn, such classes had been already considered

by U. Cegrell in [Ceg98]. The main functionals defined on the space of Kähler potentials

can be extended to E1, and the related convexity and monotonicity properties combined

with suitable properness assumptions yield existence and uniqueness results for Kähler-

Einstein metrics on general log Fano varieties.
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1. FUNCTIONALS ON THE SPACE OF KÄHLER POTENTIALS

1.A. The space of Kähler potentials. Let A ∈ H1,1

∂∂
(X,R) be a Kähler cohomology

class, i.e. a class of d-closed (1, 1)-forms modulo ∂∂-exact forms, containing at least one

Kähler metric α > 0. Let ω0 = α+ ddcψ0 = ddcφ0 ∈ A be a Kähler metric on X in the

given cohomology class A, where φ0 is thought of as the weight of a hermitian metric

h0 = e−φ0 on some “virtual” ample line bundle A, although we do not necessarily need

A to be an integral or rational class. Later on, we will be mostly interested in the

Fano case A = −KX and the log Fano case A = −(KX + ∆). Let V =
∫
X
ωn0 = An

be the volume of ω0. One considers the space PA of potentials of Kähler metrics

ω = ω0 + ddcψ ; again, they are rather thought as hermitian metrics h = e−φ on A

with strictly plurisubharmonic (psh) weight φ. They are in 1 : 1 correspondance with

smooth functions ψ = φ−φ0 ∈ C∞(X,R), so that h = h0e
−ψ. The most basic operator

of interest on PA is the Monge-Ampère operator

(1.1) PA →M+, MA(φ) = (ddcφ)n = (ω0 + ddcψ)n

into the space of measures with positive densities. According to Mabuchi [Mab85],

the space PA can be seen as some sort of infinite dimensional Riemannian manifold:

a “tangent vector” to PA is an infinitesimal variation δφ ∈ C∞(X,R) of φ (or ψ), and

the infinitesimal Riemannian metric at a point h = e−φ is given by

(1.2) ‖δφ‖2
2 =

1

V

∫
X

(δφ)2 MA(φ).

Observe that the tangent bundle TPA
= PA × C∞(X,R) is trivial here. We let d2 be

the geodesic distance associated with this Riemannian metric. In a series of remarkable

works [Chen00, CC02, CT08, Chen09, CS09] X.X. Chen and his collaborators have

studied the metric and geometric properties of the space PA, showing in particular that

it is a path metric space (a non-trivial assertion in this infinite dimensional setting) of

non-positive curvature in the sense of Alexandrov. A key step from [Chen00] has been

to produce almost C1,1-geodesics which turn out to minimize the intrinsic distance d2.

One can define a similar Finsler metric on PA by taking Lp norms instead of L2 norms

(1.2p) ‖ψ‖pp =
1

V

∫
X

|ψ|p MA(φ).

The associated integrated distance dp is especially interesting for p = 1 as well.

1.B. Some useful functionals. The space PA is endowed with several functionals of

great geometric significance, which we briefly describe. They a priori depend on the

choice of φ0, and not just on φ ∈ PA.
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• The Monge-Ampère functional is

Eφ0(φ) =
1

(n+ 1)V

n∑
j=0

∫
X

(φ− φ0)(ddcφ)j ∧ (ddcφ0)n−j(1.3)

=
1

(n+ 1)V

n∑
j=0

∫
X

ψ(ω0 + ddcψ)j ∧ ωn−j0 .(1.3′)

It is a primitive of the Monge-Ampère operator in the sense that dEφ0(φ) = 1
V

MA(φ),

i.e. for any path in PA, say [T, T ′] 3 t 7→ φt, one has

(1.4)
d

dt
Eφ0(φt) =

1

V

∫
X

φ̇t MA(φt) where φ̇t =
d

dt
φt.

This is easily checked by a differentiation under the integral sign:

d

dt
Eφ0(φt) =

1

(n+ 1)V

n∑
j=0

∫
X

(
φ̇t dd

cφ)j + j(φt − φ0)ddcφ̇t ∧ (ddcφt)
j−1
)
∧ (ddcφ0)n−j,

followed by an integration by parts
∫
X

(φt − φ0) ddcφ̇t ∧ α =
∫
X
φ̇t dd

c(φt − φ0) ∧ α,

for suitable d-closed (n − 1, n − 1)-forms α. Identity (1.4) is then obtained by just

collecting and cancelling terms together. As a consequence E satisfies the cocycle

relation

Eφ0(φ1) + Eφ1(φ2) = Eφ0(φ2),

so its dependence on φ0 is only up to a constant. Also, Eφ0(φ + c) = Eφ0(φ) + c if c is

a constant. Finally, if φt depends linearly on t, we have φ̈t = d2

dt2
φt = 0 and a further

differentiation of (1.4) yields

d2

dt2
Eφ0(φt) =

n

V

∫
X

φ̇t dd
cφ̇t ∧ (ddcφt)

n−1 = − n
V

∫
X

dφ̇t ∧ dcφ̇t ∧ (ddcφt)
n−1 ≤ 0.

We conclude from this calculation the fundamental fact that Eφ0 is concave on PA.

• The concavity of E implies the non-negativity of Jφ0(φ) := dEφ0(φ0)·(φ−φ0)−Eφ0(φ),

since the tangent at point φ0 must be above the graph of E. This quantity is called the

Aubin J-energy functional (cf. [Aub84]):

(1.5) Jφ0(φ) = V −1

∫
X

(φ− φ0)(ddcφ0)n − Eφ0(φ) = V −1

∫
X

ψ ωn0 − Eφ0(φ) ≥ 0.

Clearly Jφ0(φ+ c) = Jφ0(φ) if c is a constant.

• By exchanging the roles of φ, φ0 and putting J∗φ0(φ) = Jφ(φ0) ≥ 0, the cocycle relation

for E yields Eφ(−φ0) = −Eφ0(φ). The transposed J-energy functional is

(1.6) J∗φ0(φ) := Eφ0(φ)−V −1

∫
X

(φ−φ0)(ddcφ)n = Eφ0(φ)−V −1

∫
X

ψ(ω0+ddcψ)n ≥ 0.
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• The I-functional is the symmetric functional defined by

Iφ0(φ) = Iφ(φ0) := − 1

V

∫
X

(φ− φ0)
(

MA(φ)−MA(φ0)
)

=
n−1∑
j=0

V −1

∫
X

d(φ− φ0) ∧ dc(φ− φ0) ∧ (ddcφ)j ∧ (ddcφ0)n−1−j ≥ 0.(1.7)

One can also write

Iφ0(φ) = V −1

(∫
X

ψ ωn0 −
∫
X

ψ(ω0 + ddcψ)n
)
.

