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(after H. Cartan)

1. INTRODUCTION

Y. Zhang proved in [27], announced in May 2013, the following theorem:

Theorem 1.1 (Zhang). — There exists an even integer h > 2 with the property that

there exist infinitely many pairs of prime numbers of the form (p, p+ h). In fact, there

exists such an h with h 6 70, 000, 000.

Equivalently, if pn, n > 1, denotes the n-th prime number, we have

lim inf
n→+∞

(pn+1 − pn) < +∞,

and more precisely

lim inf
n→+∞

(pn+1 − pn) 6 70, 000, 000.

The equivalence of the two formulations is clear by the pigeon-hole principle. The

first one is psychologically more spectacular: it emphasizes the fact that for the first

time in history, one has proved an unconditional existence result for infinitely many

primes p and q constrained by a binary condition q − p = h.

Remarkably, this already extraordinary result was improved in spectacular fashion

in October 2013 by J. Maynard [21]:(1)

Theorem 1.2 (Maynard). — There exists an even integer h 6 600 with the property

that there exist infinitely many pairs of prime numbers of the form (p, p + h). In fact,

for any fixed integer k > 2, there exist k distinct integers (h1, . . . , hk) such that the set

of integers n for which n+ h1, . . . , n+ hk are all primes is infinite.

Equivalently, we have

(1) lim inf
n→+∞

(pn+m − pn) < +∞

(1) T. Tao derived similar results independently.
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for any fixed m > 1.

We emphasize that Zhang’s method did not apply to (1) except for m = 1, and thus

Maynard’s work is a far-reaching extension, and not merely a strengthening, of Zhang’s

Theorem. It is all the more amazing that Maynard’s proof is, in its technical aspects,

much simpler than Zhang’s. Indeed, it can be realistically presented from scratch in

a one-year graduate course in analytic number theory. On the other hand, the main

ingredient in Zhang’s proof is a statement concerning the distribution of primes in

arithmetic progressions to large moduli which has considerable independent interest

(see Theorem 4.1), since it reflects information which lies beyond the immediate reach

of the Generalized Riemann Hypothesis.

The goal of this text is to present the context of these spectacular results, and to

sketch some of the main steps of the proofs, with an emphasis on the key ideas (and

some bias related to the author’s taste). There already exist at least three independent

full (or almost full) expositions of the results of Zhang (by the Polymath 8 group [24],

Granville [14] and Friedlander–Iwaniec [10]) and two of Maynard’s which, as we indi-

cated, are in any case technically simpler (in a blog post of Tao [26] and in [14]). There

is therefore no doubt concerning the correctness of the results, and we will emphasize

conceptual aspects instead of trying to write another complete proof.

We will also not attempt to describe the techniques that lead to the best possible

bounds of h currently known, and to the best upper-bound for the liminf in (1) (as a

function of m). These are for the essential part found in the versions of Theorems 1.1

and 1.2 proved in the course of the Polymath8 project (see [24] and the ongoing Poly-

math8b work).

Notation.

– p will always refer to a prime number and n to positive integers; it will be convenient

to denote by M (like “moduli”) the set of squarefree numbers (i.e., those positive integers q

such that no square of a prime divides q); given y > 2, an integer n > 1 is called y-friable if

and only if it has no prime factor p | n such that p > y.(2)

– Λ(n) denotes the von Mangoldt function, equal to log p for all prime powers pk, k > 1,

and to zero for other integers, and we also denote by θ(n) the function equal to log p for a

prime p, and equal to 0 otherwise.

– For X > 2, q > 1 and a > 1 (or a ∈ Z/qZ), we let

ψ(X; q, a) =
∑

X<n62X
n≡a(mod q)

Λ(n).

We extend this slightly as follows: an idelette a is an element of

I =
∏
p

(Z/pZ)×,

(2) A standard terminology is “smooth” instead of friable.
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which therefore defines, for every modulus q ∈M, a unique invertible residue class aq modulo

q by the Chinese Remainder Theorem; we then put

ψ(X; q, a) = ψ(X; q, aq).

– µ(n) denotes the Möbius function, ϕ the Euler function, τ(n) the “number of divisors”

function and τk its generalization to the number of representations n = d1 · · · dk, i.e.,

τk(n) =
∑

d1···dk=n
1,

∑
n>1

τk(n)n−s = ζ(s)k

(for instance τk(p) = k + 1 for p prime), so that τ = τ2.

– f ? g denotes the Dirichlet convolution of arithmetic functions f and g, defined by

f ? g(n) =
∑
d|n

f(d)g(n/d) =
∑
ab=n

f(a)g(b)

for all n > 1.

– The notation f = O(g) and f � g are synonymous: f(x) = O(g(x)) for all x ∈ D means

that there exists an “implied” constant C > 0 (which often depends on other parameters,

which are clearly mentioned) such that |f(x)| 6 Cg(x) for all x ∈ D. This definition (for

O(· · · )) differs from that of Bourbaki [2, Chap. V], which is of topological nature.

– We denote by 1X the characteristic function of a set X. If x = (x1, . . . , xk) is a tuple of

real or complex numbers, we write |x| = x1 · · ·xk.

Acknowledgments. Thanks to É. Fouvry and H. Iwaniec as well as to R. de la

Bretèche, Ph. Michel and P. Nelson, and to all the Polymath8 participants, especially

T. Tao. Thanks also to V. Le Dret for reading the first version and correcting a number

of typographical mistakes, and to R. Heath-Brown, Y. de Cornulier, B. Green and Y.

Motohashi for comments and corrections.

2. THE GARDEN OF FORKING PATHS

All the results discussed in the introduction take as starting point the breakthrough

of Goldston-Pintz-Yıldırım [12], who had proved that

(2) lim inf
n

pn+1 − pn
log n

= 0

and showed how the bounded gap theorem followed from well-established conjectures

on primes in arithmetic progressions. The work of Goldston, Pintz and Yıldırım is

described in detail (among other places) in this Seminar in [19]. We first describe

very briefly the skeleton of this method, using mostly the same notation as [19] to

ease comparison (this previous exposé discusses the method in greater detail; another

masterful exposition is found in [9, §7.13]). This will allow us to describe informally

and quickly the main difference between the approaches of Zhang and Maynard.

Let k > 2 be an integer. An admissible k-tuple h = (h1, . . . , hk) is a k-tuple of

integers such that

h1 < h2 < · · · < hk
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and, for every prime number p, the reductions modulo p of the coordinates of h do not

cover all of Z/pZ, or in other words, such that

νh(p) = |{h1 (mod p), . . . , hk (mod p)}| < p

for all primes p. It is elementary, but important, to note that such k-tuples exist for all

k > 2: an easy example is to take

k < h1 < · · · < hk

such that all hi are primes. (Indeed, for primes p 6 k, the reductions modulo p of the

hi are then never 0, and for p > k, there are not enough of them to cover Z/pZ.)

We fix k > 2 and an admissible k-tuple h. For n > 1, we denote

θh(n) =
∑
16i6k

θ(n+ hi).

Next, given X > 1 and non-negative coefficients (E(n))X<n62X (which serve as pa-

rameters), we consider the sums

Q1 =
∑

X<n62X

θh(n)E(n), Q2 = (log 3X)
∑

X<n62X

E(n).

The following observation is completely elementary:

Lemma 2.1. — Fix an admissible k-tuple h. Let ρ > 1 be a real number. Assume

that, for X > 1 large enough (depending on k and h), one can find coefficients E(n) as

above such that Q1 > ρQ2.

Then for all integers m with 0 6 m < ρ, we have

lim inf
n→+∞

(pm+n − pn) 6 hk − h1 < +∞.

The main (qualitative) result of Zhang can then be expressed in the following form:

for k large enough, and for any fixed admissible k-tuple h, one can indeed find the

coefficients E(n) as above so that

lim inf
X

sup
E(n)

Q1

Q2

> 1,

(where the liminf will be abbreviated lim infX Q1/Q2 below).

Indeed, this allows one to apply the lemma with m = 1; since Zhang proved that

one can take k = 3, 500, 000, a simple estimate leads to the quantitative form of Theo-

rem 1.1.

Similarly, Maynard’s result shows that, for any fixed m > 1, for k large enough

depending on m and for any admissible k-tuple h, one can find E(n) such that

lim inf
X

Q1

Q2

> m,
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which leads to Theorem 1.2. For m = 1, Maynard [21, Prop. 4.3 (1)] proves that

k = 105 is suitable, and deduces that

lim inf
n→+∞

(pn+1 − pn) 6 600

(using a computation by Engelsma of an admissible 105-tuple with “diameter” h105 −
h1 = 600).

Remark 2.2. — One should view the values of the parameter k which are allowed by

the method as the most important outcome of this idea. Although there is a very

interesting story in the search for “narrow” admissible k-tuples, this issue is to some

extent orthogonal to gaps between primes. (See [24, §4] for a detailed discussion;

interestingly, ideas related to the problem of finding large gaps between consecutive

primes play an important role.) For small enough k, the smallest diameter hk − h1 of

an admissible k-tuple h is known.

Goldston, Pintz and Yıldırım considered coefficients E(n) depending on auxiliary

parameters x > 1 (which will be a fixed power of X, that one seeks to have as big as

feasible) and ` > 0, given by

(3) E(n) =
( ∑
d|Fh(n)

λd

)2
where

Fh = (T + h1) · · · (T + hk) ∈ Z[T ],

and the coefficients λd are given by

(4) λd = µ(d)
(

log
x

d

)k+`
for 1 6 d 6 x, and λd = 0 otherwise.(3)(4) Now recall that a real number θ > 0 is called

an exponent of distribution for the sequence of prime numbers if for any ε > 0 and for

any A > 1, we have

(5)
∑

q6Xθ−ε

max
(a,q)=1

∣∣∣ψ(X; q, a)− ψ(X)

ϕ(q)

∣∣∣� X

(logX)A

for all X > 2, where the implied constant depends only on ε and A. Taking such a real

number θ and x = Xβ/2 where β < θ, Goldston, Pintz and Yıldırım proved that

(6) lim inf
X

Q1

Q2

> β × k(2`+ 1)

(`+ 1)(k + 2`+ 1)

for X large enough (see [19, §5] for instance). The Bombieri-Vinogradov Theorem (or,

conditionally, the Generalized Riemann Hypothesis for Dirichlet L-functions) shows

(3) In [19], different coefficients (arising by a type of optimization in the Selberg-sieve style) are used,

following [13]. Such choices simplify the analysis of Zhang and especially that of Maynard, see Section 8.
(4) The use of an exponent k + `, which is surprising from the point of view of sieve, arose also

independently in the work [16] of Ho and Tsang, as pointed out by R. Heath-Brown.
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that one can apply this for any β < 1/2, but for these values, we see that the right-

hand side of the bound is never > 1.