From these definitions, one finds immediately

(1.8) Iφ0(φ) = Jφ0(φ) + J∗φ0(φ).

• In the Fano or log Fano setting, the Ding functional ([Ding88, DT92]) is defined by

(1.9) Dφ0 = L− L(φ0)− Eφ0 , where L(φ) = − log

∫
X

e−φ.

This makes sense, since e−φ can then be seen as an integrable volume form by the klt

condition. By definition, the measure eL(φ)e−φ is a probability measure on X. It will

be called the adapted measure associated with φ. Under a change of base metric φ0,

the cocycle relation satisfied by E implies

(1.9′) Dφ1(φ)−Dφ0(φ) = Const = Eφ0(φ1)−
(
L(φ1)− L(φ0)

)
.

(Note: in [BBEGZ15], PA is denoted H, J∗ is denoted E∗ ; also, the constant L(φ0) in

the definition of D is omitted, and the adjustment is made by imposing L(φ0) = 0.)

• Given probability measures µ, ν on a space X, the relative entropy Entrµ(ν) ∈ [0,+∞]

of ν with respect to µ is defined as the integral

Entrµ(ν) :=

∫
X

log

(
dν

dµ

)
dν,

at least when ν is absolutely continuous with respect to µ ; one sets Entrµ(ν) = +∞
otherwise. The well known Pinsker inequality (see [DZ98, Exercise 6.2.17] for a proof)

states that for all µ, ν one has

Entrµ(ν) ≥ 1

2
‖µ− ν‖2 ≥ 0.

In particular, we must have µ = ν whenever Entrµ(ν) = 0. In our geometric Fano or

log Fano situation, the entropy functional Hφ0(φ) is defined to be the entropy of the

probability measure 1
V

(ddcφ)n with respect to eL(φ0)e−φ0 , namely

(1.10) Hφ0(φ) =

∫
X

log

(
(ddcφ)n/V

eL(φ0)e−φ0

)
(ddcφ)n

V
≥ 0.

• The Mabuchi functional (first introduced in [Mab85]) is then defined by

(1.11) Mφ0 = Hφ0 − J∗φ0 .
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If we combine (1.6) and (1.11), we get the more explicit expression

(1.11′) Mφ0(φ) =

∫
X

log

(
eφ(ddcφ)n

V

)
(ddcφ)n

V
− Eφ0(φ)− L(φ0).

As a consequence, if the base metric φ0 is changed to φ1, we also have

(1.11′′) Mφ1(φ)−Mφ0(φ) = Const = Eφ0(φ1)−
(
L(φ1)− L(φ0)

)
.

Observation 1.12. — If c is a constant, then

Eφ0(φ+ c) = Eφ0(φ) + c and L(φ+ c) = L(φ) + c.

On the other hand, the functionals Iφ0 , Jφ0 , J
∗
φ0
, Dφ0 , Hφ0 ,Mφ0 are invariant by φ 7→ φ+ c

and therefore descend to the quotient space KA = PA/R of Kähler metrics ω = ddcφ ∈ A.

1.C. Comparison estimates between these functionals. Let us first note the

following sequence of elementary inequalities (see for instance [BBGZ13, Lemma 2.2]):

(1.13)
1

n
Jφ(φ0) ≤ Jφ0(φ) ≤ n+ 1

n
Jφ0(φ) ≤ Iφ0(φ) ≤ (n+ 1)Jφ0(φ).

For the proof, notice that in (1.3) we have for j = 1, 2, . . . , n

δj :=

∫
X

(φ− φ0)(ddcφ)j−1 ∧ (ddcφ0)n−j+1 −
∫
X

(φ− φ0)(ddcφ)j ∧ (ddcφ0)n−j

=

∫
X

(φ− φ0)ddc(φ0 − φ) ∧ (ddcφ)j−1 ∧ (ddcφ0)n−j−1 ≥ 0

thanks to an integration by parts. Hence Eφ0(φ) is an average of (n + 1) terms that

may only decrease when j increases, and from there we get an estimate

1

V

∫
X

(φ− φ0)(ddcφ)n ≤ Eφ0(φ) ≤ 1

V

∫
X

(φ− φ0)(ddcφ0)n

in the interval between the j = n and j = 0 terms. By definition, Iφ0(φ) is the difference

of the two extreme terms and Jφ0(φ) is the difference of the last two terms, namely

Iφ0(φ) = δ1 + . . .+ δn, Jφ0(φ) =
δ1 + 2δ2 + . . .+ nδn

n+ 1
.

All inequalities of (1.13) are an immediate consequence, except possibly the first one.

For the latter, we exploit the symmetry of I to infer from what we already proved that

1

n
Jφ(φ0) ≤ 1

n+ 1
Iφ(φ0) =

1

n+ 1
Iφ0(φ) ≤ Jφ0(φ). �

By using (1.13), the equality J∗ = I − J (cf. (1.8)) implies

(1.14)
1

n
J ≤ J∗ ≤ nJ,

hence all three functionals I, J , J∗ have the same growth “at infinity” on PA. A further

and more important fact is a comparison of the Ding and Mabuchi functionals for log

Fano varieties (X,∆). It leads to a formal characterization of Kähler-Einstein metrics
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(assuming unrealistically that we only deal with smooth Kähler metrics, including the

Kähler-Einstein one – in fact, this may only happen when ∆ = 0 !).

Proposition 1.15. — Let (X,∆) be a log Fano manifold. Then Mφ0(φ) ≥ Dφ0(φ)

and, in case of equality, φ must be Kähler-Einstein.

Proof. — Unravelling the definitions we get M −D = (H − J∗)− (L−L(φ0)−E) and

Eφ0(φ)− J∗φ0(φ) = V −1
∫
X

(φ− φ0)(ddcφ)n by (1.6), hence

Mφ0(φ)−Dφ0(φ) =

∫
X

(
log

(
(ddcφ)n/V

eL(φ0)e−φ0

)
+ (φ− φ0)

)
(ddcφ)n

V
+ L(φ0)− L(φ)

=

∫
X

log

(
(ddcφ)n/V

eL(φ)e−φ

)
(ddcφ)n

V
≥ 0.

In case of equality, the Pinsker inequality implies (ddcφ)n

V
= eL(φ)e−φ, hence ω = ddcφ is

Kähler-Einstein.

As hinted above, it will be absolutely necessary to extend the functionals to suitable

spaces of non-necessarily smooth metrics if we wish to use Proposition 1.15. It will also

be needed to achieve compactness properties to ensure that the equality is reached.