What can one do in that case? We refer to [19, §6] for a discussion of the idea

that leads to the main result (2) of [12], and observe instead that two paths are (in

principle) possible to improve this argument and prove the bounded gap property of

primes. These paths correspond to the very different nature of the two factors we wrote

in (6):

(1) The limiting factor β < θ arises in controlling an error term when estimating

the sum Q1; one might try to improve on that estimation, making a larger value of θ

(hence β) possible. Morally speaking, this is what Zhang did, although the details are

much more intricate.(5)

(2) The factor
k(2`+ 1)

(`+ 1)(k + 2`+ 1)

arises from the ratio of the main terms in the study of Q1 and Q2, and in particular

from the choice of E(n); one could hope to find a better choice of coefficients E(n) that

leads to a larger ratio of the main terms, so that even the choice of θ close to 1/2 allowed

by the Bombieri-Vinogradov Theorem leads to bounded gaps. This is essentially what

Maynard succeeded in doing. It is really extraordinary to see that this leads to (1) for

any m > 1, and in fact that the method succeeds also for any positive exponent of

distribution θ > 0.

3. THE GOLDSTON-PINTZ-YILDIRIM METHOD AND ITS

DESCENDANTS

The crucial link between the Goldston-Pintz-Yıldırım method and the distribution

of primes in arithmetic progressions comes from the choice of coefficients E(n) in the

outline of the previous section.

Zhang’s modification of (3) restricts the support of the coefficients λd to integers

with only small prime factors, more precisely to xδ-friable integers (i.e., integers with

no prime factor > xδ) for some parameter δ > 0, which will be rather small in practice.

Maynard’s change is much more radical: he replaces the single divisor d in the defi-

nition of E(n) by a tuple d = (d1, . . . , dk) of positive integers where di | n + hi, or in

other words he considers

(7) E(n) =
( ∑
d|n+h

λd

)2
where d=(d1, . . . , dk) is a k-tuple of positive integers, we write n+h=(n+h1, . . . , n+hk)

and the divisibility relation in k-tuples means coordinate-wise divisibility. The choice

(5) Note that only a very small improvement of θ is currently known, and even the best possible θ

arbitrarily close to 1 is in some sense limited in its effect, and can only lead to (1) for m = 1.
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of λd is then a multi-variable adaptation of (4), which we will introduce later. For the

moment, we impose the conditions that λd = 0 unless the di are coprime and satisfy

|d| = d1 · · · dk < x, and unless |d| is coprime to the discriminant

(8)
∏
i 6=j

(hi − hj)

of h. In particular, if λd is non-zero, the elements hi are distinct modulo each di.

Remark 3.1. — Maynard observes that Selberg [25, p. 245] already suggested the use

of distinct divisors di of n+ hi in another approach to the twin-prime problem.

We begin by describing, in the general situation of Maynard’s weights, how the “main

term” and the “error term” are obtained. As in [19], it is convenient to deal with both

quadratic forms simultaneously by considering a general sum∑
X<n62X

anE(n),

where we assume that the sequence (an) satisfies a sieve-type condition concerning its

distribution in arithmetic progressions, which we write in the form

(9)
∑

X<n62X
n≡t (d)

an = gt(d)X̃ + rd(X, t),

where X̃ may depend on X, but not on t or d, and d 7→ gt(d) is a multiplicative function,

which only depends on t modulo d (and may sometimes be zero).

Proposition 3.2. — With notation as above, in particular λd = 0 unless d has co-

prime entries and |d| < x, we have∑
X<n62X

an

( ∑
d|n+h

λd

)2
= X̃M +R,

where

M =
∑

d,e coprime

gh([d, e])λdλe, R =
∑

d,e coprime

λdλerd(X, a([d, e])),

with the following notation:

– The lcm is extended to tuples by [d, e] = ([di, ei])i;

– Two tuples d = (di) and e = (ej) are said to be coprime if gcd(di, ej) = 1 for all

i 6= j;(6)

– The function gh is defined for k-tuples by

(10) gh(d) =
∏
i

g−hi(di);

(6) Not for all i and j...
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– For any k-tuple d with pairwise coprime coordinates, the residue class a(d) is the

unique residue class modulo |d| such that

a(d) ≡ −hi (mod di)

for 1 6 i 6 k.

Proof. — This is elementary (compare with [19, Lemme 4.3]). Expanding the square and

exchanging the sums, the expression to evaluate becomes∑
d

∑
e

λdλe
∑

d|n+h
e|n+h

an.

The summation condition means that{
n ≡ −hi (mod di) for 1 6 i 6 k

n ≡ −hj (mod ej) for 1 6 j 6 k.

For d and e such that λd 6= 0 and λe 6= 0, the di (resp. ej) are pairwise coprime so this

becomes {
n ≡ a(d) (mod |d|)
n ≡ a(e) (mod |e|),

by definition. For i 6= j, these conditions further impose

hi ≡ hj (mod (di, ej))

which is impossible unless (di, ej) = 1 for i 6= j, by the restriction on the support of λd to

involve tuples with entries coprime with the discriminant (8).

Thus the sum over d and e is restricted to coprime k-tuples, and the inner sum becomes a

congruence modulo |[d, e]| =
∏

[di, ei], precisely∑
n≡a([d,e]) (mod |[d,e]|)

an

by definition of a([d, e]).

Inserting (9), the term involving the error terms is exactly R, while the first term becomes

X̃
∑

d,e coprime

λdλega([d,e])(|[d, e]|).

But since gt(d) depends only on t modulo d, and since

|[d, e]| =
∏
i

[di, ei]

where the factors are coprime, we get by multiplicativity

ga([d,e])(|[d, e]|) =
∏
i

g−hi([di, ei]) = gh([d, e]),

since a([d, e]) ≡ −hi (mod [di, ei]) by construction.
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It is important for Zhang’s method (but not for Maynard’s) to observe that for a

given modulus q arising in R as q = |[d, e]|, in possibly many different ways, the

residue classes a (mod q) that may arise obey the constraint that, for all prime p | q,
there is some j such that

a ≡ −hj (mod p).

In other words, one can say that a is a root modulo q of the polynomial Fh. A weaker

property is that a (mod q) always belongs to the reductions of the set of idelettes

Xh = {x = (xp) ∈ I | for all p, xp ≡ −hj for some j}.

We first apply this to compute Q2. As in many sieve problems, a preliminary sieve

turns out to be technically very useful (see [9] for a general discussion; this is also

sometimes called the W -trick). This amounts, instead of just putting an = 1, to taking

an to be the characteristic function of an arithmetic progression n ≡ n0 (mod W ),

where W is the product of primes p 6 D, where D = D(X) grows very slowly, typically

D = log log logX. To ensure that there are integers n where n + hi are all coprime

to W , we select n0 so that p - n0 + hi for 1 6 i 6 k and p 6 D(X). There exist such

n0, simply because h is admissible.

This trick simplifies many computations, intuitively because the singular series

S(h) =
∏
p

(
1− νh(p)

p

)(
1− 1

p

)−k
(which appear frequently in [19]) are then “replaced” by

SW (h) =
∏
p>D

(
1− νh(p)

p

)(
1− 1

p

)−k
= 1 + o(1)

(in fact, this replacement happens almost invisibly, which explains why the change is

so convenient).

To fit this preliminary sieve, we assume that λd is supported on integers with no

prime factor less than D = D(X). We then have (9) with

X̃ =
X

W
, gt(d) =

{
1
d

if (d,W ) = 1

0 otherwise

|rd(X, t)| 6 1,

so that by an immediate estimate of the error term, we obtain

(11) Q2 = X̃(log 3X)
∑

d,e coprime

λdλe
|[d, e]|

+O(x2(log x)k+1‖λ‖2∞),

where the implied constant depends only on k.
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For Q1, we consider the sequences bn = anθ(n+ hi) for 1 6 i 6 k, i.e., shifted prime

(powers) for n restricted to n ≡ n0 (mod W ). We then write (9) with

X̃ =
X

ϕ(W )
, gt(d) =

{
1

ϕ(dW )
if (dW, t+ hi) = 1

0 otherwise.

Applying the proposition and summing over i, the main term for Q1 becomes

(12) Mg =
X

ϕ(W )

k∑
i=1

∑
d,e coprime
di=ei=1

λdλe
ϕ([d, e])

,

where ϕ([d, e]) has the obvious meaning (note that gh(d) = 0 unless [di, ei] = 1).

The error term, on the other hand, involves the distribution of primes in arithmetic

progressions. Then, inserting the definition of rd(X, t) for the shifted primes, and

applying the prime number theorem and trivial estimates of the contributions of the

prime powers, we obtain for any A > 1 the first estimate

(13) Rg �
{ k∑
i=1

∑
d,e coprime
di=ei=1

|λdλe|
∣∣∣ψ(X;W |[d, e]|, a′)− ψ(X)

ϕ(W [d, e])

∣∣∣+
X

(logX)A

}
where a′ is an idelette congruent to a(d, e) modulo |[d, e]| and to n0 modulo W , and

where the implied constant depends on k and A. The real work now begins. In the

next sections, we present the approaches of Zhang and Maynard independently of each

other. We have chosen to proceed in chronological order, although Maynard’s approach

is much quicker and simpler. Hence, those readers who are (naturally) interested in

understanding a short proof of bounded gaps between primes may begin with Section 8

(although we do not give full details).

4. ZHANG’S THEOREM ON PRIMES IN ARITHMETIC

PROGRESSIONS

At the time of the work of Goldston, Pintz and Yıldırım, part of the excitement was

due to the fact that one knew some results concerning primes in arithmetic progres-

sions going beyond the range of the Generalized Riemann Hypothesis, as required to

make (6) successful. These results, due to Fouvry–Iwaniec [7], Fouvry [4] and Bombieri–

Friedlander–Iwaniec [1] are of the following type: for some (explicit) θ > 1/2 (the crucial

feature), for any well-factorable function λ supported on q 6 Xθ (a concept which we

will introduce a bit more precisely in Remark 5.4 in Section 5) and for any integer

a > 1, we have

(14)
∑
q6Xθ

λ(q)
(
ψ(X; q, a)− ψ(X)

ϕ(q)

)
� X

(logX)A

where the implied constant depends now on A, but also on a (compare with (5)).
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This dependency on the residue class is the main issue, since in the application to

bounded gaps, one wishes a to range over all zeros of Fh modulo q. (It had already

been shown by Motohashi and Pintz [23] that the sieve argument of Goldston, Pintz

and Yıldırım could incorporate a well-factorable function λ(q).) The source of the

dependency on a lies deep within the arguments of Bombieri, Fouvry, Friedlander and

Iwaniec, from the use of the spectral theory of automorphic forms to estimate sums of

(incomplete) Kloosterman sums (see [7, Lemma 2] for instance, which is a basic result

of Deshouillers and Iwaniec).

One of Zhang’s insight is that many of the techniques introduced in these papers

are nevertheless still useful without this restriction, and that it is possible to exploit

some features of the residue classes that appear in Section 3 in order to pass beyond the

exponent of distribution 1/2. In this sense, his methods are closer in part to older papers

of Fouvry and Fouvry–Iwaniec, for instance [6], which did not exploit the spectral theory

of automorphic forms; thus the dependency on a is milder in [6] (which also does not

cover the distribution of primes, but of integers with no small prime factors), although

only 1 6 |a| 6 X is allowed, due to the use (see [6, p. 138, line 5]) of a summation by

parts in which the archimedean size of a matters (see also [5, p. 632, last paragraph of

§IV]).

Although the best known exponent in Zhang’s equidistribution theorem is currently

quite a bit smaller than the best known in (14) (any θ < 4/7 in [1], improving θ < 9/17

in [7]), this brilliantly leads to Theorem 1.1.

We state a version emerging from Polymath8, which is just slightly more general:

Theorem 4.1 (Zhang). — There exist explicit real numbers θ > 1/2 and δ > 0 such

that for any A > 1, for any idelette a ∈ I, we have

(15)
∑
q6Xθ

q∈M is Xδ−friable

∣∣∣ψ(X; q, a)− ψ(X)

ϕ(q)

∣∣∣� X

(logX)A

where the implied constant depends only on A, and in particular is independent of a.

Remark 4.2. — (1) Since, for given X, only finitely many q are involved, one can

equivalently say, using the Chinese Remainder Theorem, that a is an arbitrary integer

coprime to all primes 6 Xδ.

(2) We wish to emphasize that Zhang’s methods and results retain considerable in-

terest despite Maynard’s discoveries that led to Theorem 1.2 (just like the methods of

Wiles and Taylor-Wiles would retain their interest even if someone found an elementary

proof of Fermat’s Great Theorem.)

(3) Zhang’s paper established this (up to minor differences) for δ = 1/1168 and

θ = 1/2 + 2δ. The Polymath8 values allow any θ > 1/2 + 7/300, provided δ is small

enough (compared to θ − 1/2).
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In other words, Zhang obtains an exponent of distribution larger than 1/2 for primes

in arithmetic progressions by (i) imposing a restriction on the moduli q ∈ M (some

amount of friability, or the existence of good factorizations, which are in the spirit

of Iwaniec’s well-factorable weights); (ii) imposing a condition on the residue classes

modulo q which fits both the problem, and the conditions on q: he can (in the Polymath8

version, which is a bit finer than the original) choose arbitrary residue classes modulo

all primes p, but then extends these to all moduli by the Chinese Remainder Theorem.

We can quickly explain how this implies the bounded gap property using the

Goldston–Pintz–Yıldırım method. The multiplicative structure of idelettes and the

uniformity in a in Theorem 4.1, play an important role.

We take x = xθ/2 and consider the weight λd defined following the original Goldston-

Pintz-Yıldırım method (4) with the restriction to moduli which are xδ-friable for some

fixed δ > 0 small enough that Theorem 4.1 holds. Then:

– The main terms (11) and (12) are evaluated; it emerges (without too much diffi-

culty), that Mg and Mp satisfy

lim inf
X

Mg

Mp

> β × k(2`+ 1)

(`+ 1)(k + 2`+ 1)
− ξ,

where ξ > 0 depends on δ, θ and the length k of the k-tuple; it is seen that ξ is

extremely small provided k is large enough, even when δ and θ−1/2 are very small

(in Zhang’s paper, δ and θ−1/2 are about 1/1000, k = 3, 500, 000, and ξ < e−1200,

for instance). This means that the conclusion (6) is basically unchanged, provided

the “hard” error term Rg in (13) satisfies (for these given k, δ, θ) the estimate

Rg �
X

(logX)
.

– Then, using (15), this estimate of Rg follows from Theorem 4.1 using the remark

after the proof of Proposition 3.2, using an averaging trick: roughly speaking,

arguing as if W = 1 and |λd| 6 1 for simplicity, denoting

E(X; q, a) =
∣∣∣ψ(X; q, a)− ψ(X)

ϕ(q)

∣∣∣
one gets

|Rg| �
∑
q6x2

∑
a∈Xh (mod q)

E(X; q, a) 6
(∑
q6x2

|Xh (mod q)|E(X; q, a)
)1/2

×
(∑
q6x2

1

|Xh (mod q)|
∑

a∈Xh (mod q)

E(X; q, a)
)1/2

by the Cauchy-Schwarz inequality, and the bounds

|Xh (mod q)| 6 kω(q), E(X; q, a)� X

ϕ(q)

together with (15) allow one to conclude, since this bound is uniform over a.
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On the other hand, the main steps (to be greatly expanded later) of the proof of

Theorem 4.1 are roughly the following :

– A combinatorial and analytical decomposition of the von Mangoldt function re-

duces the problem to estimates of the same quality as (15) for certain arithmetic

functions of the type

α1 ? α2, α1 ? α2 ? α3,

(bilinear and trilinear sums) where αi is supported on integers n ∼Mi with M1M2

(resp. M1M2M3) very close to X, and with M1, M2 (resp. M1, M2 and M3) in rela-

tively precise ranges, which are crucial for the success of the method. The bilinear

sums and the trilinear sums are treated separately with different techniques.

– The bilinear forms are handled by means of adaptations of the Linnik disper-

sion method already used successfully by Fouvry–Iwaniec [6, 7] and Bombieri–

Friedlander–Iwaniec [1]; as in those works, this leads to incomplete exponential

sums over finite rings Z/qZ, and crucial estimates are derived by an application

of Weil’s theory of exponential sums in one variable;

– The trilinear sums are closely related to those that appear naturally in studying

the exponent of distribution of the ternary divisor function

τ3(n) =
∑
abc=n

1,

which was first done (beyond the range of 1/2) by Friedlander and Iwaniec [11].

Here again, and in fact rather more directly than for bilinear sums, there arise

incomplete exponential sums modulo q. However, if those are expanded entirely,

they are exponential sums in three variables, and square-root cancellation is re-

quired, which is a very difficult problem in general. For Friedlander and Iwaniec,

the required estimate was established by Birch and Bombieri, using the first proof

by Deligne of the Riemann Hypothesis (the Weil conjectures for smooth projective

algebraic varieties over finite fields). Zhang simply quoted this estimate. However,

as will be explained in Section 7, it is here much more straightforward to keep the

exponential sums in the form they arise originally, which is as one-variable sums

of summands which are themselves exponential sums. When the modulus is prime,

these summands are trace functions of étale sheaves on the affine line over Fp, and

the general formalism of Deligne’s most general version of the Riemann Hypoth-

esis (weight theory for compactly supported étale cohomology with coefficients in

constructible `-adic sheaves) leads to a quick (and conceptually clear) proof of the

Birch–Bombieri estimate.

Remark 4.3. — There is a fair amount of flexibility available in this strategy. For in-

stance, the Polymath8 project discovered that a sufficiently incisive treatment of the

bilinear sums (depending only on Weil’s theory, but more complex than Zhang’s ar-

gument, and depending on some numerical bounds) allows one to avoid entirely the

trilinear sums, and therefore the use of Deligne’s forms of the Riemann Hypothesis over
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finite fields. It also found that one of the two flavors of bilinear estimates could be

dispensed with (working therefore only with one type of bilinear forms and the trilinear

ones).

5. COMBINATORIAL DECOMPOSITIONS OF PRIMES AND

VINOGRADOV’S BILINEAR GAMBIT

An absolutely crucial ingredient, which is an extraordinary achievement of Vino-

gradov (one of the most conceptual insight of analytic number theory), is the fact that

(1) the von Mangoldt function (or other functions closely related to the characteristic

function of the set of primes, e.g., the Möbius function) can be decomposed as a linear

combination of more elementary functions, which are (genuine) Dirichlet convolutions

of at least two arithmetic functions; (2) the remarkable understanding that averages

involving such convolutions, like any sum that can be expressed in terms of bilinear

expressions, can often be estimated in situations where very little direct knowledge of

the factors is available, simply by exploiting the bilinear shape and the coefficients it

involves.

It is worth emphasizing that these two principles are at the heart of the modern

versions of the Bombieri–Vinogradov theorem, although the first proofs were different.

Hence, the underlying ideas are equally vital in understanding Maynard’s proof (which

uses the Bombieri–Vinogradov theorem) as in understanding Zhang’s equidistribution

theorem, if one begins from first principles.

A basic result is the following:

Proposition 5.1 (Heath-Brown identity). — Let J > 1 be a fixed integer. Let X > 1

be an integer and let K be an arithmetic function supported on X < n 6 2X. Let

B > 1 be an integer. There exist C > 1, depending only on J and B, such that the sum

(16)
∑
n

K(n)Λ(n),

can be written as a linear combination, with coefficients � (logX)C, of � (logX)C

sums of the type

(17) Σ(M ,N ) =
∑
· · ·
∑

m1,··· ,mJ

α1(m1)α2(m2) · · ·αJ(mJ)

×
∑
· · ·
∑

n1,··· ,nJ

V1(n1) · · ·VJ(nJ)K(m1 · · ·mJn1 · · ·nJ)

where

– The parameters M = (M1, · · · ,MJ) and N = (N1, · · · , NJ) are J-tuples of real

numbers in [1/2, 2N ]2J which satisfy

(18) N1 > N2 > · · · > NJ , Mi 6 X1/J , M1 · · ·MJN1 · · ·NJ �J X;
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– Defining

∆ = 1 +
1

(logX)B
,

the arithmetic functions m 7→ αi(m) are bounded by 1 and supported in [Mi,∆Mi];

– The smooth functions Vi(x) are compactly supported in [Ni,∆Ni], and their deriva-

tives satisfy

ykV
(k)
i (y)� (logX)C ,

for all y > 1, where the implicit constants depend only on k and B.