1.D. A quasi-triangle inequality for I. We refer to [BBEGZ15] for the proof of

the following inequality. It is based on a combination of the Cauchy-Schwarz inequality

and an iteration of integration by parts.

Proposition 1.16. — There exists a constant cn > 0, only depending on the dimen-

sion n, such that

Iφ0(φ) ≤ cn
(
Iφ0(φ1) + Iφ1(φ)

)
.

for all φ0, φ1, φ ∈ PA.

2. MONGE-AMPÈRE OPERATORS WITH SINGULAR POTENTIALS

We sketch here a number of preliminary facts about functions and measures with

finite energy on a normal compact Kähler space, which rely on a combination of the

main results from [BEGZ10, BBGZ13, EGZ09].

2.A. Monge-Ampère operators in the sense of Bedford-Taylor. Consider locally

bounded plurisubharmonic (psh) functions u1, . . . , un ∈ L∞loc on a complex space X.

Then, following [BT76, BT82], one can define inductively any Monge-Ampère product

as a closed positive current by putting

(2.1) ddcu1 ∧ ddcu2 ∧ . . . ∧ ddcuk := ddc(u1 dd
cu2 ∧ . . . ∧ ddcuk)

in the sense of distributions. In fact, by induction, the coefficients ddcu2 ∧ . . . ∧ ddcuk
are complex Radon measures, their product by the locally bounded Borel function u1

is thus well defined, and one can take the ddc(...) in the sense of distributions (currents
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on a complex space X being defined as the dual space to the space of forms on the

regular locus Xreg that extend to a nonsingular ambient space). One needs to check

that ddcu1∧ . . .∧ddcuk is again a closed positive current. For this, one expresses locally

u1 = lim ↓u1,ν as a decreasing limit of smooth functions; this can be done e.g. by locally

extending u1 to a nonsingular ambient open chart Ω ⊂ CN and using convolution. Then

one gets a weak limit

(2.2) ddcu1 ∧ ddcu2 ∧ . . . ∧ ddcuk = lim
ν→+∞

ddcu1,ν ∧ ddcu2 ∧ . . . ∧ ddcuk ≥ 0.

Such products can be shown to be continuous by taking monotone limits of bounded psh

functions uj,ν . However, there is no such continuity for arbitrary weak limits uj,ν → uj.

The next step is to deal with non-necessarily bounded potentials.

2.B. Non pluripolar Monge-Ampère products. Let X be a normal compact

complex space endowed with a fixed Kähler form ω0 = ddcφ0 and let V :=
∫
X
ωn0 .

We denote by P(X,ω0) be the set of ω0-psh potentials, namely φ = φ0 + ψ such that

ddcφ = ω0 +ddcψ ≥ 0. The functions ψν := max{ψ,−ν} are again ω0-psh and bounded

for all ν ∈ N. The Monge-Ampère measures (ω0 + ddcψν)
n are therefore well-defined in

the sense of Bedford-Taylor, with∫
X

(ω0 + ddcψν)
n = V =

∫
X

ωn0 .

By [BT87], the positive measures µν := 1{ψ>−ν}(ω0 + ddcψν)
n satisfy

1{ψ>−ν}µν+1 = µν ,

and in particular µν ≤ µν+1. As in [BEGZ10], we will say that ψ has full Monge-Ampère

mass if the total mass of µν converges to V , i.e.

lim
ν→∞

µν(X) = lim
ν→∞

∫
{ψ>−ν}

(ω0 + ddc max{ψ,−ν})n = V.

In that case one sets (ω0 + ddcψ)n := limν→+∞ µν , which is thus a positive measure

on X with mass V .

More generally, according to [GZ07], for given Kähler classes {ω1}, . . . , {ωp} (say

ωj = ddcφ0,j), and arbitrary φj = φ0,j + ψj ∈ P(X,ωj), 1 ≤ j ≤ p, the positive current

(2.3) T = 〈(ω1 + ddcψ1) ∧ ... ∧ (ωp + ddcψp)〉

is also well-defined as the monotone limit of

Tν = 1⋂
{ψj>−ν}(ω1 + ddc max{ψ1,−ν}) ∧ ... ∧ (ωp + ddc max{ψp,−ν})

as ν → +∞. It depends continuously on the ψj’s when the latter converge monotoni-

cally. By [BT82], the coefficients of T = 〈(ω1 + ddcψ1) ∧ ... ∧ (ωp + ddcψp)〉 carry zero

mass on all pluripolar sets, and by [BEGZ10, Théorème 1.8], T = limTν is a closed

current. This is not a priori trivial since the Tν ’s are not closed; the idea is similar to

the technique introduced in Skoda [Sko82], El Mir [ElM84] and Sibony [Sib85]. This
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limit T is called the non-pluripolar product of the currents ωj +ddcψj. If ψ′j ∈ P(X,ωj)

is less singular than ψj in the sense that ψ′j ≥ ψj + Const, it is easy to show that∫
X

〈(ω1 + ddcψ1) ∧ ... ∧ (ωp + ddcψp)〉 ∧ α ≤
∫
x

〈(ω1 + ddcψ′1) ∧ ... ∧ (ωp + ddcψ′p)〉 ∧ α

whenever α ≥ 0 is a smooth closed (n − p, n − p)-form on X, and one could say

that the p-tuple (ψ1, . . . , ψp) has full Monge-Ampère mass if the closed positive current

〈(ω1 +ddcψ1)∧ ...∧ (ωp +ddcψp)〉 actually represents the cup-product cohomology class

{ω1} . . . {ωp} in Hp,p

∂∂
(X). One denotes by

Pfull(X,ω0) ⊂ P(X,ω0)

the set of ω0-potentials φ with full Monge-Ampère mass (ω0 +ddcψ)n. In a related way,

one can introduce the spaces

(2.4) T (X,ω0) = P(X,ω0)/R, Tfull(X,ω0) = Pfull(X,ω0)/R

of currents T = ω0 + ddcψ in the coholomogy class {ω0} ∈ H1,1

∂∂
(X) (resp. the subspace

of currents with full Monge-Ampère measure). One can then define a Monge-Ampère

operator with values in the space of probability measures of X

(2.5) Tfull(X,ω0) −→M(X), T 7−→ MA(T ) := V −1〈T n〉.

It should be strongly emphasized that for n ≥ 2 this operator is not continuous in the

weak topology of Tfull(X,ω0) (and the corresponding weak topology ofM(X)). Another

important fact is that potentials with full Monge-Ampère mass must have zero Lelong

numbers (essentially, the argument is that otherwise these Lelong numbers would create

mass on analytic sets, which are pluripolar).