Hint. — First of all, one uses the Heath–Brown identity: for 1 6 n < 2X, we have

Λ(n) = −
J∑
j=1

(−1)j
(
J

j

) ∑
m1,··· ,mj6X1/J

µ(m1) · · ·µ(mj)
∑

m1···mjn1···nj=n

log n1.

Multiplying by K(n) and summing over n, one obtains a linear combination of sums

of the right shape, except that the ranges of the variables are not exactly as stated,

and that the ni variables are not weighted with compactly supported functions. Using

suitable partitions of unity, these restrictions can be relaxed to derive the statement

above (see [10, Prop. 3.1] for a particularly nice way of performing these steps).

Remark 5.2. — In a first reading (and in many applications), one can assume that

B = 0, so that the arithmetic functions αi and the smooth functions Vi are supported

in a dyadic segment.

If one splits the set of 2J variables mi and nj in two non-empty subsets, one sees

that each sum Σ(M ,N ) can be expressed as a bilinear form

Σ(M ,N ) =
∑
m

∑
n

α(m)β(n)K(mn).

For instance, if the m variable arises by taking together mi for i ∈ A and nj for

j ∈ B, we have

β(n) =
∑

(mi)i∈A

∑
(nj)j∈B

∏
i∈A

αi(mi)
∏
j∈B

Vj(nj).

It is relatively clear that in writing such a bilinear expression, most control of the

values of α and β is lost. More precisely, one still keeps estimates for the L2-norms of

these coefficients (or other norms), and some other information does remain beyond this,

as we will see (the Siegel-Walfisz property, for instance). Moreover, in key special cases

or variants of this gluing, one may retain specific information that can be exploited.

Thus writing sums over primes as combinations of such bilinear expressions seems to

be a huge gambit, with seemingly little compensation for the loss of control of the

coefficients. This impression is however misleading: the bilinear structure contains in

itself a source of rich information.
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By definition, assuming we only have control of the L2-norm of α and β, the best

estimate that can be obtained for Σ(M ,N ) is in terms of the norm ‖BM ,N‖ of the

bilinear form BM ,N with coefficients γ(m,n) = K(m,n): one has

|Σ(M ,N )| 6 ‖BM ,N‖ ‖α‖ ‖β‖

where ‖α‖ and ‖β‖ refer to the euclidean norms of the corresponding vectors, and

‖BM ,N‖ is the smallest real number for which this inequality holds for all α and β.

It is quite remarkable that this can be a useful bound, provided only that neither

M =
∏
i

MI , nor N =
∏
j

Nj

are too small (i.e., provided the expression BM ,N is “genuinely” bilinear).

We illustrate the most basic form of this bilinear principle. Variants of this argument

occur many times in analytic number theory, although (as in Zhang’s work) one often

uses more precise structural features of the bilinear form when going through concrete

estimates.

Using the Cauchy-Schwarz inequality, we write

|Σ(M ,N )|2 6
(∑

m

|β(m)|2
)(∑

m

∣∣∣∑
n

α(n)γ(m,n)
∣∣∣2) = ‖β‖2Σ′(M ,N )

(say) and then transform Σ′(M ,N ) by expanding the square, and exchanging the sums

to move the sum over m inside:

Σ′(M ,N ) =
∑∑
m1,m2

α(m1)α(m2)∆γ(m1,m2),

where

∆γ(m1,m2) =
∑
n

γ(m1, n)γ(m2, n).

The point is that ∆γ(m1,m2) only involves the coefficients γ(m,n) defining the bi-

linear form, and not the arithmetic functions α and β. In particular, this leads easily

to the bound

‖BM ,N‖2 6 max
m1

∑
m2

|∆γ(m1,m2)|.

Thus the issue becomes that of estimating the correlation sums ∆γ(m1,m2). We think

of the coefficients γ(m,n) as having bounded size, but oscillating rather randomly. The

sums then often obey a kind of dichomoty: for the “diagonal pairs” m1 = m2, the sum

is large because it is a sum of positive quantities, namely

∆γ(m,m) =
∑
n

|γ(m,n)|2

will be typically of size roughly N . On the other hand, we can hope that the “non-

diagonal” sums ∆γ(m1,m2) with m1 6= m2 should be quite a bit smaller than this trivial

bound (of size N) because the terms γ(m1, n)γ(m2, n) have oscillating phases or signs.
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In practice, in view of the great variety of situations and patterns that arise, one

tends to perform these steps independently for each case, instead of simply quoting the

norm of a bilinear form. For instance, the γ(m,n) might themselves be sums

γ(m,n) =
∑
r

∑
s

g(r, s,m, n)

and it might be worth pulling out one, or both, of the r and s sums before estimating the

bilinear form. Another frequent phenomenon is that the diagonal case might contain

more than the pairs (m1,m1), in which case the estimates usually depend on these not

being too numerous. Finally, adjustments might be made (when further parameters

are available) to help the contributions of the diagonal and non-diagonal terms match,

since the final bound will be the worse of the two.

Example 5.3. — If we take the case γ(m,n) = K(mn), the non-diagonal case occurs

when K(m1n) and K(m2n) have relatively independent phases. This does not always

happen, and it fails entirely when K(n) is a multiplicative function (such as the Möbius

function, or a Dirichlet character), in which case

K(m1n)K(m2n) = K(m1)K(m2)|K(n)|2

if (m1, n) = (m2, n) = 1 (or if K is totally multiplicative).

In this case, however, the L-function techniques based on zero-free regions of Dirichlet

L-functions do lead to some estimates, even though they are much weaker than expected

(based on the Generalized Riemann Hypothesis). It is essential usually to combine the

Vinogradov method with the basic equidistribution statements (see below the discussion

of the Siegel-Walfisz property).

On the other hand, if we take K(n) = f(n + 1), even when f is multiplicative, the

principle can sometimes be implemented. Indeed, one of Vinogradov’s first application

was toK(n) = χ(n+ 1), where χ is a Dirichlet character modulo q. The results obtained

for ∑
p6X

χ(p+ 1)

are, in terms of the uniformity of q and X, beyond the reach of a treatment based on

writing ∑
p6X

χ(p+ 1) =
∑

a (mod q)

χ(a+ 1)
∑
p6X

p≡a (mod q)

1

and applying the Generalized Riemann Hypothesis...

Remark 5.4. — Because of this fundamental bilinear structure, many arithmetic prob-

lems involving sums ∑
n

λ(n)K(n)

can be attacked if they can be re-arranged as linear combinations of bilinear forms.

This is one motivation for the introduction of well-factorable functions by Iwaniec in
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his work on the linear sieve (see, e.g., [9, §12.7]): roughly, λ is of this type if it is

supported on integers n 6 X and, for any factorization X = MN (with M and N

real numbers > 1), we can write λ = α ? β for some arithmetic functions α (resp. β)

supported on integers 6 M (resp. 6 N), and satisfying some natural size condition.

Then the sum can be re-arranged bilinearly with complete flexibility in the respective

sizes of the variables. We will see that Zhang uses very similar structures.

We now come back to the situation of primes in arithmetic progressions and to the

basic sum

(19)
∑
q6Q

∣∣∣ψ(X; q, a)− ψ(X)

ϕ(q)

∣∣∣,
of Theorem 4.1, for a fixed a ∈ I, with possible restrictions on q and with Q meant to

depend on X and to be as large as possible. This is usually treated as an average over

q of sums over primes ∑
X<n62X

Λ(n)δq,a(n)

where

δq,a(n) = 1n≡a (mod q) −
1

ϕ(q)
1(n,q)=1

is the normalized (to have average zero) characteristic function of a primitive residue

class a ∈ (Z/qZ)× for q > 1 (or q ∈M), or it may be thought of as fitting directly the

context of (16) that we described, by taking

K(n) =
∑
q6Q

c(q)δq,a(n), for X < n 6 2X

where the c(q) are the signs of ∣∣∣ψ(X; q, a)− ψ(X)

ϕ(q)

∣∣∣.
In this case, one might as well consider this type of expressions with arbitrary complex

numbers c(q) with modulus |c(q)| 6 1. This is also convenient to introduce restrictions

on the moduli q in (19), by taking c(q) = 0 for other q, and we will take this approach

(also partly for the sake of variety).

Using this viewpoint, the goal is to obtain, for fixed a ∈ I and suitable (M ,N ), the

estimates

(20) Σ(M ,N )� X(logX)−A

for an arbitrary A > 1, where the implied constant depends only on A. The ranges of

pairs (M ,N ) should be such that, considering the size of q with respect to X, they

cover all the terms of the Heath-Brown identity, and therefore lead to∑
X<n62X

Λ(n)K(n)� X

(logX)A
.
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We will say that (M ,N ) is feasible when (20) holds. The point is that, depending

on the ranges involved, different techniques and methods are applicable, so that the

estimate may arise from a variety of directions.

It will be convenient to denote

m =
logM

logX
, n =

logN

logX
,

so that m+ n = 1 + o(1), and similarly for the range of other variables that may occur,

all measured in logarithmic scale where the main asymptotic variable X has size 1.

In this language, here is roughly the result that Zhang obtains:

Theorem 5.5 (Zhang’s bilinear estimates). — For every κ > 0 small enough, there

exist explicit constants $ < 1/20 and δ > 0 with the following property: with notation

as above, (M ,N ) is feasible provided

(1) The coefficients c(q) are supported on Xδ-friable moduli q ∈M such that

q 6 Q 6 X1/2+2$;

(2) The N variable has length satisfying

1

2
− 1

10
− κ+ o(1) < n <

1

2
+

1

10
+ κ+ o(1).

Note that it is intuitively clear that this result is harder as κ becomes larger.

Is this enough to cover the whole range of bilinear forms that arise for some applica-

tion of Proposition 5.1? Not quite, but it turns out that if there are enough variables

involved (i.e., if the proposition is applied with J large enough), then the gap is rel-

atively small. Precisely, we have the following combinatorial lemma (in the version

from [24, Lemma 5.1]):

Lemma 5.6. — Let 1/10 < σ < 1/2 be a fixed real number, let n > 1, and let t1 ,. . . , tn
be non-negative real numbers such that t1 + · · ·+ tn = 1. Then one of the following three

statements holds:

(1) There is a ti with ti > 1/2 + σ.

(2) There is a partition {1, . . . , n} = S ∪ T such that

1

2
− σ <

∑
i∈S

ti 6
∑
i∈T

ti <
1

2
+ σ.

(3) There exist distinct i, j, k with 2σ 6 ti 6 tj 6 tk 6 1/2− σ and

ti + tj, ti + tk, tj + tk >
1

2
+ σ.

Furthermore, if σ > 1/6, then the last alternative cannot occur.
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Hints. — Assume (1) and (2) are false; then say that a subset S ⊂ {1, . . . , n} is large

if the sum of the ti, i ∈ S, is > 1/2 + σ. If S is not large (“small”), then the sum is

6 1/2− σ (because (2) fails). Now say that i is powerful if there is a small S such that

S ∪ {i} is large. Then prove that there exist exactly three powerful elements i, j and

k, which can be arranged to satisfy (3).

Finally, if σ > 1/6 then 1/2−σ < 2σ, so that the conditions in (3) are incompatible.

Remark 5.7. — The last statement is best possible in the sense that, for 1/10 < σ 6 1/6,

taking n = 3 and (t1, t2, t3) = (2σ, 1/2 − σ, 1/2 − σ), only the third part of the lemma

holds. Also, if σ = 1/10, then

(1/5− δ, 1/5, 1/5, 2/5 + δ),

for small enough δ, is a quadruple where none of the three conclusions applies. (See [24,

Remark 5.2] for more examples).

To apply this fact, assuming Theorem 5.5 is known, we pick σ = 1/10 + κ for κ > 0

small enough that it applies. We then invoke the Heath-Brown identity with J > 1/(2σ)

(e.g., J = 10), and then consider the lemma with n = 2J . Defining ti = logMi/ logX,

tJ+i = logNi/ logX for 1 6 i 6 J (with minor adjustment to ensure that the sum is

exactly 1), we see that Case (2) corresponds precisely to the range of bilinear forms

covered by Theorem 5.5 when arranging the variables according to whether i ∈ S or

i ∈ T .

Moreover, with this choice of J , the first case, where some ti is > 1/2 + σ, is in

fact the easiest to handle. Indeed, note this can happen only if i > J : we have

ti > 1/2 + σ > 2σ > 1/J , and by (18), this is incompatible with the lengths of the

m-variables.

Now, referring back again to Proposition 5.1, the fact that i > J means that i

corresponds to a “long” variable nj with a smooth weight V (nj), perturbed by the

convolution of the remaining variables. But this variable nj is then very well distributed

in arithmetic progressions to moduli q as large as Mj (essentially) and the sum over the

remaining variables is handled trivially (see [24, p. 79], for instance).

¿From this, we conclude that Theorem 5.5 fails to cover all necessary ranges to derive

Theorem 4.1 from Proposition 5.1, simply because of the appearance of the constant

1/10 in this theorem, instead of a number < 1/6 (which would eliminate the third case

of the lemma). As it turns out, Theorem 5.5 does hold with 1/6 replacing 1/10 (this is

an outcome of [24]), but Zhang did not prove this. He therefore had to handle the last

situation.

In terms of arithmetic functions, denoting by α1, α2, α3 the functions in Proposi-

tion 5.1 associated to the variables with indices i, j, k, and by β the convolution of all

the remaining variables, this means that one must handle sums of the type

(21)
∑
n

(β ? α1 ? α2 ? α3)(n)K(n)
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where αi is supported around Ni, and β around M with

n1 + n2 + n3 + m = 1 + o(1), ni + nj >
1

2
+

1

10
+ κ+ o(1),(22)

1

5
+ 2κ+ o(1) < ni <

1

2
− 1

10
− κ+ o(1)(23)

for 1 6 i 6= j 6 3 (resp. 1 6 i 6 3), where κ > 0 is the same number arising from the

range of bilinear forms treated in Theorem 5.5.

We will discuss the proof of Theorem 5.5 in the next section, and then discuss how

Zhang handled (21) in Section 7.

6. BILINEAR DISCREPANCY ESTIMATES

Our objective in this section is to present some basic ideas that lead to Theorem 5.5.

We especially want to clarify where the assumptions on the ranges of the variables

play a role, how the restriction to a fixed idelette appears, and how (some degree of)

friability of the moduli q involved plays a crucial role.

There is a first important point, already hinted that: in the bilinear forms arising

from the Heath-Brown identity, the function β do retain an important property: they

satisfy the Siegel-Walfisz property, in the sense that (provided the length of the variable

n is not too short) the values β(n) are individually equidistributed modulo q, uniformly

for q of size � (logX)B for every B > 1. Precisely, if N � Xε for some fixed ε > 0,

they satisfy the bounds

(24)
∑

n≡a (mod q)

β(n)− 1

ϕ(q)

∑
n

β(n)� X

(logX)A

for any q > 1 and (a, q) = 1, and for any A > 1, where the implied constant depends

on A. (Note that this bound is trivial if q is larger than a power of logX.) This (stan-

dard) Siegel-Walfisz property arises in the present setting from the following general

facts:

– By (a variant of) the Siegel-Walfisz form of the Prime Number Theorem (see,

e.g., [17, Cor. 5.29]), the Möbius function satisfies the Siegel-Walfisz property;

– Smooth functions like V (n) in Proposition 5.1 always satisfy even stronger forms

of equidistribution;

– An elementary argument shows that, provided β1 is supported on [N, 2N ] with

Xε 6 N 6 X for some fixed ε > 0, and satisfies the Siegel-Walfisz property, then

β1 ? β2 has the Siegel-Walfisz property (for arbitrary β2 supported on [M, 2M ]

with NM � X; see, e.g., [24, Lemma 5.4]).

Now, as a preliminary step (and as a first illustration of the use of the Heath-Brown

identity and bilinear techniques) one can prove now quite easily that if q 6 Q 6
X1/2/(logX)B for some integer B > 1 (depending on A for which we seek (20)), then

(M ,N ) is feasible (with terminology as in Section 5) for the sum provided N � Xε
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for some fixed ε > 0 and β satisfies the Siegel-Walfisz property (24); essentially, this

follows by writing

Σ(M ,N ) =
∑
q

c(q)
∑
m,n

α(m)β(n)
(
1mn≡a (mod q) −

1

ϕ(q)
1(mn,q)=1

)
=
∑
q

c(q)

ϕ(q)

∑∗

χ (mod q)

χ(a)
(∑

m

α(m)χ(m)
)(∑

n

β(n)χ(n)
)

where χ runs over non-trivial Dirichlet characters modulo q, and then reducing to

primitive characters, and applying either the Siegel–Walfisz Property for β (for small

moduli) or the large sieve inequality (to α and β), namely for any complex numbers

(γ(n)), we have∑
q6Q

∑∗

χ (mod q)

∣∣∣ ∑
N1<n6N1+N2

γ(n)χ(n)
∣∣∣2 6 (N2 +Q2)

∑
n

|γ(n)|2,

where χ runs over primitive Dirichlet characters modulo q (for details, see [17, Th.

17.4]). Using this argument, it is an easy matter to deduce the Bombieri-Vinogradov

Theorem: for every A > 1, there exists B > 1 such that

(25)
∑

q6X1/2/(logX)B

max
(a,q)=1

∣∣∣ψ(X; q, a)− ψ(X)

ϕ(q)

∣∣∣� X

(logX)1/2

where the implied constant depends only on A. (This approach to the Bombieri-

Vinogradov Theorem goes back to ideas of Gallagher and later Motohashi).

Remark 6.1. — The large sieve inequality itself is an example of the bilinear principle,

see [17, §7] for a detailed discussion and many variants.

This first step is already useful as it reduces the proof of Theorem 5.5 to the cases

where Q > X1/2/(logX)B for some B depending on the A for which we want to

prove (20). Since we wish to use Theorem 5.5 to prove Theorem 4.1 for some (arbitrarily

small) $ > 0 and δ > 0, this means that we are in a borderline situation, where only a

small amount needs to be gained in order to succeed. This is a point to keep in mind

in the transformations that follow.

The next step exploits the friability of the moduli, and is similar to using a well-

factorable weight c(q) (see Remark 5.4, and see also [5, Cor. 5]). Precisely, we may

restrict the support of c(q) to moduli q of the type

q = rs

where r and s are in dyadic segments R < r 6 2R and S < s 6 2S, with RS = Q.

(Indeed, since any q appearing in the bilinear form is Xδ-friable, for any choices of R

and S we can factor

q = rs

where r satisfies

X−δR 6 r 6 R,
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and we then rearrange these factors (r, s) dyadically). Note that we have some choice

since a single q has such factorization with r in any interval of this type (again, in the

spirit of well-factorability). We exploit this by taking R = N1−ν for some small ν > 0,

so that R is rather close to N .

Now another application of the Siegel-Walfisz property, used to “detect” the main

term, allows one to replace the function δq,a(n) in K(n) by

δ(n) = 1 n≡a (mod r)
n≡b1 (mod q)

− 1 n≡a (mod r)
n≡b2 (mod q)

for some idelettes b1 and b2. (This is somewhat cosmetic, but by separating the main

term, it simplifies the later application of the dispersion method by making the sum

more symmetric).

We then begin the actual work. This is similar to the basic bilinear principle, but we

have many “hidden” parameters, and we can (and must) exploit them before or when

applying the Cauchy-Schwarz inequality. Here we pull outside the sum over r and m,

and write therefore

|Σ(M ,N )| 6
∑
r

∑
m

α(m)
(∑

s

c(rs)
∑

mn≡a (mod rs)

β(n)δ(mn)
)

before applying the Cauchy-Schwarz inequality:

|Σ(M ,N )|2 6 R‖α‖2
(∑

r

∑
m

∣∣∣∑
s

c(rs)
∑

mn≡a (mod rs)

β(n)δ(mn)
∣∣∣2).