Proposition 2.6 ([BBEGZ15]). — Let φ ∈ Pfull(X,ω0) and let π : X̃ → X be any

resolution of singularities of X. Then φ̃ := φ◦π has zero Lelong numbers. Equivalently,

e−ψ̃ ∈ Lp(X̃) for all p < +∞.

By using analytic Zariski decomposition (cf. [Dem92, Bouc04]), non-pluripolar pro-

ducts can be extended to the case of big cohomology classes, i.e. classes A ∈ H1,1

∂∂
(X)

containing a Kähler current T0 = θ0 + ddcψ ≥ εω0. In this context, the main results on

non-pluripolar Monge-Ampère operators can be summarized as follows (cf. [BEGZ10]).

Theorem 2.7. — Let A ∈ H1,1(X,R) be a big class on a compact Kähler manifold X.

If µ is a positive measure on X that puts no mass on pluripolar subsets and satisfies

the compatibility condition µ(X) = Vol(A), then there exists a unique closed positive

(1, 1)-current T ∈ A such that

〈T n〉 = µ.

The proof of Theorem 2.7 consists in reducing the situation to the Kähler case via

approximate Zariski decomposition. Uniqueness is obtained by adapting the proof of

S. Dinew [Din09] (which also deals with the Kähler class case).
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When the measure µ satisfies some additional regularity condition, the authors show

how to adapt Ko lodziej’s pluripotential theoretic approach to the sup-norm a priori

estimates [Kol05] to get global information on the singularities of T .

Proposition 2.8. — Assume that the measure µ in Theorem 2.7 furthermore has L1+ε

density with respect to Lebesgue measure for some ε > 0. Then the solution T ∈ A to

〈T n〉 = µ has minimal singularities.

Currents with minimal singularities were introduced in [DPS01]. For any pseudo-

effective class A ∈ H1,1

∂∂
(X) (i.e. any class {θ0} containing at least one positive current),

one can obtain them by considering an upper regularized envelope:

Tmin = θ0 + ddcψmin, ψmin(x) :=
(

supψ
{
ψ(x) ; ψ ≤ 0 and θ0 + ddcψ ≥ 0

})∗
.

When A is a Kähler class, the positive currents T ∈ A with minimal singularities are

exactly those with locally bounded potentials. When A is merely big all positive currents

T ∈ A will have poles in general, and the minimal singularity condition on T essentially

says that T has the least possible poles among all positive currents in A. Currents with

minimal singularities have in particular locally bounded potentials on the ample locus

Amp(A) of A, which is roughly speaking the largest Zariski open subset where A locally

looks like a Kähler class. Regarding local regularity properties, the following result can

be obtained.

Proposition 2.9. — In the setting of Theorem 2.7, assume that µ is a smooth strictly

positive volume form. Assume also that A is nef. Then the solution T ∈ A to the

equation 〈T n〉 = µ is C∞ on Amp(A).

One can likewise consider Monge-Ampère equations of the form

(2.10) 〈(θ0 + ddcψ)n〉 = eψdV

where θ0 is a smooth representative of a big cohomology class A, ψ is a θ0-psh function

and dV is a smooth positive volume form. One can show that (2.10) admits a unique

solution ψ such that
∫
X
eψdV = Vol(A). Theorem 2.8 then shows that ψ has minimal

singularities, and in the easier case of varieties of general type, one obtains as a special

case:

Theorem 2.11. — Let X be a smooth projective variety of general type. Then X

admits a unique singular Kähler-Einstein volume form of total mass equal to Vol(KX).

In other words the canonical bundle KX can be endowed with a unique non-negatively

curved metric e−φKE whose curvature current ddcφKE satisfies

(i) 〈(ddcφKE)n〉 = eφKE

and such that

(ii)

∫
X

eφKE = Vol(KX).

The weight φKE furthermore has minimal singularities.
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Remark 2.12. — In [Cao14, Dem15], a slightly more elaborate concept of positive

Monge Ampère products 〈(θ1 + ddcψ1) ∧ ... ∧ (θp + ddcψp)〉 is introduced for arbi-

trary pseudoeffective classes. It is defined by means of the Bergman kernel approxima-

tion technique of [Dem92, Bouc04], and has the property of neglecting Monge-Ampère

masses only on the analytic sets associated with the positive Lelong numbers of the

potentials ψj. Therefore, this product is cohomologically “more comprehensive” and

larger than the non-pluripolar product (which a priori neglects all pluripolar sets).

The general definition of the numerical dimension of a current and the study of the

abundance conjecture seem to require such a generalization, although it is not needed

here.

3. RESULTS INVOLVING FINITE ENERGY CURRENTS

3.A. Functions and currents of finite energy. Let A = {ω0} be a Kähler class,

ω0 = ddcφ0. Following [BBEGZ15], one introduces for any p ∈ [1,+∞[ the space

(3.1) Ep(X,ω0) :=

{
φ = φ0 + ψ ∈ Pfull(X,ω0) ;

∫
X

|ψ|p MA(ω0 + ddcψ) < +∞
}
,

and say that functions ψ ∈ Ep(X,ω0) have finite Ep-energy. The class E1(X,ω0) (p = 1)

is the most important in this context. One denotes by

T p(X,ω0) ⊂ T p
full(X,ω0)

the corresponding set of currents with finite Ep-energy, which can be identified with the

quotient space

T p(X,ω0) = Ep(X,ω0)/R via φ 7→ ddcφ = ω0 + ddcψ.

(It is important to note that T p(X,ω0) is not a closed subset of T (X,ω0) for the weak

topology.) From these definitions, the following fact is not very hard to check.

Theorem 3.2. — All functionals E,L, I, J, J∗, D,H,M have a natural extension to

arguments φ, φ0 ∈ E1(X,ω0), and I, J, J∗, D,H,M descend to T 1(X,ω0) = E1(X,ω0)/R.

3.B. Measures of finite energy. As in [BBGZ13], one defines the energy of a proba-

bility measure µ on X (with respect to ω0 = ddcφ0) as the Legendre-Fenchel transform

(3.3) E∗0(µ) := sup
φ=φ0+ψ∈E1(X,ω0)

(
E0(ψ)−

∫
X

ψ µ

)
∈ [0,+∞]

where E0(ψ) means here Eφ0(φ0 +ψ) in the notation of Section 1. This defines a convex

lower semicontinuous function E∗0 : M(X) → [0,+∞], and a probability measure µ is

said to have finite energy if E∗0(µ) < +∞. We denote the set of probability measures

with finite energy by

(3.4) M1(X,ω0) := {µ ∈M(X) | E∗0(µ) < +∞} .
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It follows from well known facts of pluripotential theory (see e.g. [BBGZ13, Corol-

laire 2.11]) that every pluripolar set S is contained in the poles of a potential in

E1(X,ω0), hence every measure µ ∈M1(X,ω0) has mass µ(S) = 0 on pluripolar sets.