We then square the last sum: it is a combination of four sums of the type

Σ′(M ,N ) =
∑
r

∑
m

∑
s1,s2

c(rs1)c(rs2)
∑
n1,n2

β(n1)β(n2)1 mn1≡a (mod r)
mn1≡b1 (mod s1)

1 mn2≡a (mod r)
mn2≡b1 (mod s2)

.

Now observe a crucial consequence of the arrangement of the variables and of the

multiplicative structure of the idelette (already present and exploited by Fouvry and

Iwaniec [6, 7]): the inner sum over n1 and n2 is restricted by the condition

n1 ≡ n2 (mod r).

Note the important fact that if the residue class a in Theorem 4.1 was allowed to

depend on q, then this extra restriction would disappear, and this line of argument

would collapse.

Since we think of R = N1−ν as smaller but quite close to N , this congruence is a

strong constraint. In fact, we write

n2 = n1 + `r, ` 6
N

R

and sum over a fixed value of `, i.e., we consider now

Σ`(M ,N ) =
∑
r

∑
m

∑
s1,s2

c(rs1)c(rs2)
∑
n

γ(n, r)1 mn≡a (mod r)
mn≡b1 (mod s1)

1m(n+`r)≡b1 (mod s2),
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where γ(r, n) = β(n)β(n+ `r), which we view again as (mostly) arbitrary coefficients

with basic control of their average size.

We can glimpse here the most important gain, that also relates to the factorability

of the moduli q and to the arrangement of the bilinear argument. The sums over m

and n are of length M and N unchanged from the start, and of size close to
√
X, hence

close to Q = RS. The congruence conditions on m and n now involve the modulus

[rs1, rs2] = rs1s2 which is of size RS2 = Q2/R, at least if s1 and s2 are coprime. If

R is quite large – it will be relatively close to N – this modulus is much smaller than

the modulus q1q2 = r2s1s2 that would arise if one argued in the same way but without

the factorization (i.e., with R = 1). The coprimality of s1 and s2 in this intuitive

explanation is of course not always true; the gcd of s1 and s2 must be brought into

the picture, and a different treatment is needed when it is large. For simplicity, we

simply deal with the coprime case (the reader may check, for instance, that at least the

diagonal case s1 = s2 can be dealt with easily).

Since we began with sums over m and n of length N close to (but possibly smaller

than) the square root of X, this means that the resulting exponential sums will be, for R

not too small, of length larger than the square root of the modulus. But such exponential

sums of “algebraic” nature can be estimated efficiently, and in great generality, exactly

when this length condition is met, by exploiting the Riemann Hypothesis over finite

fields. In this case, only the Riemann Hypothesis for curves is needed, since the sum

involves a single variable, and the results of A. Weil are therefore enough. In the next

section, we will see that the trilinear sums are much more delicate in this respect.

More precisely, the simplest completion technique can be expressed as follows:

Lemma 6.2. — Let q > 1 be an integer, let ϕ : Z/qZ −→ C be a function extended to

Z by periodicity.(7) For Y > 1, we have∣∣∣ ∑
16n6Y

ϕ(n)
∣∣∣ 6 √q(log 3q)

(
1 +

Y

q

)
max
h∈Z/qZ

|ϕ̂(h)|

where

ϕ̂(h) =
1
√
q

∑
x∈Z/qZ

ϕ(x)e
(
−hx
q

)
is the discrete Fourier transform of ϕ.

Proof. — By periodicity the sum is bounded by bY/qc times the “complete” sum over Z/qZ,

which is ϕ̂(0), plus the maximum of the sums of length Y with 1 6 Y 6 q. For the latter,

denoting by 1 the characteristic function of this interval, the discrete Plancherel formula gives∣∣∣ ∑
16n6Y

ϕ(n)| =
∣∣∣ ∑
h∈Z/qZ

ϕ̂(h)1̂(h)
∣∣∣ 6 ∑

h∈Z/qZ

|1̂(h)| × max
h∈Z/qZ

|ϕ̂(h)|

and a computation with geometric series shows that the L1-norm of the Fourier transform of

1 is 6
√
q(1 + log q) (independently of the length of the interval).

(7) No confusion with the Euler function should arise.
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Remark 6.3. — The intuition behind this method is that, for many functions ϕ, the

Fourier transform should be uniformly bounded by a constant because each value ϕ̂(h) is

(up to dividing by
√
q) an exponential sum of length q involving a (typically) oscillatory

function that should (at least theoretically) exhibit square-root cancellation. One of

Weil’s greatest achievements was to show that this intuition holds, e.g., when ϕ(n) =

e(f(n)/p) for some fixed rational function f ∈ Q(X), unless it is obviously degenerate

in some sense (essentially, unless it is constant modulo p).

We apply this first to the m variable, since the sum over m is free of interfering

coefficients. Precisely, we separate the zero frequency (which gives main terms which

cancel out when rebuilding Σ′(M ,N )) and thus must understand sums of the type

Σ′′ =
∑
r

∑
s1,s2

c(rs1)c(rs2)
∑
n

γ(r, n)e
( ξ(n)h

r[s1, s2]

)
for non-zero h ∈ Z/r[s1, s2]Z and for the residue class ξ(n) modulo r[s1, s2] characterized

by

(26) ξ(n) ≡ b1
n

(mod s1), ξ(n) ≡ b2
n+ `r

(mod s2), ξ(n) ≡ r

n
(mod r)

(of course, this depends also on (b1, b2, r), but we will sum over n for each of these

parameters separately).

Now we must deal with the sum over n. This has the unknown coefficients γ(r, n)

attached, so we apply once more the bilinear principle: moving the variables n and r

outside and applying the Cauchy-Schwarz inequality, we get

|Σ′′|2 6 Σ1Σ2

where

Σ1 =
∑
r

∑
n

|γ(r, n)|2

is easily handled to show that Σ1 � RN(logN)C for some C > 1 (depending only on

A > 1), while (after opening the square and exchanging the summation over n) we have

|Σ2| 6
∑∑
s1,s2,s3,s4

∣∣∣∑
n

e
( ξ(n)h

r[s1, s2]
− ξ(n)h

r[s3, s4]

)∣∣∣.
The sum over n is an algebraic exponential sum of length N with modulus

r[s1, s2, s3, s4] which is about RS4 when the si are coprime, which is again a simplifying

assumption. Again because we selected R to be close to N , and S quite small, these

parameters match closely and Lemma 6.2 can be applied. One has to deal with

technical details involving cases where the phase of the sum degenerates, but in the

end, after applying the Chinese Remainder Theorem, the most important estimate is

the following:
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Proposition 6.4. — Let p be a prime number, and(8) ψ(x) = e(x/p) an additive

character modulo p. Let (a, b, c, d) be elements of Fp with d 6= 0 and not all of (a, b, c)

zero. We then have ∣∣∣ ∑
x 6=−d,0

ψ
( a

x+ d
+
b

x
+ cx

)∣∣∣ 6 3
√
p.

Remark 6.5. — The condition (26) explains the form of the exponential sum, the linear

phase ψ(cx) arising from the Fourier transform in Lemma 6.2.

Sketch of proof. — This is a basic consequence of the Weil bound for exponential sums in

one variable. We will however explain how to derive this (and many similar bounds) from

the formalism of étale sheaves and Deligne’s version of the Riemann Hypothesis over finite

fields [3] (compare with the proof of Theorem 7.3 below). Fixing a prime ` 6= p, and an

isomorphism ι : Q̄` −→ C (which we will use as an identification when considering `-adic

numbers as complex numbers), there exists a lisse `-adic sheaf L of rank 1 on U = A1−{0,−d}
such that (the image under ι of) the trace of the geometric Frobenius of Fp acting on the

stalk over a is equal to

ψ
( a

x+ d
+
b

x
+ cx

)
.

This sheaf is geometrically non-trivial under the assumption that (a, b, c) are not all 0

(because it is then ramified at −d, 0 or ∞).

Because the sheaf is lisse on U and geometrically non-trivial, we have

H2
c (U × F̄p,L) = H0

c (U × F̄p,L) = 0

(see,e.g., [3, (1.4.1)b]). The Grothendieck-Lefschetz trace formula (see, e.g., [18, 2.3.2]) gives∑
x∈Fp

ψ
( a

x+ d
+
b

x
+ cx

)
= −Tr(Fr | H1

c (U × F̄p,L)),

and by Deligne’s general form of the Riemann Hypothesis [3, Th. 3.3.1], which implies that

all eigenvalues of the Frobenius acting on H1
c (U × F̄p,L) have modulus at most p1/2, we get∣∣∣∑

x∈Fp

ψ
( a

x+ d
+
b

x
+ cx

)∣∣∣ 6 (dimH1
c (U × F̄p,L))p1/2.

Now we use the Euler-Poincaré characteristic formula (see, e.g, [18, 2.3.1]) which, since the

H0
c and H2

c cohomology groups vanish, gives

dimH1
c (U × F̄p,L) = −χc(U × F̄p,L) = χc(U × F̄p)− Swan0(L)− Swan−d(L)− Swan∞(L).

Since U = P1 − {0,−d,∞}, its Euler-Poincaré characteristic is −1, and since we have

Swanx(L) = 1

for x ∈ {0,−d,∞} if (respectively) b, a or c is non-zero, and otherwise the Swan conductor

at x is 0 (this corresponds to the Swan conductor for an additive character of a function with

a simple pole), we get

dimH1
c (U × F̄p,L) = 3,

(8) No confusion with the prime counting function will arise.
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provided all of (a, b, c) are non-zero, and otherwise the dimension is 6 2. This finishes the

proof.

We have left out quite a few technical details. The final outcome is an estimate that

shows that (M ,N ) is feasible for q 6 Q 6 X1/2+2$ for some $ > 0, provided the

length of the shortest of the two variables (say N , if N 6M) is not too small, namely

if n > 1/2 − 2$ − δ′ for some arbitrarily small fixed δ′ > 0. This does not cover the

whole range in Theorem 5.5. Nevertheless (as found out by the Polymath8 project),

it is possible to improve the argument by exploiting a finer version of the completion

technique, based on more friability properties of the moduli, in such a way that this

gap is filled (this is the so-called q-van der Corput method, see [24, Cor. 6.15]). This

leaves only the trilinear estimates to be dealt with in order to finish the proof of Zhang’s

Theorem.

Without this improvement (and this is the situation in Zhang’s own version), one

has to find a different arrangement of the final steps where the sum over n was treated.

There are a number of variants of this step; Zhang [27, §11] essentially arranges the

sum (in skeleton form indicating only the order of the variables, and assuming N 6M

as before) as ∑
s1

∑
n

∣∣∣∑
s2

∣∣∣
(for each fixed r) and applies Cauchy-Schwarz to the s1, n sums, while [24] has three

different approaches (one involves the same finer completion technique mentioned above,

the second exploits further friability properties of s1 to again create a new splitting

s1 = u1v1 which can be exploited and the third and most efficient depends on fine

properties of the family of exponential sums in Proposition 6.4, and therefore goes well

beyond Weil’s method, towards the Grothendieck-Deligne formalism of étale sheaves

and the general form of the Riemann Hypothesis over finite fields). At least in principle,

the ideas are relatively similar to those already discussed, and we won’t say more.

7. THE TERNARY DIVISOR FUNCTION

The final step in Zhang’s work is the treatment of the sums (21), namely∑
n≡a (mod q)

(β ? α1 ? α2 ? α3)(n)K(n) =
∑
q6Q

c(q)
∑

mn1n2n3≡a (mod q)

β(m)α1(n1)α2(n2)α3(n3)

with the restrictions (22) concerning the length of the variables. Using a general version

of the Bombieri-Vinogradov Theorem, we can assume that Q > X1/2/(logX)B as in the

bilinear case, and we want to extend the range of Q to Q 6 X1/2+2$ for some $ > 0,

at least if c(q) is supported on suitably friable moduli.

Reviewing the situation at the end of Section 5, one might feel uneasy, noting that

one could well imagine being able to give non-trivial results for these sums, but with a
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slightly narrower range than required for the gap to be covered (i.e., only for variables

satisfying (22) with κ > 0 replaced by a smaller number κ′ > 0).

However, the sums above, as they arise from Proposition 5.1, have the following

special features:

– The variable m is relatively short, since m + n1 + n2 + n3 = 1 + o(1) and

n1 + n2 + n3 =
1

2

(
n1 + n2 + n1 + n3 + n2 + n3

)
>

3

4
+

3

20
− 3κ

2
+ o(1)

by (22), and we can assume that κ > 0 is fixed, but arbitrarily small (in view of

Theorem 5.5);

– The functions αi(n) = Vi(n) are smooth (each arises from a single variable nj in

Proposition 5.1, since n is too large to be compatible with the lengths 6 1/J of

the mi variables).

Intuitively, one can then feel that one has a chance, because this suggests that (21)

might well become easier (under (22)) when κ gets larger, since the variable which is the

combination of the ni variables is then longer. Since this is the opposite of the situation

in Theorem 5.5 (as noted after its statement), a healthy optimism is de rigueur. In fact,

Zhang’s work establishes the following type of result (see [24, Th. 9.1] for a general

version):

Theorem 7.1 (Zhang’s trilinear estimate). — For all κ > 0, there exist explicit δ > 0

and $ > 0 such that, for all A > 1, we have∑
q6Q

c(q)
( ∑
mn1n2n3≡a (mod q)

β(m)V1(n1)V2(n2)V3(n3)

− 1

ϕ(q)

∑
(mn1n2n3,q)=1

β(m)V1(n1)V2(n2)V3(n3)
)
� N

(logN)A

whenever

Q 6 N1/2+2$,

for any idelette a, and for any arithmetic function β and smooth functions Vi as above,

in particular satisfying the support conditions (22) and the growth conditions of divisor-

type functions, and for any function c(q) with |c(q)| 6 1 supported on N δ-friable moduli.

This result has the desired feature of being valid for all κ that allows us to bridge

the gap left by Zhang’s bilinear estimates, and therefore gives Theorem 4.1.

We explain some ideas of the proof. If we work with a fixed q close to X1/2, and a

fixed m, we have a sum of the type

Tm(a; q) =
∑

mn≡a (mod q)

α1 ? α2 ? α3(n) =
∑

mn1n2n3≡a (mod q)

α1(n1)α2(n2)α3(n3)

with αi smooth and compactly supported on [Ni/2, Ni], where the modulus is not that

much larger than the square root of the length N1N2N3. In other words, we can (in fact,

must) use results or ideas concerning the distribution of the ternary divisor function in
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arithmetic progressions to large moduli. (It is because of this essential component of

the sum that we speak of trilinear estimates).

This is again a very good sign, because of the deep work of Friedlander and

Iwaniec [11], who had indeed obtained an exponent of distribution larger than 1/2 for

this arithmetic function. Indeed, their work immediately implies (in fact, is proved

by establishing) that for all ε > 0, all moduli 1 6 q 6 X1/2+1/230−ε and all primitive

residue classes a modulo q, and for all A > 1, we have, for αi = Vi(n/Ni) (with Vi
satisfying the same smoothness conditions as the functions in Proposition 5.1), the

bound ∑
n≡a (mod q)

α1 ? α2 ? α3(n)− 1

ϕ(q)

∑
n

α1 ? α2 ? α3(n)� 1

q

X

(logX)A

where the implied constant depends only on A and ε. This result, although it is very

strong (note the uniformity with respect to a, as well as the fact that averaging over

the modulus is not needed) is insufficient to finish the proof of (21) (and therefore that

of Theorem 4.1, in the original version), but again the friability of the moduli can be

used to extend the exponent of distribution to close the gap.

Remark 7.2. — The exponent 1/2 + 1/230 of Friedlander and Iwaniec was improved to

1/2 + 1/82 by Heath-Brown [15], and recently (and independently of considerations of

gaps between primes) to 1/2 + 1/46 by Fouvry, Michel and the author [8], the latter

restricted to the (most difficult) case of prime moduli.

We sketch here quite informally an argument different from that of Zhang (which is

closer to [11]); as in the case of the bilinear sums, there are different variants available.

We write Q = RS and we may consider moduli q = rs with r around R and s around

S, with R < S, and the splitting may be chosen using the friability. We begin with m

fixed.

Although some variables ni might be shorter than the square root of the modulus,

it is symmetrically advantageous to perform completion of the three variables at once.

Since we have a smooth weight, we use the Poisson summation formula and obtain

something like

Tm(a; q) ≈ N

q3

∑∑∑
16|hi|6Hi

( ∑∑∑
n1,n2,n3 (mod q)

mn1n2n3=a (mod q)

e
(h1n1 + h2n2 + h3n3

q

))
+ (remainder)

where Hi � Q/Ni and the remainder accounts for the contributions of the “high” as well

as the “degenerate” frequencies (h1, h2, h3) with h1h2h3 = 0. The case (h1, h2, h3) =

(0, 0, 0) will lead to the main term (and hence cancels out), while the others are easier

to estimate.
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For hi (and m) coprime with q, borrowing one factor 1/q, we have

1

q

∑
n1,n2,n3 (mod q)

mn1n2n3=a (mod q)

e
(h1n1 + h2n2 + h3n3

q

)
= Kl3(ah1h2h3m

−1; q)

where Kl3(x; q) is a hyper-Kloosterman sum in two variables modulo q:

Kl3(x; q) =
1

q

∑∑
α.β,γ∈Z/qZ
αβγ=x

e
(α + β + γ

q

)
.

Thus, up to the expected main term and negligible or simpler contributions, we get

Tm(a; q) ≈ N

q2

∑∑∑
16|hi|6Hi

Kl3(ah1h2h3m
−1; q).

The total number of points in the sums is H = H1H2H3 � Q3/N which is quite large,

but the summation is not free. We express the right-hand side as

N

q2

∑∑∑
16|hi|6Hi

Kl3(ah1h2h3m
−1; q) =

N

q2

∑
16|h|6H

τ̃3(h) Kl3(ahm
−1; q)

where τ̃3(h) 6 τ3(h) is viewed again as an almost unknown sequence of coefficients,

with average size under control.

We now use the splitting q = rs, where (r, s) = 1 since q is squarefree. We sum over

r, for a fixed value of s (we could also sum over m at this point with the coefficients

β(m)), and use the bilinear principle for the h variable in order to eliminate the unknown

coefficients. The inner sums (analogue of ∆γ(m1,m2) in the description of Section 5)

are then of the type ∑
16|h|6H

Kl3(ahm
−1; r1s)Kl3(ahm−1; r2s).

Comparing the length of h and the modulus [r1, r2]s, we can see again that we have

reached a situation where the completion technique (Lemma 6.2) can lead to a non-

trivial bound for these sums, outside of a well-understood diagonal situation, provided

we can control the size of the discrete Fourier transform of the function modulo [r2, r2]s

given by

ϕ(h) = Kl3(ahm
−1; r1s)Kl3(ahm−1; r2s).

Thus, in the end, a crucial ingredient is the following exponential sum estimate,

obtained as an application of the Riemann Hypothesis over finite fields.

Theorem 7.3. — There exists an absolute constant C > 1 such that for any prime p,

any (a, b, c) ∈ F×p × F×p × Fp with a 6= b, we have∣∣∣∑
x∈Fp

Kl3(ax; p)Kl3(bx; p)e
(cx
p

)∣∣∣ 6 Cp1/2.
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Remark 7.4. — Although Friedlander and Iwaniec [11] (and then Zhang) proceed along

slightly different lines, they end up with an exponential sum which is, in fact, equivalent

(see the proof). The first treatment of the sum as we stated it is due to Michel [22]

(who considered more general cases).

Proof. — We give a full proof to emphasize that, with today’s technology in hand and a

modicum of knowledge of the relevant étale formalism, this is again an application of Deligne’s

work [3], and that it is (almost) as elementary as any application of Weil’s bounds for one-

variable character sums. Indeed, the proof follows closely in outline the one we gave for the

one-variable sum in Proposition 6.4. We will even obtain an explicit constant C = 8 in this

manner, but this value should not be considered important.