Theorem 3.5 ([BBGZ13, Theorem 4.7]). — The map T = ω0 + ddcψ 7→ V −1〈T n〉 is

a bijection between T 1(X,ω0) and M1(X,ω0) (but it is not continuous with respect to

weak convergence).

3.C. The strong topology of currents with finite energy. With respect to the

weak topology of currents, compactness in T 1(X,ω0) is easy to obtain: any set of

currents with uniformly bounded energy is weakly compact. The drawback of weak

topology is that the Monge-Ampère operator is not weakly continuous as soon as

n ≥ 2. In order to overcome this difficulty, [BBEGZ15] has introduced the follow-

ing “strong topologies” on T 1X,ω0) and M1(X,ω0). This topology has been studied

further in [Dar15].

Definition 3.6. — The strong topology on T 1(X,ω0) and M1(X,ω0) is respectively

defined as the coarsest refinement of the weak topology such that the functionals J

and E∗0 become continuous.

With this ad hoc strong topology, as could be expected, one gets

Proposition 3.7 ([BBEGZ15, Proposition 2.6]). — The map

T = ω0 + ddcψ 7→ V −1〈T n〉

is a homeomorphism between T 1(X,ω0) and M1(X,ω0).

3.D. Weak geodesics and convexity. Guedj conjectured that the completion of the

space P(X,ω0) of smooth potentials equipped with the Mabuchi metric (1.2) precisely

consists of the space E2(X,ω0) of potentials of finite E2-energy (cf. [Gue14]). This has

been shown by Darvas [Dar14, Dar15].

Let ω(0) = ω0 + ddcψ0, ω(1) = ω0 + ddcψ1 ∈T 2(X,ω0) be currents with con-

tinuous potentials (so they even lie in T ∞(X,ω0)). Let S ⊂ C be the open strip

0 < Re t < 1 and let ψ(z, t) be the upper semicontinuous regularization of the enve-

lope of the family of all continuous functions ϕ(z, t) that are pr∗1 ω0-psh on X × S

and such that ϕ(z, t) ≤ ψ0(z) for Re t = 0 and ϕ(z, t) ≤ ψ1(z) for Re t = 1. Set-

ting ψt(z) := ψ(z, t) and ω(t) := ω0 + ddcψt we have by [BD12] and [Bern15, §2.2] the

following statement.

Lemma 3.8. — Let ψ be the ω0-psh envelope defined above. Then:

(i) ψ is pr∗1 ω0-psh and bounded on X × S.

(ii) (pr∗1 ω0 + ddcψ)n+1 = 0 on X × S.

(iii) t 7→ ψt is Lipschitz continuous, and converges uniformly on X to ψ0 (resp. ψ1) as

Re t→ 0 (resp. Re t→ 1).
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When dealing with Kähler forms on a non-singular variety X, (ii) gives the geodesic

equation for the Mabuchi metric defined on the space of Kähler metrics, as was observed

by Donaldson and Semmes. Therefore, we will call (ω(t))t∈[0,1] the weak geodesic joining

ω(0) to ω(1) (and will also call the function ψ the “weak geodesic” joining ψ0 to ψ1).

Lemma 3.9. — Let ψ be a pr∗1 ω0-psh function on X × S, and set ψt(z) := ψ(z, t),

which is an ω0-psh function unless ψt ≡ −∞. Let us also set φt = φ0 + ψt. Then

(i) t 7→ E0(ψt) = Eφ0(φ
t) is subharmonic on S, and so is t 7→ L(φt) if ω0 ∈ c1(X,∆).

(ii) If ψ further satisfies (i) and (ii) of Lemma 3.8, then t 7→ E0(ψt) is even harmonic

on S.

Proof. — The assertions for E are well-known in the smooth case, and the proof in the

present context reduces to [BBGZ13, Proposition 6.2] by passing to a log resolution

otherwise. The subharmonicity of L(φt) is deeper, and is a special case of Berndtsson’s

theorem on the plurisubharmonic variation of Bergman kernels [Bern06].

Combining these results we get the following crucial convexity property of the Ding

functional along weak geodesics:

Lemma 3.10. — Let ω(t) = ddcφt, t ∈ [0, 1], be the weak geodesic joining two currents

ω(0) = ddcφ0, ω(1) = ddcφ1 ∈ T 2(X,ω0) with continuous potentials and ω0 ∈ c1(X,∆).

Then t 7→ Dφ0(φ
t) is convex and continuous on [0, 1].

Another fundamental result proved by Berndtsson and Berman [BeBe14] is the convex-

ity of the Mabuchi functional on weak geodesics. The key ingredient is a local positivity

property of weak solutions to the homogeneous Monge-Ampère equation on a product

domain, whose proof again uses the plurisubharmonic variation of Bergman kernels.

Theorem 3.11 ([BeBe14]). — With the same notation as in Lemma 3.10, the Mabuchi

functional t 7→Mφ0(φ
t) is convex and continuous on [0, 1].

3.E. Variational characterization of Kähler-Einstein metrics. In this section,

we give after [BBEGZ15] a proof of the following generalization to log Fano pairs (X,∆)

of a result of Ding and Tian for Fano manifolds, assuming the absence of holomorphic

vector fields. Here the Ding and Mabuchi functionals are taken relatively to a given

Kähler metric ω0 = ddcφ0 ∈ A = c1(X,∆), and we assume for simplicity that φ0 is

normalized so that L(φ0) = 0.

Proposition 3.12. — For a current ω = ddcφ ∈ T 1(X,A), the following conditions

are equivalent.

(i) ω is a Kähler-Einstein metric for (X,∆).

(ii) The Ding functional reaches its infimum at φ : Dφ0(φ) = infE1(X,A)/RDφ0.

(iii) The Mabuchi functional reaches its infimum at φ : Mφ0(φ) = infE1(X,A)/RMφ0.
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Proof. — The equivalence betwen (i) and (ii) is proved as in [BBGZ13, Theorem 6.6],

which we summarize for completeness. To prove (ii)⇒(i), one introduces the ω0-psh

envelope Pu of a function u on X as the upper semicontinuous upper envelope of the

family of all ω0-psh functions ψ such that ψ ≤ u on X (or Pu ≡ −∞ if this family is

empty). Given v ∈ C0(X) one sets for all t ∈ R

ψ(t) := P (ψ + tv).