We write Kl3(x; p) = Kl3(x) for simplicity. We begin by expanding the Kloosterman sums

and exchanging the sums, obtaining easily by orthogonality of characters the formula

(27)
∑
x∈Fp

Kl3(ax)Kl3(bx)e
(cx
p

)
=
∑
t6=0,−c

Kl2

(a
t

)
Kl2

( b

t+ c

)
=

∑
y 6=0,−a/c

Kl2(y) Kl2

( by

cy + a

)
where, for a ∈ Fp, the sum

Kl2(a) =
1
√
p

∑
x,y∈Fp
xy=a

e
(x+ y

p

)
∈ R

is a standard Kloosterman sum. This last sum of Kloosterman sums is the one that arises

in [11]; the estimate that follows is then proved by Birch and Bombieri in the Appendix

to [11]. They give two different proofs, both relying of course on Deligne’s work, which are

also different than the one we give. One could also avoid this step.

Now, as in Proposition 6.4, we fix a prime ` 6= p, and fix an isomorphism ι : Q̄` −→ C.

There is an additive character ψ : Fp −→ Q̄×` such that ι(ψ`(x)) = e(x/p). Furthermore, by

another important work of Deligne, there exists a lisse geometrically irreducible `-adic sheaf

K`2 of rank 2 on the multiplicative group over Fp such that for a ∈ F×p , the trace of the

geometric Frobenius of Fp acting on the stalk over a is equal to −Kl2(a). The pullback of

K`2 to any open dense subset of the multiplicative group is still geometrically irreducible, and

it is known that this sheaf is self-dual, tamely ramified at 0 and totally wildly ramified at ∞
with only break 1/2, hence Swan conductor 1. It is pointwise ι-pure of weight 0 (see [18] for

this result, and much more concerning Kloosterman sheaves), the latter result being itself an

application of Weil’s theory for Kloosterman sums.

As a corollary, given (a, b, c) as before and the matrix γ =

(
b 0

c a

)
∈ PGL2(Fp), which is

not the identity, the sheaf

F = K`2 ⊗ γ∗K`2
is lisse and pointwise of weight 0 on U = P1−{0,−c/a,∞}, and has trace of Frobenius equal

to

Kl2(x) Kl2(γ · x)

for all x ∈ U(Fp). Hence the rightmost sum in (27) is simply the sum of the local traces of

this sheaf over U(Fp).
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The sheaf F is of rank 4. It is tamely ramified at 0 (because K`2 and γ∗K`2 are tame

at 0) and totally wildly ramified at −a/c and ∞, with Swan conductor 2 at each of these

singularities (it has unique break 1/2 with multiplicity 4 at these points).

Again as we did before, we get

H0
c (U × F̄p,F) = 0

because F is lisse on U and also

H2
c (U × F̄p,F) = 0

(by [3, (1.4.1)b], either because the two tensor factors are geometrically irreducible on U and

have different singularities, if c 6= 0, or by a computation of Katz [18, Prop. 10.4.1] if c = 0,

where one uses the fact that a 6= b).

¿From the Grothendieck-Lefschetz trace formula (see, e.g., [18, 2.3.2]) we get∑
t6=0,−c

Kl2

(a
t

)
Kl2

( b

t+ c

)
= −Tr(Fr | H1

c (U × F̄p,F)),

and then from Deligne’s Riemann Hypothesis [3, Th. 3.3.1], since F is pointwise of weight 0,

we get ∣∣∣ ∑
t6=0,−c

Kl2

(a
t

)
Kl2

( b

t+ c

)∣∣∣ 6 (dimH1
c (U × F̄p,F))p1/2.

Finally, if c 6= 0, the Euler-Poincaré characteristic formula gives

dimH1
c (U × F̄p,F) = −χc(U × F̄p,F) =

rank(F)χc(U × F̄p)− Swan0(F)− Swan−α(F)− Swan∞(F) = 8

using χc(U × F̄p) = −1 and

Swan0(F) = 0, Swan−α(F) = Swan∞(F) = 2.

For c = 0, one gets similarly

dimH1
c (U × F̄p,F) 6 8.

8. MAYNARD’S THEOREM

We now come back to Maynard’s theorem. Here, we estimate the error term (13) in

the quadratic form Q1, defined using the general choice (7) by means of the Bombieri-

Vinogradov estimate: we take x = X1/4−ε for some small ε > 0, and we then get

from (25), without further ado, the bound

Q1 � ‖λ‖2∞
X

(logX)A

where the implied constant depends on k and A.

On the other hand, the main terms can be evaluated asymptotically for a suitable

choice of λd. As described in [13, 19], a diagonalization procedure of Q2 can be used to
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simplify and motivate the choice, but we omit this step. This leads Maynard however

to define

λd = µ(d)|d|
∑
d|r

(r,W )=1

µ(|r|)2

ϕ(r)
F
( log d1

log x
, . . . ,

log dk
log x

)
where

µ(d) =
∏
i

µ(di), ϕ(d) =
∏
i

ϕ(di),

r runs over k-tuples of integers where all ri are squarefree, pairwise coprime and coprime

to W , and di | ri for all i, and where F is a piecewise smooth real-valued function defined

on [0, 1]k and supported on the domain

Dk = {(t1, . . . , tk) ∈ [0,+∞[k | 0 6 t1 + · · ·+ tk 6 1}.

Remark 8.1. — A choice of the type

F (t) = f(t1 + · · ·+ tk)

for some smooth function f recovers the type of functions considered in the Goldston-

Pintz-Yıldırım method.

Maynard [21, Prop. 4.1, Lemma 6.2, Lemma 6.3] proves the following asymptotic

formulas, stated using the notation in (11) (in particular, W is the auxiliary product

of primes 6 D(X) = log log logX used in the preliminary sieve):

Proposition 8.2 (Maynard). — Let λd be defined as above for x = X1/4−ε for some

ε > 0, and let F be a real-valued piecewise smooth function. We then have

Q2 = X̃
(ϕ(W )

W

)k
(log x)k+1Mg(F )(1 + o(1)),

Q1 =
(1

4
− ε
)
X̃
(ϕ(W )

W

)k
(log x)k+1Mp(F )(1 + o(1)),

as X → +∞, where

Mp(F ) = ‖F‖2 =

∫
Dk

F (t)2dt,

Mg(F ) =
k∑
i=1

∫
[0,1]k−1

Fi(u)2du,

with Fi defined on [0, 1]k−1 by

Fi(u1, . . . , uk−1) =

∫
[0,1]

F (u1, . . . , ui−1, t, ui+1, . . . , uk−1)dt.

The proof of this result is not very difficult, and is to some extent just an extension

of the known case of the Goldston-Pintz-Yıldırım method, which requires some care

(bookkeeping and notational, for instance), but does not involve new ideas by itself

(once one has thought of trying to prove it!). We refer to the very precise and clear

exposition by Maynard [21, §5,§6].
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The question therefore becomes that of maximizing the ratio

Mg(F )

Mp(F )

as F runs over admissible functions. The objective is to show that the supremum, say

ρk, is > 4 for k large enough (to prove the bounded gap property using the Bombieri-

Vinogradov theorem), and in fact that ρk is unbounded as k grows (to prove the sharper

statement (1)). Thus, the following finishes the proof of Theorem 1.2:

Proposition 8.3. — With notation as above, we have

lim
k→+∞

ρk = +∞.

Sketch of proof. — We use the probabilistic interpretation of Maynard’s computation

by Tao [26]. We consider functions defined by

F (t) =
k∏
i=1

G(ti)

for t ∈ Dk, and F (t) = 0 otherwise, where G > 0 is a function with compact support

in [0, α] for some α 6 1, with L2-norm equal to 1. It follows then that

Mp(F ) 6 ‖G‖k2 = 1,

and we look for a lower-bound on Mg(F ). We note first that, G being symmetric, we

have

Mg(F ) = k

∫
[0,1]k−1

Fk(u)2du.

We then note that, because of the support of G, we certainly have

Fk(u) =

∫ 1

0

G(u, t)dt =
k−1∏
j=1

G(uj)

∫
G(t)dt

for all (u, t) ∈ Dk such that

u1 + · · ·+ uk−1 6 1− α.

Denoting µ =
∫
G(t)dt, we get therefore

Mg(F ) > kµ2

∫
u1+···+uk−161−α

k−1∏
j=1

G(uj)
2du.

Since G has L2-norm 1, the measure

k−1∏
j=1

G(uj)
2du

is the probability distribution of a vector (Y1, . . . , Yk−1) of independent random vari-

ables, identically distributed with law G(u)2du. Thus what we have proved is

Mg(F ) > kµ2P(Y1 + · · ·+ Yk−1 6 1− α).
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If this probability law satisfies

(k − 1)E(Y1) 6 kE(Y1) < 1− α,

then by the law of large numbers, the condition Y1 + · · · + Yk−1 6 1 − α will be true

with probability almost 1. Precisely, the Chebychev inequality (and a simple bound on

the variance of Yi) gives

P(Y1 + · · ·+ Yk−1 6 1− α) > 1− αkE(Y1)

(1− α− kE(Y1))2
> 1− α

(1− α− kE(Y1))2
.

The optimization of this bound (in terms of G) is done by Maynard. We just quote

his choice: take α = 1/(log k)3 (for k > 2...) and G supported on [0, α] by

G(t) =

√
kβ

1 + k(log k)t
,

where β is the normalization factor that implies that the L2-norm is 1. One finds that

β ∼ (log k)1/2, and that

E(Y1) =

∫
tG(t)2dt =

1

k

(
1− 2

log log k

log k
+O

( 1

log k

))
while

µ�
√

log k

k
,

proving finally that, for this particular choice of function, we have

ρk >Mg(F )� log k.

Remark 8.4. — (1) P. Sarnak(9) has observed that there is a certain similarity between

this question and the type of estimates related to the proof of “stability of the second

kind” in quantum mechanics, which also involve variational optimization problems for

functions of increasing number of variables (see [20]). Whether this observation can be

used to understand the behavior of ρk is an interesting question.

(2) The quantitative lower bound leads to

lim inf
n→+∞

(pn+m − pn)� m3e4m

for m > 1 (see [21, Prop. 4.3 (3)]; this has been improved by the Polymath8b project).

(3) Because of the underlying simplicity of the argument and its dependency only

on arbitrarily small positive exponents of distribution, it is certain that the ideas of

Maynard will have considerable influence on the study of the distribution of many

arithmetic functions besides the primes.

(9) During a lecture by K. Soundararajan, December 2013.
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8092 Zürich, Switzerland
E-mail : kowalski@math.ethz.ch