One has of course ψ0 = ψ. On the one hand, t 7→ L(φ + tv) = − log
∫
X
e−(φ+tv) is

concave by Hölder’s inequality, and its right-hand derivative at t = 0 is easily seen to

be given by ∫
X

v e−φ
(∫

X

e−φ
)−1

= eL(φ)

∫
X

v e−φ,

see [BBGZ13, Lemma 6.1]. On the other hand, the differentiability theorem of [BeBo10]

(applied in the present case to a resolution of singularities ofX) shows that t 7→ E0(ψ(t))

is differentiable, with derivative at t = 0 given by

1

V

∫
X

v (ω0 + ddcψ)n =
1

V

∫
X

v (ddcφ)n.

Since ψ(t) belongs to E1(X,ω0), (ii) shows that L(ψ+tv)−E0(ψ(t)) achieves is minimum

for t = 0, and hence
d

dt |t=0+
(L(ψ + tv)− E0(ψ(t))) ≥ 0,

i.e.

eL(φ)

∫
X

v e−φ ≥ V −1

∫
X

v (ddcφ)n.

Applying this to both v and −v shows that eL(φ)e−φ = V −1(ddcφ)n, which means that

ω = ddcφ is a Kähler-Einstein metric.

To prove (i)⇒(ii), we rely on the convexity of the Ding functional along weak

geodesics. Let ω be any Kähler-Einstein metric. Since every ω0-psh function on X

is the decreasing limit of a sequence of continous ω0-psh functions thanks to [EGZ15],

it is enough to show that Dφ0(φ) ≤ Dφ0(φ
′) for all φ′ ∈ E1(X,A) with continuous poten-

tials. Let ω(t) = ddcφt, t ∈ [0, 1], be the weak geodesic between ω(0) = ω = ddcφ and

ω(1) = ω′ = ddcφ′. By Lemma 3.10, t 7→ Dφ0(φ
t) is convex and continuous on [0, 1].

To get as desired that Dφ0(φ) ≤ Dφ0(φ
′), it is thus enough to show that

(3.13)
d

dt |t=0+
Dφ0(φ

t) ≥ 0,

which is proved exactly as in the last part of the proof of [BBGZ13, Theorem 6.6]. More

specifically, by convexity with respect to t 7→ φt, the function ut := (φt−φ)/t decreases

to a bounded function v, and the concavity of E yields

d

dt |t=0+
E0(ψt) ≤ V −1

∫
X

v (ddcφ)n.



1112–18

On the other hand, monotone convergence shows that

d

dt |t=0+
L(φt) =

∫
X

v e−φ = V −1

∫
X

v (ddcφ)n,

hence (3.13).

Finally, the equivalence between (ii) and (iii) is a consequence of Proposition 1.15.

4. FURTHER RESULTS OBTAINED BY THE VARIATIONAL

TECHNIQUE

4.A. Existence and uniqueness of Kähler-Einstein metrics. One says that the

Mabuchi functional is proper if Mφ0(φ)→ +∞ as φ approaches the boundary of PA/R,

i.e. Jφ0(φ) → +∞ (one could omit the dependence on φ0 here by (1.11′′), (1.13) and

Prop. 1.16). This is usually called properness in the sense of Tian. The first main result

of [BBEGZ15] is:

Theorem 4.1. — Let X be a Q-Fano variety with log terminal singularities.

(i) The identity component Aut0(X) of the automorphism group of X acts transitively

on the set of Kähler-Einstein metrics on X.

(ii) If the Mabuchi functional of X is proper, then Aut0(X) = {1} and X admits

a unique Kähler-Einstein metric, which is the unique minimizer of the Mabuchi

functional in an appropriate space of finite energy metrics (cf. section 3).

When X is non-singular, (i) is a classical result of S. Bando and T. Mabuchi [BM87].

The present variational proof is built in part on the work of B. Berndtsson [Bern15].

Point (ii) generalizes a result of W.Y. Ding and G. Tian (see [Tian00]), and relies (in

the same way as in [Berm13]) on Proposition 3.12, plus a compactness argument.

It should be recalled that, when X is non-singular and Aut0(X) = {1}, a deep result

of G. Tian [Tian97], strengthened in [PSSW08], conversely shows that the existence of

a Kähler-Einstein metric implies the properness of the Mabuchi functional. A similar

result is expected for singular varieties – this should be a consequence of [BBEGZ15]

and of the recent work of Darvas-Rubinstein [DR15].

4.B. Ricci iteration. In their independent works [Kel09] and [Rub08], J. Keller and

Y. Rubinstein investigated the dynamical system known as Ricci iteration, defined by

iterating the inverse Ricci operator. The idea of considering Ricci iteration had been

considered earlier by Nadel in [Nad95]. The second main result of [BBEGZ15] deals

with the existence and convergence of Ricci iteration in the more general context of

Q-Fano varieties.
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Theorem 4.2. — Let X be a Q-Fano variety with log terminal singularities.

(i) Given a smooth form ω0 ∈ c1(X), there exists a unique sequence of closed positive

currents ωj ∈ c1(X) with continuous potentials on X, smooth on Xreg, and such

that

Ricci(ωj+1) = ωj

on Xreg for all j ∈ N.

(ii) If we further assume that the Mabuchi functional of X is proper and let ωKE be the

unique Kähler-Einstein metric provided by Theorem 4.1, then limj→+∞ ωj = ωKE

in the C∞ topology on Xreg, and uniformly in C0(X) at the level of potentials.

When X is non-singular, this result settles [Rub08, Conjecture 3.2], which was

obtained in [Rub08, Theorem 3.3] under the more restrictive assumption that Tian’s

α-invariant satisfies α(X) > 1 (an assumption that implies the properness of the

Mabuchi functional). Building on a preliminary version of [BBEGZ15], a more pre-

cise version of Theorem 4.2 was obtained in [JMR16, Theorem 2.5] for Kähler-Einstein

metrics with cone singularities along a smooth hypersurface of a non-singular variety.

4.C. Convergence of the Kähler-Ricci flow. When X is a Q-Fano variety with

log terminal singularities, the work of J. Song and G. Tian [ST09] shows that given

an initial closed positive current ω0 ∈ c1(X) with continuous potentials, there exists a

unique solution (ωt)t>0 to the normalized Kähler-Ricci flow, in the following sense:

(i) For each t > 0, ωt is a closed positive current in c1(X) with continuous potentials;

(ii) On Xreg × ]0,+∞[, ωt is smooth and satisfies ω̇t = −Ricci(ωt) + ωt;

(iii) limt→0+ ωt = ω0, in the sense that their local potentials converge in C0(Xreg).

The third main result of [BBEGZ15] studies the long time behavior of this normal-

ized Kähler-Ricci flow, and provides a weak analogue for singular Fano varieties of

G. Perelman’s result on the convergence of the Kähler-Ricci flow on Kähler-Einstein

Fano manifolds:

Theorem 4.3. — Assume that the Mabuchi functional of X is proper, and denote

by ωKE its unique Kähler-Einstein metric. Then lim
t→+∞

ωt = ωKE and lim
t→+∞

ωnt = ωnKE,

both in the weak topology.

When X is non-singular, the above result is weaker than Perelman’s theorem, which

yields convergence in C∞-topology (see [SeT08]). On the other hand, the variational

approach of [BBGZ13, BBEGZ15] is completely independent of Perelman’s deep esti-

mates, which seem at the moment out of reach on singular varieties.
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5. A VARIATIONAL APPROACH TO THE YAU-TIAN-DONALDSON

CONJECTURE

We describe here the main ideas of [BHJ15a, BBJ15] towards the solution of the Yau-

Tian-Donaldson conjecture. The technique involves the variational approach and non-

Archimedean counterparts of the functionals of Kähler geometry that were introduced

in Section 1.

5.A. Test configurations. Let (X,A) be a (Q-)polarized projective variety. Following

Li-Xu [LX14], one usually assumes the total space of the test configuration is normal.

Also, as in Donaldson’s original definition, it is needed to consider the case where A

may be an ample Q-line bundle (one takes suitable powers when genuine line bundles

have to be considered, e.g. to deal with C∗ actions).

Definition 5.1. — A test configuration (X ,A) for (X,A) consists of the following

data :

(i) a flat and proper morphism π : X → C of algebraic varieties; one denotes by

Xt = π−1(t) the fiber over t ∈ C.

(ii) a C∗-action on X lifting the canonical action on C;

(iii) an isomorphism X1 ' X.

(iv) a C∗-linearized ample line bundle A on X ; one puts At = A|Xt.

(v) an isomorphism (X1, A1) ' (X,A) extending the one in (iii).

Every C∗-equivariant action on X induces a diagonal C∗-action on X = X × C, and

hence a test configuration (X ,A) with A = pr∗1 L. Such test configurations are called

product test configurations. A product test configuration is trivial if the C∗-action on

(X,A) is trivial.

Since A is assumed to be very ample, there is an embedding X ↪→ P(V ) where

V := H0(X,A) and P(V ) denotes the projective space of hyperplanes of V . Every

1-parameter subgroup ρ : C∗ → GL(V ) induces a test configuration (Xρ,Aρ) for (X,A).

By definition, Xρ is the Zariski closure in P(V )×C of the image of the closed embedding

X × C∗ ↪→ P(V ) × C∗ mapping (x, t) to (ρ(t)x, t). Note that ρ is trivial if and only if

(Xρ,Aρ) is, while (Xρ,Aρ) is a product if and only if ρ preserves X. Conversely, it is

easy to check that every ample test configuration (X ,A) may be obtained as above.

5.B. Donaldson-Futaki invariants and K-stability. The exposition follows here

essentially [Don05]. WriteNm = h0(X,mA) form ≥ 1. The Donaldson-Futaki invariant

of an ample test configuration (X ,A) for (X,A) describes the subdominant term in

the asymptotic expansion of wm/mNm as m → ∞, where wm ∈ Z is the weight of

the C∗-action on the determinant detH0(X0,mA0). A Riemann-Roch argument (cf.

[BHJ15a, Lemma 3.1]) then yields:
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Lemma 5.2. — Let π : (X ,A)→ C be a test configuration for (X,A), with compacti-

fication π̄ : (X̄ , Ā)→ P1. For every m ∈ N large enough, one has

wm = χ(X̄ ,mĀ)−Nm,

where χ stands for the Euler characteristic. In particular, wm is a polynomial of m of

degree at most n+ 1.

The arguments of the proof and more explicit calculations actually give the following

consequence (see [Wang12] and [LX14, Example 3]).

Proposition 5.3. — Let π : (X ,A)→ C be a test configuration for (X,A),

(i) There is an asymptotic expansion

wm
mNm

= F0 +m−1F1 +m−2F2 + . . . .

(ii) The coefficient F0 is given by

F0(X ,A) =

(
Ān+1

)
(n+ 1)(An)

.

(iii) If X is normal, the coefficient F1 is given by

−2F1 = V −1
(
KX̄/P1 · Ān

)
+ S̄ F0(X ,A)

where V := (An) and

S̄ := −n (KX · An−1)

(An)

coincides with the mean value of the scalar curvature S(ω) of any Kähler form

ω ∈ c1(A) (hence the chosen notation).

Definition 5.4. — The Donaldson-Futaki invariant of the test configuration (X ,A) is

DF(X ,A) := −2F1.

Definition 5.5. — The polarized variety (X,A) is said to be K-stable if DF(X ,A) ≥ 0

for all normal test configurations, with equality if and only if (X ,A) is trivial.

The main motivation behind these definitions is the following

Generalized Yau-Tian-Donaldson conjecture 5.6.

Let (X,A) be a polarized variety. Then X admits a cscK metric (short-hand for Kähler

metric with constant scalar curvature) ω ∈ c1(A) if and only if (X,A) is K-stable.

By elaborating further [Don01, AP06], it was proved by Stoppa [Sto09] that

K-stability indeed follows from the existence of a cscK metric: [Sto09] deals with the

case when X admits no non-trivial holomorphic vector fields; the general case has been

considered by Mabuchi and an alternative general proof can be found in [Berm15].

In [BDL16], it is further proved that, for X smooth, the existence of a cscK metric

implies a generalized form of properness (taking vector fields into account). At about
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the same time the K-stability was also obtained using an algebro-geometric argument

in Codogni-Stoppa [CS16].

The main result of [CDS15] (see also [Tian15]) is a solution of the conjecture in the

special case A = −KX ; in this case a cscK metric is the same as a Kähler-Einstein

metric.

5.C. Duistermaat-Heckman measures and uniform K-stability. The Duister-

maat-Heckman measure DH(X,A) is the probability measure on R describing the asymp-

totic distribution as m → ∞ of the (scaled) weights of the C∗-action on H0(X,mA),

counted with multiplicity, namely

(5.7) DH(X,A) = lim
m→∞

∑
λ∈Z

dimH0(X,mA)λ
dimH0(X,mA)

δλ/m, δp := Dirac measure at p,

where H0(X,mA) =
⊕

λ∈ZH
0(X,mA)λ is the weight space decomposition. For each

p ∈ [1,∞], the Lp-norm ‖(X ,A)‖p of an ample test configuration (X ,A) is defined as

the Lp norm

(5.8) ‖(X ,A)‖p =

(∫
R
|λ− b(µ)|p dµ(λ)

)1/p

where b(µ) =

∫
R
λ dµ(λ)

is the barycenter of µ = DH(X,A). Then (iii) asserts in particular that ‖(X ,A)‖p = 0 if

and only if (X̃ , Ã) is trivial. Following ideas originating in G. Székelyhidi’s thesis (see

also [Szé15]), and according to [Der14, BHJ15a], one introduces:

Definition 5.9. — (Székelyhidi [Szé15]) The polarized variety (X,A) is said to be

Lp-uniformly K-stable if there exists δ > 0 such that DF(X ,A) ≥ δ ‖(X ,A)‖p for all

normal test configurations.

One can show that Lp-uniform K-stability can only hold for p ≤ n
n−1

. Theorem 0.7

together with the results of [CDS15] shows in fine that uniform K-stability is equivalent

to K-stability, at least in the case of Fano manifolds with finite automorphism group.

5.D. The non-Archimedean approach. This subsection is essentially borrowed

from the introduction of [BBJ15] and relies on the foundational material developed

in [BHJ15a]. One assumes here that X is a Fano manifold and A = −KX . A ray

(φt)t≥0 in PA corresponds to an S1-invariant metric Φ on the pull-back of −KX to the

product of X with the punctured unit disc D∗. The ray is called subgeodesic when

Φ is plurisubharmonic (psh for short). Denoting by F any of the functionals M,D

or J , the asymptotic behavior of F (φt) as t → +∞ is well-understood whenever the

corresponding metric Φ extends to a smooth metric on a test configuration (X ,A)

of (X,A). Indeed, one has

(5.10) lim
t→+∞

F (φt)

t
= FNA(X ,A),

where FNA is the corresponding non-Archimedean functional introduced in [BHJ15a].

For F = D, this is a reformulation of a key technical step in [Berm15]. For F = M
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or J , this is established in [BHJ15b], but less precise formulations have appeared several

times in the literature over the last two decades.

Denoting by DF(X ,A) the Donaldson-Futaki invariant of a normal test configuration

(X ,A), one has DF(X ,A) ≥ MNA(X ,A) ≥ DNA(X ,A). In this context, uniform

K-stability means the existence of δ > 0 such that DF ≥ δJNA, and this condition

turns out to be equivalent to a lower bound MNA ≥ δJNA [BHJ15a]. The approach to

Theorem 0.7 consists in establishing equivalences between Archimedean estimates and

their non-Archimedean counterparts:

(5.11) the Ding functional D is coercive, i.e. D ≥ δJ − C on PA for some δ, C > 0 ;

(5.11NA) DNA ≥ δJNA for some δ > 0 ;

(5.12) the Mabuchi functionalM is coercive, i.e.M ≥ δJ−C on PA for some δ, C > 0;

(5.12NA) MNA ≥ δJNA for some δ > 0.

The implications (5.11) =⇒ (5.11NA) and (5.12) =⇒ (5.12NA) are immediate conse-

quences of (5.10).

In a first purely algebro-geometric step, one establishes (5.12NA) =⇒ (5.11NA), the

converse implication being trivial since MNA ≥ DNA. This is accomplished by using

the Minimal Model Program, very much in the same way as in [LX14].

The heart of the proof is the implication (5.11NA) =⇒ (5.12). For this, one argues by

contradiction, assuming that M is not coercive. Using a compactness argument inspired

by Darvas and He [DH14] (itself relying on the energy-entropy compactness theorem

in [BBEGZ15]), one produces a subgeodesic ray along which M has slow growth. As

in [DH14], this ray does not lie in PA, but in the space E1 of metrics of finite energy,

a space whose structure was recently clarified by Darvas [Dar15]. As in [DR15], to

control the Mabuchi functional along the ray, one also uses a recent result by Berman

and Berndtsson (see [BeBe14, CLP14]) to the effect that M is convex along geodesic

segments (cf. Theorem 3.11).

Since the Ding functional D is dominated by the Mabuchi functional, D also has slow

growth along the geodesic ray. If Φ happens to extend to a bounded metric on some test

configuration (X ,A) of (X,−KX), the slope of D at infinity is given by DNA(X ,A), and

(5.11NA) yields a contradiction. In the general case, one can assume that Φ extends

to a psh metric on the pullback of −KX to X × ∆, but the singularities along the

central fiber may be quite complicated. Nevertheless, the slope of D at infinity can

be analyzed using the multiplier ideals of mΦ, m ∈ N; these give rise to a sequence

of test configurations to which one can apply the assumption (5.11NA) and derive a

contradiction. This step is quite subtle and involves some non-Archimedean analysis

in the spirit of [BFJ08, BFJ12] in order to calculate the slope at infinity of the Ding

functional.
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[Aub78] T. Aubin. Équations du type Monge-Ampère sur les variétés kählériennes
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[EGZ09] Ph. Eyssidieux, V. Guedj, A. Zeriahi. Singular Kähler-Einstein metrics.

J. Amer. Math. Soc. 22 (2009), 607-639.

[EGZ11] Ph. Eyssidieux, V. Guedj, A. Zeriahi. Viscosity solutions to degenerate

Complex Monge-Ampère equations. Comm. Pure and Appl. Math. 64

(2011), 1059-–1094.

[EGZ15] Ph. Eyssidieux, V. Guedj, A. Zeriahi. Continuous approximation of quasi-

plurisubharmonic functions. Analysis, complex geometry, and mathemat-

ical physics: in honor of Duong H. Phong, Contemp. Math., 644, Amer.

Math. Soc., Providence, RI, 2015, 67-–78.

[Fuj15] K. Fujita. Optimal bounds for the volumes of Kähler-Einstein Fano mani-

folds. arXiv:1508.04578.



1112–28

[Fut83] S. Futaki. An obstruction to the existence of Einstein-Kähler metrics.

Invent. Math. 73 (1983) 437–443.

[Gue14] V. Guedj. The metric completion of the Riemannian space of Kähler

metrics. arXiv:1401.7857v2.

[GZ07] V. Guedj, A. Zeriahi. The weighted Monge-Ampère energy of quasiplurisub-

harmonic functions. J. Funct. Anal. 250 no. 2 (2007), 442-–482.

[Har77] R. Hartshorne. Algebraic geometry. Graduate Texts in Mathematics,

No. 52. Springer-Verlag, New York-Heidelberg, 1977.

[JMR16] T.D. Jeffres, R. Mazzeo, Y.A. Rubinstein. Kähler-Einstein metrics with

edge singularities. Annals of Math. 183 (2016), 95-176.
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UMR 5582 du CNRS, CS 40700
100 rue des Maths
F–38610 Gières
E-mail : jean-pierre.demailly@univ-grenoble-alpes.fr


